Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Conventional Extraction
2.4. Supercritical Fluid Extraction
2.5. Quantification of Bioactive Compounds in SFE and CE Extracts
2.5.1. Chlorophylls and Carotenoids
2.5.2. Total Phenolic Content
2.5.3. Phytosterols and α-Tocopherol
2.6. Antioxidant Capacity
2.7. Cytotoxic Evaluation
2.7.1. Cell Cultures and Treatments
2.7.2. Cell Viability Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Screening for Bioactive Compounds in Broccoli by-Products
3.2. Optimization of the SFE Conditions
3.3. Quantification of Bioactive Compounds from Optimized SFE Conditions
3.4. Antioxidant Activity of Extracts Obtained by SFE
3.5. Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Surfaces and Annual Crop Productions. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 23 June 2020).
- Domínguez-Perles, R.; Moreno, D.A.; Carvajal, M.; Garcia-Viguera, C. Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innov. Food Sci. Emerg. Technol. 2011, 12, 361–368. [Google Scholar] [CrossRef]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. In Advances in Food and Nutrition Research, 1st ed.; Toldra, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 157–225. [Google Scholar]
- Hooper, L.; Cassidy, A. A review of the health care potential of bioactive compounds. J. Sci. Food Agric. 2006, 86, 1805–1813. [Google Scholar] [CrossRef]
- Ares, A.M.; Nozal, M.J.; Bernal, J. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J. Chromatogr. A 2013, 1313, 78–95. [Google Scholar] [CrossRef] [PubMed]
- López-Berenguer, C.; Martínez-Ballesta, M.C.; Moreno, D.A.; Carvajal, M.; García-Viguera, C. Growing hardier crops for better health: Salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem. 2009, 57, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ballesta, M.C.; Domínguez-Perlés, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Arnáiz, E.; Bernal, J.; Martín, M.T.; Nozal, M.J.; Bernal, J.L.; Toribio, L. Supercritical fluid extraction of free amino acids from broccoli leaves. J. Chromatogr. A. 2012, 1250, 49–53. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lim, S.B. Antioxidant and anticancer activities of broccoli by-products from different cultivars and maturity stages at harvest. Prev. Nutr. Food Sci. 2015, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.S.; Passos, C.P.; Cardoso, S.M.; Wessel, D.F.; Coimbra, M.A. Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chem. 2018, 246, 386–393. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.M. Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [Green Version]
- Barbulova, A.; Colucci, G.; Apone, F. New trends in cosmetics: By-products of plant origin and their potential use as cosmetic active ingredients. Cosmetics 2015, 2, 82–92. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.P.; Rocha-Santos, T.A.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TRAC-Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- De Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Miras-Moreno, B.; Almagro, L.; Pedreño, M.A.; Sabater-Jara, A.B. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. Plant Sci. 2016, 250, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, A.M.Z.; Norazian, M.H.; Rashidi, O. Identification of carotenoid composition in selected ‘ulam’ or traditional vegetables in Malaysia. Int. Food Res. J. 2012, 19, 527–530. [Google Scholar]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 2231, 606X. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Almagro, L.; García-Pérez, P.; Belchí-Navarro, S.; Sánchez-Pujante, P.J.; Pedreño, M.A. New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. Plant Physiol. Biochem. 2016, 99, 73–78. [Google Scholar] [CrossRef]
- Escribano, J.; Pedreño, M.A.; García-Carmona, F.; Muñoz, R. Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem. Anal. 1998, 9, 124–127. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Recovery of carotenoids from tomato processing by-products–a review. Food Res. Int. 2014, 65, 311–321. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Chen, J.; Ye, X.; Yu, D. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason. Sonochem. 2011, 18, 243–249. [Google Scholar] [CrossRef]
- Zhao, S.; Baik, O.D.; Choi, Y.J.; Kim, S.M. Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Crit. Rev. Food Sci. 2014, 54, 1283–1297. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Baysal, T.A.N.E.R.; Ersus, S.E.D.A.; Starmans, D.A.J. Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J. Agric. Food Chem. 2000, 48, 5507–5511. [Google Scholar] [CrossRef]
- Alzate, L.M.; González, D.; Londoño-Londoño, J. Recovery of carotenoids from agroindustrial by-products using clean extraction techniques: Supercritical fluid extraction and ultrasound assisted extraction. In Proceedings of the III Iberoamerican Conference on Supercritical Fluids, Cartagena de Indias, Colombia, 1–5 April 2013. [Google Scholar]
- Vega, P.J.; Balaban, M.O.; Sims, C.A.; O’keefe, S.F.; Cornell, J.A. Supercritical carbon dioxide extraction efficiency for carotenes from carrots by RSM. J. Food Sci. 1996, 61, 757–759. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Prasad, K.; Bahadur, A.; Rai, M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J. Food Compos. Anal. 2007, 20, 106–112. [Google Scholar] [CrossRef]
- Podsędek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Arnáiz, E.; Bernal, J.; Martín, M.T.; García-Viguera, C.; Bernal, J.L.; Toribio, L. Supercritical fluid extraction of lipids from broccoli leaves. Eur. J. Lipid Sci. Tech. 2011, 113, 479–486. [Google Scholar] [CrossRef]
- Arnáiz, E.; Bernal, J.; Martín, M.T.; Diego, J.C.; Bernal, J.L.; Recio, L.T. Optimisation of the supercritical fluid extraction of antioxidants from broccoli leaves. Food Anal. Methods 2016, 9, 2174–2181. [Google Scholar] [CrossRef]
- Afaq, F.; Mukhtar, H. Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp. Dermatol. 2006, 15, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Shibata, A.; Nakagawa, K.; Yamanoi, H.; Tsuduki, T.; Sookwong, P.; Higuchi, O.; Kimura, F.; Miyazawa, T. Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice. J. Nutr. Biochem. 2010, 21, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Seok, J.K.; Suh, H.J.; Boo, Y.C. Gardenia jasminoides extract attenuates the UVB-induced expressions of cytokines in keratinocytes and indirectly inhibits matrix metalloproteinase-1 expression in human dermal fibroblasts. Evid. Based Complement. Alternat. Med. 2014, 2014, 1–10. [Google Scholar]
- Vostálová, J.; Zdařilová, A.; Svobodová, A. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch. Dermatol. Res. 2010, 302, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.A.; Afaq, F.; Syed, D.N.; Dreher, M.; Mukhtar, H. Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem. Photobiol. 2007, 83, 882–888. [Google Scholar] [CrossRef]
- Calò, R.; Marabini, L. Protective effect of Vaccinium myrtillus extract against UVA-and UVB-induced damage in a human keratinocyte cell line (HaCaT cells). J. Photochem. Photobiol. B Biol. 2014, 132, 27–35. [Google Scholar] [CrossRef]
Condition | Temperature (°C) | Pressure (bar) | % EtOH | Flow Rate (g min−1) | Time (min) | Response (mg β-Carotene g−1 Extract) |
---|---|---|---|---|---|---|
SFE-1 | 40 | 450 | 30 | 28 | 80 | 45.17 ± 1.23 |
SFE-2 | 60 | 150 | 18.5 | 30 | 60 | 48.53 ± 0.55 |
SFE-3 | 40 | 450 | 7 | 32 | 80 | 96.34 ± 3.26 |
SFE-4 | 60 | 300 | 18.5 | 30 | 40 | 41.22 ± 3.32 |
SFE-5 | 60 | 300 | 18.5 | 30 | 60 | 50.04 ± 3.45 |
SFE-6 | 60 | 300 | 18.5 | 30 | 80 | 75.08 ± 4.17 |
SFE-7 | 60 | 300 | 7 | 30 | 60 | 34.94 ± 0.19 |
SFE-8 | 40 | 450 | 30 | 32 | 40 | 66.51 ± 3.18 |
SFE-9 | 80 | 150 | 7 | 32 | 80 | 57.67 ± 1.48 |
SFE-10 | 40 | 150 | 30 | 28 | 40 | 11.51 ± 1.10 |
SFE-11 | 80 | 450 | 30 | 28 | 40 | 40.72 ± 0.63 |
SFE-12 | 60 | 300 | 18.5 | 28 | 60 | 29.42 ± 2.08 |
SFE-13 | 40 | 450 | 7 | 28 | 40 | 28.76 ± 0.27 |
SFE-14 | 40 | 150 | 30 | 32 | 80 | 53.55 ± 2.44 |
SFE-15 | 80 | 150 | 30 | 32 | 40 | 50.16 ± 0.38 |
SFE-16 | 80 | 450 | 30 | 32 | 80 | 28.41 ± 0.99 |
SFE-17 | 40 | 150 | 7 | 32 | 40 | 25.83 ± 0.58 |
SFE-18 | 80 | 450 | 7 | 32 | 40 | 38.88 ± 1.64 |
SFE-19 | 60 | 300 | 30 | 30 | 60 | 45.19 ± 0.60 |
SFE-20 | 80 | 150 | 30 | 28 | 80 | 30.95 ± 0.08 |
SFE-21 | 80 | 450 | 7 | 28 | 80 | 24.81 ± 0.77 |
SFE-22 | 40 | 300 | 18.5 | 30 | 60 | 65.54 ± 1.31 |
SFE-23 | 40 | 150 | 7 | 28 | 80 | 49.52 ± 1.40 |
SFE-24 | 80 | 300 | 18.5 | 30 | 60 | 31.26 ± 2.00 |
SFE-25 | 60 | 300 | 18.5 | 32 | 60 | 30.52 ± 2.44 |
SFE-26 | 60 | 300 | 18.5 | 30 | 60 | 46.76 ± 1.56 |
Source | Y= β-Carotene Content | ||||
---|---|---|---|---|---|
SS | Df | MS | F-Ratio | p-Value | |
X1: Temperature | 1064.38 | 1 | 1064.38 | 197.87 | 0.0452 * |
X2: Pressure | 490.67 | 1 | 490.67 | 91.22 | 0.066 4* |
X3: Ethanol | 20.80 | 1 | 20.80 | 3.87 | 0.2995 |
X4: Flow rate | 1870.99 | 1 | 1870.99 | 347.82 | 0.0341 * |
X5: Time | 1346.36 | 1 | 1346.36 | 250.29 | 0.0402 * |
X3 X5 | 1282.13 | 1 | 1282.13 | 238.35 | 0.0412 * |
X4 X4 | 604.38 | 1 | 604.38 | 112.35 | 0.0479 * |
Lack-of-fit | 3262.24 | 4 | 191.90 | 35.67 | 0.1296 |
Pure error | 5.38 | 1 | 5.38 | ||
Total (corr.) | 8172.58 | 25 | |||
R2 | 0.935 |
Phytosterols (mg g−1) | α-Tocopherol (mg g−1) | Chlorophylls (mg g−1) | β-Carotene (mg g−1) | Phenolic Compounds (mg GAE g−1) | Total Bioactive Compounds (mg g−1) | Extraction Yield (%) | |
---|---|---|---|---|---|---|---|
CE | 25.04 ± 0.70 (6.38) | 9.45 ± 0.59 (2.41) | 30.03 ± 0.89 (7.66) | 253. 40 ± 7.30 (64.61) | 74.31 ± 1.02 (18.94) | 392.22 ± 10.51 | 2.57 |
SFE-PT | 19.71 ± 2.39 (12.19) | 5.69 ± 0.13 (3.52) | 32.64 ± 1.72 (20.19) | 84.11 ± 1.51 (52.03) | 19.51± 0.60 (12.07) | 161.66 ± 6.35 | 2.61 |
SFE-NX | 12.68 ± 1.43 (5.34) | 5.67 ± 0.19 (2.39) | 40.89 ± 2.19 (17.22) | 148.93 ± 8.56 (62.74) | 29.21 ± 5.04 (12.31) | 237.38 ± 17.42 | 2.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borja-Martínez, M.; Lozano-Sánchez, J.; Borrás-Linares, I.; Pedreño, M.A.; Sabater-Jara, A.B. Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants 2020, 9, 1195. https://doi.org/10.3390/antiox9121195
Borja-Martínez M, Lozano-Sánchez J, Borrás-Linares I, Pedreño MA, Sabater-Jara AB. Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants. 2020; 9(12):1195. https://doi.org/10.3390/antiox9121195
Chicago/Turabian StyleBorja-Martínez, María, Jesús Lozano-Sánchez, Isabel Borrás-Linares, María A Pedreño, and Ana B Sabater-Jara. 2020. "Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction" Antioxidants 9, no. 12: 1195. https://doi.org/10.3390/antiox9121195
APA StyleBorja-Martínez, M., Lozano-Sánchez, J., Borrás-Linares, I., Pedreño, M. A., & Sabater-Jara, A. B. (2020). Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants, 9(12), 1195. https://doi.org/10.3390/antiox9121195