Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Wine Samples
2.3. Derivatization using 4-methyl-1,2-benzoquinone
2.4. Ultra-High-Performance Liquid Chromatography Coupled to a Quadrupole-Time of Flight Mass SpectrometerAnalysis
2.5. Data Mining
3. Results and Discussion
3.1. Screening the Conditions of One-Step Derivatization of Model Wines for Optimizing the Detection of Relevant Nucleophiles in Acidic pH
3.1.1. Electrophilic Probe (4MeQ) Concentration Effect
3.1.2. pH Effect
3.1.3. Reaction Time Effect
3.1.4. UHPLC-QqTOF-MS Ionization Conditions
3.2. Multivariate Statistical Analysis of UHPLC-QqTOF-MS Data for the Isolation of Wine Relevant Nucleophiles
3.3. Annotation of Wine Relevant Nucleophilic Compounds
3.4. Grape cultivar Effect on Wines Antioxidant Metabolome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abramovič, H.; Košmerl, T.; Poklar Ulrih, N.; Cigić, B. Contribution of SO2 to antioxidant potential of white wine. Food Chem. 2015, 174, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Danilewicz, J.C. The Folin-Ciocalteu, FRAP, and DPPH• Assays for Measuring Polyphenol Concentration in White Wine. Am. J. Enol. Vitic. 2015, 66, 463–471. [Google Scholar] [CrossRef]
- Pons, A.; Nikolantonaki, M.; Lavigne, V.; Shinoda, K.; Dubourdieu, D.; Darriet, P. New Insights into Intrinsic and Extrinsic Factors Triggering Premature Aging in White Wines. In Advances in Wine Research; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; Volume 1203, pp. 229–251. ISBN 0-8412-3010-2. [Google Scholar]
- Romanet, R.; Coelho, C.; Liu, Y.; Bahut, F.; Ballester, J.; Nikolantonaki, M.; Gougeon, R.D. The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay. Molecules 2019, 24, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolantonaki, M.; Julien, P.; Coelho, C.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Gougeon, R.D. Impact of Glutathione on Wines Oxidative Stability: A Combined Sensory and Metabolomic Study. Front. Chem. 2018, 6, 182. [Google Scholar] [CrossRef]
- Jongberg, S.; Gislason, N.E.; Lund, M.N.; Skibsted, L.H.; Waterhouse, A.L. Thiol–Quinone Adduct Formation in Myofibrillar Proteins Detected by LC-MS. J. Agric. Food Chem. 2011, 59, 6900–6905. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Magiatis, P.; Waterhouse, A.L. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones. Food Chem. 2014, 163, 61–67. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Waterhouse, A.L. A Method To Quantify Quinone Reaction Rates with Wine Relevant Nucleophiles: A Key to the Understanding of Oxidative Loss of Varietal Thiols. J. Agric. Food Chem. 2012, 60, 8484–8491. [Google Scholar] [CrossRef]
- Fujimoto, A.; Masuda, T. Chemical Interaction between Polyphenols and a Cysteinyl Thiol under Radical Oxidation Conditions. J. Agric. Food Chem. 2012, 60, 5142–5151. [Google Scholar] [CrossRef]
- Fujimoto, A.; Masuda, T. Antioxidation mechanism of rosmarinic acid, identification of an unstable quinone derivative by the addition of odourless thiol. Food Chem. 2012, 132, 901–906. [Google Scholar] [CrossRef]
- Huang, Y.-Q.; Ruan, G.-D.; Liu, J.-Q.; Gao, Q.; Feng, Y.-Q. Use of isotope differential derivatization for simultaneous determination of thiols and oxidized thiols by liquid chromatography tandem mass spectrometry. Anal. Biochem. 2011, 416, 159–166. [Google Scholar] [CrossRef]
- Qi, B.-L.; Liu, P.; Wang, Q.-Y.; Cai, W.-J.; Yuan, B.-F.; Feng, Y.-Q. Derivatization for liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 2014, 59, 121–132. [Google Scholar] [CrossRef]
- Yang, W.-C.; Mirzaei, H.; Liu, X.; Regnier, F.E. Enhancement of Amino Acid Detection and Quantification by Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Harir, M.; Chen, G.; Gougeon, R.D.; Zhang, L.; Huang, X.; Schmitt-Kopplin, P. Capillary electrokinetic fractionation mass spectrometry (CEkF/MS): Technology setup and application to metabolite fractionation from complex samples coupled at-line with ultrahigh-resolution mass spectrometry. Electrophoresis 2014, 35, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhang, Z.-P.; Karnes, H.T. Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. J. Chromatogr. B 2005, 825, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-F.; Wang, H.; Guo, Y.-H.; Zhang, Z.-X.; Zhang, H.-S. Simultaneous analysis of plasma thiols by high-performance liquid chromatography with fluorescence detection using a new probe, 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido)difluoroboradiaza-s-indacene. J. Chromatogr. A 2009, 1216, 3874–3880. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Nishimura, M.; Tsutsui, H.; Min, J.Z.; Todoroki, K.; Kauffmann, J.-M.; Toyo’oka, T. Foodomics Platform for the Assay of Thiols in Wines with Fluorescence Derivatization and Ultra Performance Liquid Chromatography Mass Spectrometry Using Multivariate Statistical Analysis. J. Agric. Food Chem. 2013, 61, 1228–1234. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Bald, E. Reversed-phase liquid chromatography method for the determination of total plasma thiols after derivatization with 1-benzyl-2-chloropyridinium bromide. Biomed. Chromatogr. 2009, 23, 770–775. [Google Scholar] [CrossRef]
- Seiwert, B.; Karst, U. Simultaneous LC/MS/MS Determination of Thiols and Disulfides in Urine Samples Based on Differential Labeling with Ferrocene-Based Maleimides. Anal. Chem. 2007, 79, 7131–7138. [Google Scholar] [CrossRef]
- Dayon, L.; Roussel, C.; Girault, H.H. Probing Cysteine Reactivity in Proteins by Mass Spectrometric EC-Tagging. J. Proteome Res. 2006, 5, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M. Food Browning and Its Prevention: An Overview. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, Biochemistry, Nutrition, and Microbiology of Lysinoalanine, Lanthionine, and Histidinoalanine in Food and Other Proteins. J. Agric. Food Chem. 1999, 47, 1295–1319. [Google Scholar] [CrossRef] [PubMed]
- Danilewicz, J.C. Mechanism of Autoxidation of Polyphenols and Participation of Sulfite in Wine: Key Role of Iron. AJEV 2011, 62, 319–328. [Google Scholar] [CrossRef]
- Danilewicz, J.C.; Seccombe, J.T.; Whelan, J. Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine. Am. J. Enol. Vitic. 2008, 59, 128–136. [Google Scholar]
- Jiménez-Atiénzar, M.; Cabanes, J.; Gandía-Herrero, F.; García-Carmona, F. Kinetic analysis of catechin oxidation by polyphenol oxidase at neutral pH. Biochem. Biophys. Res. Commun. 2004, 319, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Sarakbi, A.; Kauffmann, J.-M. A new chemical criteria for white wine: The glutathione equivalent capacity. Food Chem. 2014, 153, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Watrelot, A.A.; Addison, B.; Waterhouse, A.L. Condensed Tannin Reacts with SO2 during Wine Aging, Yielding Flavan-3-ol Sulfonates. J. Agric. Food Chem. 2018, 66, 9259–9268. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Forcisi, S.; Lucio, M.; Harir, M.; Bahut, F.; Deleris-Bou, M.; Krieger-Weber, S.; Gougeon, R.D.; Alexandre, H.; Schmitt-Kopplin, P. Digging into the low molecular weight peptidome with the OligoNet web server. Sci. Rep. 2017, 7, 11692. [Google Scholar] [CrossRef] [Green Version]
- KEGG: Kyoto Encyclopedia of Genes and Genomes. Available online: https://www.genome.jp/kegg/ (accessed on 27 January 2020).
- Metlin. Available online: https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage (accessed on 27 January 2020).
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Sumner, L.W.; Lei, Z.; Nikolau, B.J.; Saito, K.; Roessner, U.; Trengove, R. Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics 2014, 10, 1047–1049. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Jourdes, M.; Shinoda, K.; Teissedre, P.-L.; Quideau, S.; Darriet, P. Identification of Adducts between an Odoriferous Volatile Thiol and Oxidized Grape Phenolic Compounds: Kinetic Study of Adduct Formation under Chemical and Enzymatic Oxidation Conditions. J. Agric. Food Chem. 2012, 60, 2647–2656. [Google Scholar] [CrossRef]
- Wysocki, V.H.; Tsaprailis, G.; Smith, L.L.; Breci, L.A. Mobile and localized protons: A framework for understanding peptide dissociation. J. Mass Spectrom. 2000, 35, 1399–1406. [Google Scholar] [CrossRef]
- Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013, 9, 44–66. [Google Scholar] [CrossRef] [Green Version]
- Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef]
- Weiss, K.C.; Yio, T.-T.; Hutchens, T.W.; Bisson, L.F. Rapid and Sensitive Fingerprinting of Wine Proteins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry. Am. J. Enol. Vitic. 1998, 49, 231–239. [Google Scholar]
Compound | Without Derivatization | With Derivatization | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Formula | m/z [M + H]+ | RT | LOD | LOQ | Formula | m/z [(4MeC + M − 2H) + H]+ | RT | LOD | LOQ | |
GSH | C10H17N3O6S | 308.0911 | 0.6 | 8.48 × 10−9 | 2.83 × 10−8 | C17H23N3O8S | 430.1279 | 2.2 (3) * 2.4 (91) 2.5 (6) | 3.92 × 10−9 | 1.31 × 10−8 |
Cys | C3H7NO2S | 122.0270 | ND | ND | ND | C10H13NO4S | 244.0638 | 1.2 (38) 1.7 (62) | 1.96 × 10−7 | 6.52 × 10−7 |
Hcys | C4H9NO2S | 136.0427 | ND | ND | ND | C11H15NO4S | 258.0795 | 1.9 (66) 2.2 (34) | 1.82 × 10−8 | 6.07 × 10−8 |
Ser-Asp-Cys-Asp-Ser | C17H27N5O12S | 526.1450 | 0.6 | 8.83 × 10−8 | 2.94 × 10−8 | C24H33N5O14S | 648.1817 | 1.4 (3) 1.8 (91) 2.2 (6) | 1.34 × 10−8 | 4.45 × 10−8 |
Asp-Met | C9H16N2O5S | 265.0853 | 0.8 | 3.68 × 10−9 | 1.23 × 10−8 | C16H22N2OS | 387.1220 | 2.9 | 3.29 × 10−7 | 1.10 × 10−6 |
Met | C5H11NO2S | 150.0583 | 0.7 | 6.18 × 10−8 | 2.06 × 10−7 | C12H17NO4S | 272.0951 | ND | 1.36 × 10−6 | 4.52 × 10−6 |
Glu | C5H9NO4 | 148.0604 | 0.6 | 4.33 × 10−7 | 1.44 × 10−6 | C12H15NO6 | 270.0972 | 0.9 | ND | ND |
Putative Formula | Retention Time (min) | Detected Mass [(M+4MeC-2H) +H]+ | Neutral Mass [M] | Error (ppm) | MS2 (20 eV) | Putative Compounds | Confidence Level |
---|---|---|---|---|---|---|---|
C2H5NO2 + 4MEC -2H | 1.2 | 198.0759 | 75.032 | 0.79 | 120.0805 (100%) | 51–4.52 | |
C5H9NO2 + 4MEC -2H | 1.3 | 238.1071 | 115.0633 | 1.04 | 192.1029 (100%); 238.1081 (48.8%); 220.0976 (11.9%); 170.0611 (8%); 178.0874 (6.4%) | Pro | 1–9 |
C3H7NO2S + 4MEC -2H | 1.7 | 244.0637 | 121.0197 | 0.57 | 155.0175 (100%) | Cys | 1–9 |
C4H9NO2S + 4MEC -2H | 2.2 | 258.0792 | 135.0359 | 2.74 | 134.0278 (100%); 169.0325 (49.9%); 210.0587 (16.4%); 195.0484 (16.1%); 135.0305 (6.8%) | HCys | 1–9 |
C5H10N2O3S + 4MEC -2H | 2.3 | 301.0852 | 178.0412 | 0.31 | 230.1577 (100%); 199.18 (89.1%); 229.1546 (57.1%); 189.1231 (34.9%); 227.1753 (18.8%) | Gly-Cys | 3–4.5 |
C7H14N2O3S* + 4MEC -2H | 3.0 | 329.1162 | 206.0725 | 1.06 | 171.1487 (100%); 185.1641 (79.7%); 199.1435 (37.4%); 213.1589 (31.2%); 231.1697 (20.1%) | Asp-Met | 3–4.5 |
C9H18N2O3S* + 4MEC -2H | 2.9 | 357.1475 | 234.1038 | 1.16 | 245.1495 (100%); 144.1016 (70%); 186.1235 (43.5%); 358.2342 (34.1%); 211.1439 (27.8%) | Leu-Cys; Ile-Cys | 3–4.5 |
C8H14N2O5S + 4MEC -2H | 2.2 | 373.1063 | 250.0623 | 0.23 | 147.076 (100%); 199.1801 (51.7%); 260.1602 (40.5%); 130.0497 (27.7%); 227.1745 (25.8%) | Cys-Glu | 3–4.5 |
C10H18N2O5S* + 4MEC -2H | 3.2/3.3 | 401.1372 | 278.0936 | 1.25 | 227.1756 (100%); 199.1804 (77.5%); 175.1076 (36.9%); 213.1596 (35.9%) | Glu-Met | 3–4.5 |
C11H22N2O4S* + 4MEC -2H | 3.3 | 401.1737 | 278.13 | 0.89 | 271.1111 (100%) | Pantetheine | 3–4.5 |
C9H17N3O5S + 4MEC -2H | 2.2 | 402.1329 | 279.0889 | 0.04 | 200.1393 (100%); 228.1342 (86.8%); 327.2028 (34.9%) | Gly-Thr-Cys | 3–4.5 |
C17H17NO3* + 4MEC -2H | 4.3 | 406.1646 | 283.1208 | 0.8 | 406.1648 (100%); 388.1543 (79.5%); 373.1306 (11.8%); 407.1686 (11.2%); 370.144 (9.7%) | 5–4.5 | |
C11H21N3O4S + 4MEC -2H | 2.8 | 414.1693 | 291.1253 | -0.03 | 229.1543 (100%); 234.1568 (46.3%) | Gly-Cys-Leu | 3–4.5 |
C10H17N3O6S* + 4MEC -2H | 2.4 | 430.1278 | 307.0838 | 0.25 | 301.0851 (100%); 284.0585 (76.3%); 430.1278 (37.5%); 355.0957 (28.2%); 198.0582 (27.7%) | GSH | 1–9 |
C11H21N3O5S + 4MEC -2H | 3.1 | 430.1638 | 307.1202 | 0.94 | 299.1715 (100%); 242.1497 (59.7%); 313.1872 (51.3%); 245.1861 (34.3%); 186.0872 (33.8%) | Val-Ser-Cys | 3–4.5 |
C11H19N3O6S + 4MEC -2H | 2.0 | 444.1434 | 321.0995 | 0.17 | 231.0975 (100%); 232.101 (42.1%); 232.1292 (27.2%); 229.1549 (21.6%) | Ala-Cys-Glu; Homo-GSH | 3–4.5 |
C12H19N3O6S + 4MEC -2H | 3.0 | 456.1431 | 333.0995 | 0.93 | 229.1542 (100%); 456.28 (28.6%); 228.1334 (20.6%); 244.0632 (16.7%); 213.1598 (16%) | Pro-Cys-Asp | 3–4.5 |
C14H27N3O4S* + 4MEC -2H | 3.1 | 456.2156 | 333.1722 | 1.41 | 185.1645 (100%); 213.1596 (93.8%); 244.0634 (86.2%); 231.1337 (84.8%); 229.1548 (69.7%) | Val-Ile-Cys; Val-Leu-Cys | 3–4.5 |
C12H21N3O6S* + 4MEC -2H | 3.0 | 458.1586 | 335.1151 | 1.17 | 231.1338 (100%); 329.1167 (65.1%); 232.1372 (36.4%); 158.081 (32.7%); 458.1587 (24.4%); 312.0898 (23%) | Val-Cys-Asp | 3–4.5 |
C13H24N4O5S* + 4MEC -2H | 2.8/3.1 | 471.1902 | 348.1467 | 1.37 | 187.1076 (100%); 244.1294 (74.7%); 258.1435 (44.4%); 245.1312 (28.9%) | 7 Peptides possible | 3–4.5 |
C13H23N3O6S* + 4MEC -2H | 2.9 | 472.1743 | 349.1308 | 0.99 | 294.0735 (100%) | Leu-Cys-Asp | 3–4.5 |
C12H21N3O7S + 4MEC -2H | 2.9 | 474.1535 | 351.11 | 1.12 | 187.1073 (100%); 247.1107 (62.8%); 217.1538 (51.2%) | Thr-Cys-Glu | 3–4.5 |
C16H31N3O4S* + 4MEC -2H | 3.7 | 484.2469 | 361.2035 | 1.37 | 341.2178 (100%); 228.1338 (92.2%); 144.1014 (38.8%) | Met-Val-Leu; Met-Val-Ile; Pro-Phe-Val | 3–4.5 |
C13H23N5O7S + 4MEC -2H | 2.3 | 516.1757 | 393.1318 | 0.34 | 559.3813 (100%); 302.1702 (92.6%); 147.0436 (34.6%) | 5 Peptides possible | 3–4.5 |
C17H31N5O7S* + 4MEC -2H | 3.1 | 572.2376 | 449.1944 | 1.49 | 229.1543 (100%); 273.1444 (37.2%); 230.158 (30.3%) | 14 Peptides possible | 3–4.5 |
C29H40N6O6S* + 4MEC -2H | 3.5 | 723.3154 | 600.273 | 2.24 | 435.2592 (100%) | Gly-Cys-Lys-Phe-Phe; Pro-Pro-Val-Cys-Trp | 3–4.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanet, R.; Bahut, F.; Nikolantonaki, M.; Gougeon, R.D. Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants 2020, 9, 115. https://doi.org/10.3390/antiox9020115
Romanet R, Bahut F, Nikolantonaki M, Gougeon RD. Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants. 2020; 9(2):115. https://doi.org/10.3390/antiox9020115
Chicago/Turabian StyleRomanet, Remy, Florian Bahut, Maria Nikolantonaki, and Régis D. Gougeon. 2020. "Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry" Antioxidants 9, no. 2: 115. https://doi.org/10.3390/antiox9020115
APA StyleRomanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants, 9(2), 115. https://doi.org/10.3390/antiox9020115