Bridelia speciosa Müll.Arg. Stem bark Extracts as a Potential Biomedicine: From Tropical Western Africa to the Pharmacy Shelf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of Extracts
2.2. Chemicals
2.3. Phytochemical Composition
2.4. Determination of Antioxidant and Enzyme Inhibitory Effects
2.5. Antimicrobial and Antimycotic Assays
2.6. Cell lines and Treatments
2.7. Cell Viability Assay
2.8. Ex Vivo Studies
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kebebew, M.; Dadi, K.; Mohammed, E. Diversity, Knowledge and Use of Traditional Medicinal Plants in Guduru District, Horo Guduru Wollega Zone, Oromia Region of Ethiopia. J. Med. Plants Stud. 2017, 364, 364–371. [Google Scholar]
- Ahmad Khan, M.S.; Ahmad, I. Chapter 1-Herbal Medicine: Current Trends and Future Prospects. In New Look to Phytomedicine; Ahmad Khan, M.S., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 3–13. [Google Scholar]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C.C. Valorization of bark for chemicals and materials: A review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Tanase, C.; Coșarcă, S.; Muntean, D.-L. A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrante, C.; Recinella, L.; Ronci, M.; Orlando, G.; Di Simone, S.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Politi, M.; Tirillini, B.; et al. Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba-venti extracts in isolated rat colon: Focus on antioxidant, anti-inflammatory, and antimicrobial activities in vitro. Phytother. Res. 2019, 33, 2387–2400. [Google Scholar] [CrossRef]
- Orlando, G.; Ferrante, C.; Zengin, G.; Sinan, K.I.; Bene, K.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Di Simone, S.; Recinella, L. Qualitative Chemical Characterization and Multidirectional Biological Investigation of Leaves and Bark Extracts of Anogeissus leiocarpus (DC.) Guill. & Perr (Combretaceae). Antioxidants 2019, 8, 343. [Google Scholar]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and chemical insights of beech (Fagus sylvatica L.) bark: A source of bioactive compounds with functional properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroyi, A. Ethnopharmacology and therapeutic value of Bridelia micrantha (Hochst.) Baill. In tropical Africa: A comprehensive review. Molecules 2017, 22, 1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngueyem, T.A.; Brusotti, G.; Caccialanza, G.; Finzi, P.V. The genus Bridelia: A phytochemical and ethnopharmacological review. J. Ethnopharmacol. 2009, 124, 339–349. [Google Scholar] [CrossRef]
- Afolabi, O.B.; Oloyede, O.I.; Agunbiade, S.O. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress. J. Integr. Med. 2018, 16, 192–198. [Google Scholar] [CrossRef]
- Corallo, A.; Foungbé, S.; Davy, M.; Cohen, Y. Cardiovascular pharmacology of aqueous extract of the leaves of Bridelia atroviridis Muell. Arg. (Euphorbiaceae) in the rat. J. Ethnopharmacol. 1997, 57, 189–196. [Google Scholar] [CrossRef]
- Olajide, O.A.; Makinde, J.M.; Okpako, D.T.; Awe, S.O. Studies on the anti-inflammatory and related pharmacological properties of the aqueous extract of Bridelia ferruginea stem bark. J. Ethnopharmacol. 2000, 71, 153–160. [Google Scholar] [CrossRef]
- Ramesh, N.; Viswanathan, M.B.; Saraswathy, A.; Brindha, P.; Balakrishna, K.; Lakshmanaperumalsamy, P. Antibacterial activity of luteoforol from Bridelia crenulata. Fitoterapia 2001, 72, 409–411. [Google Scholar] [CrossRef]
- Sokeng, S.; Rokeya, B.; Mostafa, M.; Nahar, N.; Mosihuzzaman, M.; Ali, L.; Kamtchouing, P. Antihyperglycemic effect of Bridelia ndellensis ethanol extract and fractions in streptozotocin-induced diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2005, 2, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Tatiya, A.U.; Saluja, A.K.; Kalaskar, M.G.; Surana, S.J.; Patil, P.H. Evaluation of analgesic and anti-inflammatory activity of Bridelia retusa (Spreng) bark. J. Tradit. Complement. Med. 2017, 7, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Cimanga, K.; Ying, L.; De Bruyne, T.; Apers, S.; Cos, P.; Hermans, N.; Bakana, P.; Tona, L.; Kambu, K.; Kalenda, D. Radical scavenging and xanthine oxidase inhibitory activity of phenolic compounds from Bridelia ferruginea stem bark. J. Pharm. Pharmacol. 2001, 53, 757–761. [Google Scholar] [CrossRef]
- Jayasinghe, L.; Kumarihamy, B.M.; Jayarathna, K.H.; Udishani, N.W.; Bandara, B.M.; Hara, N.; Fujimoto, Y. Antifungal constituents of the stem bark of Bridelia retusa. Phytochemistry 2003, 62, 637–641. [Google Scholar] [CrossRef]
- Pegel, K.H.; Rogers, C.B. Constituents of Bridelia micrantha. Phytochemistry 1968, 7, 655–656. [Google Scholar] [CrossRef]
- Uysal, S.; Aktumsek, A. A phytochemical study on Potentilla anatolica: An endemic Turkish plant. Ind. Crop. Prod. 2015, 76, 1001–1007. [Google Scholar] [CrossRef]
- Vladimir-Knezevic, S.; Blazekovic, B.; Stefan, M.B.; Alegro, A.; Koszegi, T.; Petrik, J. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules 2011, 16, 1454–1470. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Di Giacomo, V.; Ferrante, C.; Ronci, M.; Cataldi, A.; Di Valerio, V.; Rapino, M.; Recinella, L.; Chiavaroli, A.; Leone, S.; Vladimir-Knežević, S. Multiple pharmacological and toxicological investigations on Tanacetum parthenium and Salix alba extracts: Focus on potential application as anti-migraine agents. Food Chem. Toxicol. 2019, 133, 110783. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Zengin, G.; Ferrante, C.; Gnapi, D.E.; Sinan, K.I.; Orlando, G.; Recinella, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Chiavaroli, A. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L.). Food Res. Int. 2019, 125, 108610. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Ferrante, C.; Orlando, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L.; Aumeeruddy, M.Z. Chemical profiling and pharmaco-toxicological activity of Origanum sipyleum extracts: Exploring for novel sources for potential therapeutic agents. J. Food Biochem. 2019, 43, e13003. [Google Scholar] [CrossRef] [PubMed]
- Veschi, S.; De Lellis, L.; Florio, R.; Lanuti, P.; Massucci, A.; Tinari, N.; De Tursi, M.; di Sebastiano, P.; Marchisio, M.; Natoli, C. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 236. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.; Recinella, L.; Locatelli, M.; Guglielmi, P.; Secci, D.; Leporini, L.; Chiavaroli, A.; Leone, S.; Martinotti, S.; Brunetti, L. Protective effects induced by microwave-assisted aqueous Harpagophytum extract on rat cortex synaptosomes challenged with amyloid β-peptide. Phytother. Res. 2017, 31, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.-Y.; Chan, C.-L.; Yang, Q.-Q.; Li, H.-B.; Zhang, D.; Ge, Y.-Y.; Gunaratne, A.; Ge, J.; Corke, H. 9-Bioactive compounds and beneficial functions of sprouted grains. In Sprouted Grains; Feng, H., Nemzer, B., DeVries, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 191–246. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Prasain, J.K.; Barnes, S.; Michael Wyss, J. Chapter 24—Analyzing Ingredients in Dietary Supplements and Their Metabolites. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 337–346. [Google Scholar]
- Chandrasekara, A. Phenolic Acids. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 535–545. [Google Scholar]
- Menon, R.; Gonzalez, T.; Ferruzzi, M.; Jackson, E.; Winderl, D.; Watson, J. Chapter One-Oats—From Farm to Fork. In Advances in Food and Nutrition Research; Henry, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 77, pp. 1–55. [Google Scholar]
- Nabeelah Bibi, S.; Fawzi, M.M.; Gokhan, Z.; Rajesh, J.; Nadeem, N.; Kannan, R.R.; RDDG, A.; Pandian, S.K. Ethnopharmacology, Phytochemistry, and Global Distribution of Mangroves—A Comprehensive Review. Mar. Drugs 2019, 17, 231. [Google Scholar] [CrossRef] [Green Version]
- Mahomoodally, M.F.; Mollica, A.; Stefanucci, A.; Aumeeruddy, M.Z.; Poorneeka, R.; Zengin, G. Volatile components, pharmacological profile, and computational studies of essential oil from Aegle marmelos (Bael) leaves: A functional approach. Ind. Crop. Prod. 2018, 126, 13–21. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Reddy, N.S.; Navanesan, S.; Sinniah, S.K.; Wahab, N.A.; Sim, K.S. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Complement. Altern. Med. 2012, 12, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacol. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloglu, M.C.; Llorent-Martínez, E.J.; Aumeeruddy, M.Z.; Mahomoodally, M.F.; Altunoglu, Y.C.; Ustaoglu, B.; Ocal, M.; Gürel, S.; Bene, K.; Sinan, K.I.; et al. Multidirectional insights on Chrysophyllum perpulchrum leaves and stem bark extracts: HPLC-ESI-MSn profiles, antioxidant, enzyme inhibitory, antimicrobial and cytotoxic properties. Ind. Crop. Prod. 2019, 134, 33–42. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Picot-Allain, C.; Hosenally, M.; Ugurlu, A.; Mollica, A.; Stefanucci, A.; Llorent-Martínez, E.J.; Baloglu, M.C.; Zengin, G. Multi-targeted potential of Pittosporum senacia Putt.: HPLC-ESI-MSn analysis, in silico docking, DNA protection, antimicrobial, enzyme inhibition, anti-cancer and apoptotic activity. Comput. Biol. Chem. 2019, 83, 107114. [Google Scholar] [CrossRef]
- Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; Alkan, I.; Altun, G. Effects of electromagnetic fields exposure on the antioxidant defense system. J. Microsc. Ultrastruct. 2017, 5, 167–176. [Google Scholar] [CrossRef]
- Bhagavan, N.V.; Ha, C.-E. Chapter 6-Enzymes and Enzyme Regulation. In Essentials of Medical Biochemistry; Bhagavan, N.V., Ha, C.-E., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 47–58. [Google Scholar]
- Klimova, B.; Kuca, K.; Maresova, P. Global View on Alzheimer’s Disease and Diabetes Mellitus: Threats, Risks and Treatment Alzheimer’s Disease and Diabetes Mellitus. Curr. Alzheimer Res. 2018, 15, 1277–1282. [Google Scholar] [CrossRef]
- Lee, H.J.; Seo, H.I.; Cha, H.Y.; Yang, Y.J.; Kwon, S.H.; Yang, S.J. Diabetes and Alzheimer’s Disease: Mechanisms and Nutritional Aspects. Clin. Nutr. Res. 2018, 7, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Femminella, G.D.; Frangou, E.; Love, S.B.; Busza, G.; Holmes, C.; Ritchie, C.; Lawrence, R.; McFarlane, B.; Tadros, G.; Ridha, B.H.; et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: Study protocol for a randomised controlled trial (ELAD study). Trials 2019, 20, 191. [Google Scholar] [CrossRef]
- Picot, M.C.; Zengin, G.; Mollica, A.; Stefanucci, A.; Carradori, S.; Mahomoodally, M. In vitro and in silico studies of mangiferin from Aphloia theiformis on key enzymes linked to diabetes type 2 and associated complications. Med. Chem. 2017, 13, 633–640. [Google Scholar] [CrossRef]
- Fang, L.; Chen, M.; Liu, Z.; Fang, X.; Gou, S.; Chen, L. Ferulic acid—Carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorgan. Med. Chem. 2016, 24, 886–893. [Google Scholar] [CrossRef]
- Mo, J.; Yang, H.; Chen, T.; Li, Q.; Lin, H.; Feng, F.; Liu, W.; Qu, W.; Guo, Q.; Chi, H.; et al. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorgan. Chem. 2019, 93, 103310. [Google Scholar] [CrossRef]
- Li, N.; Lin, Z.; Chen, W.; Zheng, Y.; Ming, Y.; Zheng, Z.; Huang, W.; Chen, L.; Xiao, J.; Lin, H. Corilagin from longan seed: Identification, quantification, and synergistic cytotoxicity on SKOv3ip and hey cells with ginsenoside Rh2 and 5-fluorouracil. Food Chem. Toxicol. 2018, 119, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-L.; Liu, Y.-D.; Yuan, Y.-Y.; Song, D.; Qi, M.-F.; Yang, X.-J.; Wang, P.; Li, X.-Y.; Shang, J.-H.; Yang, Z.-X. In Vitro and In Vivo Effects of Norathyriol and Mangiferin on α-Glucosidase. Biochem. Res. Int. 2017, 2017, 1206015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, H.; Duan, Y.; Lang, S.; Jiang, L.; Wang, Y.; Llorente, C.; Liu, J.; Mogavero, S.; Bosques-Padilla, F.; Abraldes, J.G. The Candida albicans exotoxin Candidalysin promotes alcohol-associated liver disease. J. Hepatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Khiewkamrop, P.; Phunsomboon, P.; Richert, L.; Pekthong, D.; Srisawang, P. Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int. 2018, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Abnosi, M.H.; Yari, S. The toxic effect of gallic acid on biochemical factors, viability and proliferation of rat bone marrow mesenchymal stem cells was compensated by boric acid. J. Trace Elem. Med. Biol. 2018, 48, 246–253. [Google Scholar] [CrossRef]
- Mole, D.; McFerran, N.; Collett, G.; O’Neill, C.; Diamond, T.; Garden, O.; Kylanpaa, L.; Repo, H.; Deitch, E. Tryptophan catabolites in mesenteric lymph may contribute to pancreatitis-associated organ failure. Br. J. Surg. Inc. Eur. J. Surg. Swiss Surg. 2008, 95, 855–867. [Google Scholar] [CrossRef]
- Nakagami, Y.; Saito, H.; Katsuki, H. 3-Hydroxykynurenine toxicity on the rat striatum in vivo. Jpn. J. Pharmacol. 1996, 71, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Li, B.; Ye, X.; Mulatibieke, T.; Wu, J.; Dai, J.; Wu, D.; Ni, J.; Zhang, R.; Xue, J. Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2A-dependent Akt/NF-κB signalling pathway. Br. J. Pharmacol. 2017, 174, 4751–4770. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Tang, L.; Yang, Y.; Lin, L.; Dai, J.; Ge, P.; Ai, Q.; Jiang, R.; Zhang, L. Dopamine alleviated acute liver injury induced by lipopolysaccharide/d-galactosamine in mice. Int. Immunopharmacol. 2018, 61, 249–255. [Google Scholar] [CrossRef]
Samples | Total phenolic Content (mg GAE/g Extract) | Total Flavonoid Content (mg RE/g Extract) | Total Phenolic Acid Content (mg CAE/g) | Total Flavanol Content (mg CE/g) | Total Tannin Content (mg CE/g) | Total Saponin Content (mg QE/g) |
---|---|---|---|---|---|---|
EA | 38.42 ± 0.38 c | 5.85 ± 0.12 a | nd | 3.61 ± 0.02c | 3.28 ± 0.38 c | 177.82 ± 14.15 c |
MeOH | 224.28 ± 1.08 a | 1.51 ± 0.04 b | 11.55 ± 1.31 b | 246.28 ± 10.63 a | 324.09 ± 10.99 a | 1031.45 ± 48.83 a |
Water | 210.29 ± 0.71 b | 1.44 ± 0.17 b | 13.91 ± 0.42 a | 6.15 ± 0.18 b | 67.83 ± 3.64 b | 772.56 ± 56.39 b |
No. | Name | Class 3 | Formula | Rt ± 0.03 min | [M + H]+ | [M − H]− | Fragment 1 | Fragment 2 | Fragment 3 | Fragment 4 | Fragment 5 | Detected in Extract 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Quinic acid | a | C7H12O6 | 1.23 | 191.05557 | 173.0447 | 127.0388 | 111.0438 | 93.0331 | 85.0280 | A,B,C | |
2 | Shikimic acid | a | C7H10O5 | 1.31 | 173.04500 | 155.0338 | 137.0234 | 111.0439 | 93.0331 | 73.0280 | A,B,C | |
3 | Citric acid | a | C6H8O7 | 1.57 | 191.01918 | 173.0082 | 129.0181 | 111.0074 | 87.0073 | 85.0280 | B,C | |
4 | Prodelphinidin B | b | C30H26O14 | 1.73 | 609.12444 | 441.083 | 423.073 | 305.0672 | 177.0185 | 125.0231 | B,C | |
5 1 | Gallic acid (3,4,5-Trihydroxybenzoic acid) | c | C7H6O5 | 2.29 | 169.0137 | 125.0231 | 97.0282 | 81.0332 | 79.0175 | 69.0329 | A,B,C | |
6 | Gallocatechin (Casuarin, Gallocatechol) | d | C15H14O7 | 4.52 | 305.06613 | 261.0767 | 219.0651 | 167.0341 | 137.0234 | 125.0232 | A,B,C | |
7 1 | Tryptamine | e | C10H12N2 | 8.44 | 161.107875 | 144.0810 | 143.0732 | 117.0703 | 115.0546 | 103.0547 | B,C | |
8 | Syringic acid-4-O-glucoside | f | C15H20O10 | 10.57 | 359.09783 | 197.0451 | 182.0214 | 153.0546 | 138.031 | 123.0073 | C | |
9 1 | Catechin (Catechol, Catechuic acid) | d | C15H14O6 | 13.28 | 289.07121 | 245.082 | 203.0711 | 151.0389 | 125.0233 | 109.028 | B,C | |
10 1 | Epigallocatechin (Epigallocatechol) | d | C15H14O7 | 13.57 | 305.06613 | 261.0767 | 219.0658 | 167.0339 | 137.0234 | 125.0232 | A,B,C | |
11 1 | Vanillin (4-Hydroxy-3-methoxybenzaldehyde) | g | C8H8O3 | 15.47 | 153.05517 | 125.0601 | 111.0445 | 110.0367 | 93.0341 | 65.0393 | A,B,C | |
12 1 | Epigallocatechin-3-O-gallate (Teatannin II) | d | C22H18O11 | 16.39 | 457.07709 | 305.0661 | 169.0131 | 161.0238 | 125.0231 | A,B,C | ||
13 1 | Gallocatechin-3-O-gallate | d | C22H18O11 | 16.40 | 457.07709 | 305.067 | 169.0133 | 161.0233 | 125.0231 | C | ||
14 | Dihydrokaempferol-O-hexoside | d | C21H22O11 | 17.02 | 449.10839 | 287.0568 | 269.0447 | 259.0607 | 125.023 | A,B,C | ||
15 1 | Epicatechin | d | C15H14O6 | 17.04 | 289.07121 | 245.0818 | 203.0706 | 151.0388 | 125.0231 | 109.028 | B,C | |
16 | 3,5-Dimethoxy-4-hydroxybenzaldehyde (Syringaldehyde) | g | C9H10O4 | 17.24 | 183.06574 | 155.0705 | 140.0469 | 123.0444 | 105.0341 | 95.0498 | A,B | |
17 | Corilagin | h | C27H22O18 | 17.49 | 633.07279 | 463.0526 | 419.0627 | 300.9995 | 275.0205 | 169.0134 | A,B,C | |
18 | Mangiferin (Aphloiol, Chinonin) | i | C19H18O11 | 18.41 | 421.07709 | 343.0459 | 331.0464 | 301.0358 | 272.033 | 259.0249 | A,B,C | |
19 | Unidentified tannin 1 | h | C34H26O22 | 18.96 | 785.08375 | 633.0741 | 300.9992 | 275.0205 | 125.0229 | B | ||
20 | Ferulic acid | c | C10H10O4 | 19.25 | 193.05009 | 178.0259 | 149.0594 | 137.023 | 134.0364 | 121.028 | A,B,C | |
21 | Mallotinic acid or isomer | h | C34H26O23 | 19.28 | 801.07867 | 757.0872 | 633.0753 | 613.047 | 463.0517 | 300.9995 | B,C | |
22 1 | Epicatechin-3-O-gallate | d | C22H18O10 | 19.37 | 441.08218 | 289.0725 | 271.0614 | 245.0808 | 169.0132 | 125.023 | B,C | |
23 | Loliolide | j | C11H16O3 | 19.47 | 197.11777 | 179.1071 | 161.0963 | 135.1172 | 133.1016 | 107.0861 | A,B,C | |
24 | Unidentified tannin 2 | h | C41H30O27 | 19.63 | 953.08963 | 300.9994 | 275.02 | 249.0387 | B,C | |||
25 | Ellagic acid-4-O-glucoside | k | C20H16O13 | 19.90 | 463.05127 | 300.9995 | 299.9915 | A,B,C | ||||
26 | 4-Hydroxy-3-methoxycinnamaldehyde (Coniferyl aldehyde) | g | C10H10O3 | 19.97 | 179.07082 | 161.0599 | 147.0443 | 133.0654 | 119.0496 | 55.0187 | A,B,C | |
27 | Unidentified tannin 3 | h | C34H26O22 | 20.08 | 785.08375 | 633.0734 | 300.9994 | 275.0207 | B | |||
28 | Isoferulic acid | c | C10H10O4 | 20.30 | 193.05009 | 178.0264 | 149.06 | 137.0232 | 134.0362 | 121.0283 | A | |
29 | Unidentified tannin 4 | h | C34H26O22 | 21.25 | 785.08375 | 300.9996 | 275.0205 | 249.0402 | 125.0228 | B,C | ||
30 | Myricitrin (Myricetin-3-O-rhamnoside) | d | C21H20O12 | 21.96 | 463.08765 | 317.0292 | 316.023 | 287.0213 | 271.0255 | 178.9978 | B,C | |
31 | Di-O-methylellagic acid-O-hexoside | k | C22H20O13 | 22.16 | 491.08257 | 476.0599 | 328.023 | 312.9996 | 297.9761 | A,B,C | ||
32 | Ellagic acid-O-pentoside | k | C19H14O12 | 22.76 | 433.04071 | 300.9994 | 299.9916 | 283.9974 | 257.0082 | A,B,C | ||
33 | Eschweilenol C (Ellagic acid-4-O-rhamnoside) | k | C20H16O12 | 23.09 | 447.05636 | 300.9994 | 299.9916 | A,B,C | ||||
34 | Pentahydroxyflavone-C-hexoside | d | C21H20O12 | 23.11 | 465.10331 | 447.0935 | 429.0806 | 369.0611 | 327.0503 | 303.0504 | A | |
35 | Ellagic acid | k | C14H6O8 | 23.38 | 300.99845 | 283.9967 | 257.0094 | 229.0138 | 201.0187 | 185.0237 | A,B,C | |
36 | Dimethoxy-trihydroxyflavone-O-hexoside | d | C23H24O12 | 24.29 | 491.11895 | 328.0586 | 313.0352 | 299.0195 | 285.0397 | 271.0252 | B,C | |
37 | Di-O-methylflavellagic acid O-hexoside | k | C21H18O13 | 24.70 | 507.07749 | 344.0187 | 328.994 | 313.97 | A | |||
38 | Ducheside A (3-O-Methylellagic acid-4′-O-xyloside) | k | C20H16O12 | 24.74 | 447.05636 | 315.0151 | 314.0074 | 299.9917 | 298.983 | 270.9886 | A,B,C | |
39 | 3,3′-Di-O-methylellagic acid-O-pentoside | k | C21H18O12 | 25.32 | 461.07201 | 446.0498 | 328.0228 | 312.9995 | 297.9757 | A,B,C | ||
40 | 3,3′,4-Tri-O-methylflavellagic acid-4-O-glucoside | k | C23H22O14 | 25.55 | 521.09314 | 506.0705 | 491.0473 | 358.0327 | 343.0098 | 327.9864 | A,B,C | |
41 | Eschweilenol A or isomer | k | C20H10O11 | 25.90 | 425.01449 | 300.9993 | 299.9917 | 298.9837 | B | |||
42 | Dihydroactinidiolide | j | C11H16O2 | 26.58 | 181.12286 | 163.112 | 145.1015 | 135.1172 | 121.1015 | 107.0861 | A,B,C | |
43 | Di-O-methylellagic acid acetylhexoside | k | C24H22O14 | 27.49 | 533.09313 | 328.0231 | 312.9999 | 297.9756 | 269.9827 | A | ||
44 | 3,3′-Di-O-methylellagic acid | k | C16H10O8 | 27.84 | 329.02975 | 314.0073 | 298.9837 | 270.9887 | A,B,C | |||
45 | Sebacic acid | a | C10H18O4 | 27.96 | 201.11268 | 183.102 | 157.1229 | 139.1117 | 111.0801 | A | ||
46 | 3,3′,4-Tri-O-methylellagic acid | k | C17H12O8 | 30.18 | 343.0454 | 328.0231 | 312.9995 | 297.9758 | 285.0038 | A | ||
47 | Undecanedioic acid | a | C11H20O4 | 30.85 | 215.12834 | 153.1273 | 125.0956 | A | ||||
48 | 3,3′,4-Tri-O-methylflavellagic acid | k | C17H12O9 | 31.21 | 359.04031 | 344.0171 | 328.9948 | 313.9717 | 300.9995 | A,B,C | ||
49 | 3,3′,4,4′-Tetra-O-methylellagic acid | k | C18H14O8 | 32.00 | 359.0767 | 344.0533 | 343.0448 | 329.0295 | 313.0347 | A,B,C | ||
50 | Dihydroxy-trimethoxyflavone | d | C18H16O7 | 33.10 | 343.08178 | 328.0585 | 313.0359 | 298.0118 | B | |||
51 | Bruguierol A | l | C12H14O2 | 36.06 | 191.10721 | 173.0965 | 161.0966 | 147.0801 | 135.0807 | 107.0496 | A,B | |
521 | Linoleic acid | a | C18H32O2 | 45.69 | 279.23241 | 261.2231 | 59.0124 | A,B | ||||
53 | Pheophytin A | m | C55H74N4O5 | 62.94 | 871.57375 | 593.277 | 533.2559 | 460.2264 | A,B |
Samples | Phosphomolybdenum (mmol TE/g) | DPPH (mg TE/g Extract) | ABTS (mg TE/g Extract) | CUPRAC (mg TE/g Extract) | FRAP (mg TE/g Extract) | Metal Chelating Ability (mg EDTAE/g) |
---|---|---|---|---|---|---|
EA | 2.24 ± 0.07 c | 18.62 ± 0.39 c | 14.82 ± 0.45 c | 94.34 ± 0.82 c | 46.13 ± 0.58 c | 32.08 ± 1.60 a |
MeOH | 5.89 ± 0.37 a | 495.45 ± 0.53 a | 902.33 ± 2.41 a | 1325.89 ± 30.05 a | 952.68 ± 23.61 a | 12.98 ± 0.10 b |
Water | 5.17 ± 0.14 b | 463.86 ± 14.04 b | 581.14 ± 33.94 b | 1082.42 ± 3.72 b | 850.05 ± 5.35 b | 14.28 ± 2.15 b |
Samples | AChE (mg GALAE/g Extract) | BChE (mg GALAE/g Extract) | Tyrosinase (mg KAE/g Extract) | α-Amylase (mmol ACAE/g Extract) | α-Glucosidase (mmol ACAE/g Extract) |
---|---|---|---|---|---|
EA | 4.56 ± 0.20 b | 3.59 ± 0.05 b | 119.80 ± 1.30 c | 0.86 ± 0.03 b | 3.56 ± 0.03 |
MeOH | 4.98 ± 0.04 a | 5.14 ± 0.08 a | 157.25 ± 0.48 a | 1.20 ± 0.01 a | na |
Water | 3.60 ± 0.15 c | 2.61 ± 0.31 c | 137.49 ± 0.35 b | 0.59 ± 0.04 c | na |
MIC (µg mL−1) * | ||||
---|---|---|---|---|
Fungal Strains | Methanol Extract | Water Extract | Fluconazole | Griseofulvin |
Candida albicans (YEPGA 6183) | 396.85 (250–500) | 198.42 (125–250) | 2 | >8 |
Candida albicans (YEPGA 6379) | 49.6 (31.25–62.5) | 78.74 (62.5–125) | 1 | >8 |
Candida tropicalis (YEPGA 6184) | 629.96 (500–1000) | 396.85 (250–500) | 4 | >8 |
Candida parapsilosis (YEPGA 6551) | 78.74 (62.5–125) | 99.21 (62.5–125) | 2 | >8 |
Arthroderma crocatum (IHEM 5251) | 157.49 (125–250) | 78.74 (62.5–125) | 8 | >8 |
Arthroderma crocatum (CCF 5207) | 99.21 (62.5–125) | 78.74 (62.5–125) | >16 | >8 |
Arthroderma insingulare (CCF 5417) | 157.49 (125–250) | 39.37 (31.25–62.5) | >16 | >8 |
Arthroderma quadrifidum (CCF 5792) | 198.42 (125–250) | 78.74 (62.5–125) | >16 | >8 |
Trichophyton erinacei (CCF 5930) | 314.98 (250–500) | 157.49 (125–250) | >16 | 0.25 |
Trichophyton interdigitale (CCF 4823) | 99.21 (62.5–125) | 49.61 (31.25–62.5) | >16 | 1 |
Trichophyton rubrum (CCF 4879) | 78.74 (62.5–125) | 78.74 (62.5–125) | 8 | 2 |
Trichophyton tonsurans (CCF 4834) | 157.49 (125–250) | 39.58 (31.25–62.5) | 2 | 0.125 |
MIC (µg mL−1) * | |||
---|---|---|---|
Bacterial Strains | Methanol Extract | Water Extract | Ciprofloxacin |
Escherichia coli (ATCC 10536) | 396.85 (250–500) | 629.96 (500–1000) | <0.12 |
Pseudomonas aeruginosa (ATCC 15442) | 629.96 (500–1000) | 314.98 (250–500) | 1.23 (1.95–0.98) |
Salmonella typhimurium (clinical isolate) | 793.70 (500–1000) | 793.70 (500–1000) | 0.40 (0.25–0.5) |
Bacillus cereus (ATCC 12826) | 198.42 (125–250) | 157.49 (125–250) | <0.12 |
Bacillus subtilis (environmental isolate) | 314.98 (250–500) | 793.70 (500–1000) | 0.01 (0.125–0.062) |
Staphylococcus aureus (ATCC 6538) | 198.42 (125–250) | 396.85 (250–500) | 0.62 (0.98–0.49) |
Compounds | Methanol Extract | Water Extract |
---|---|---|
Gallic acid | 7228.36 ± 650.55 | 870.28 ± 36.81 |
Catechin | 20.84 ± 2.51 | n.d. |
Epicatechin | 188.72 ± 11.32 | 142.71 ± 7.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahomoodally, M.F.; Sinan, K.I.; Bene, K.; Zengin, G.; Orlando, G.; Menghini, L.; Veschi, S.; Chiavaroli, A.; Recinella, L.; Brunetti, L.; et al. Bridelia speciosa Müll.Arg. Stem bark Extracts as a Potential Biomedicine: From Tropical Western Africa to the Pharmacy Shelf. Antioxidants 2020, 9, 128. https://doi.org/10.3390/antiox9020128
Mahomoodally MF, Sinan KI, Bene K, Zengin G, Orlando G, Menghini L, Veschi S, Chiavaroli A, Recinella L, Brunetti L, et al. Bridelia speciosa Müll.Arg. Stem bark Extracts as a Potential Biomedicine: From Tropical Western Africa to the Pharmacy Shelf. Antioxidants. 2020; 9(2):128. https://doi.org/10.3390/antiox9020128
Chicago/Turabian StyleMahomoodally, Mohamad Fawzi, Kouadio Ibrahime Sinan, Kouadio Bene, Gokhan Zengin, Giustino Orlando, Luigi Menghini, Serena Veschi, Annalisa Chiavaroli, Lucia Recinella, Luigi Brunetti, and et al. 2020. "Bridelia speciosa Müll.Arg. Stem bark Extracts as a Potential Biomedicine: From Tropical Western Africa to the Pharmacy Shelf" Antioxidants 9, no. 2: 128. https://doi.org/10.3390/antiox9020128
APA StyleMahomoodally, M. F., Sinan, K. I., Bene, K., Zengin, G., Orlando, G., Menghini, L., Veschi, S., Chiavaroli, A., Recinella, L., Brunetti, L., Leone, S., Angelini, P., Hubka, V., Covino, S., Venanzoni, R., Picot-Allain, M. C. N., De Lellis, L., Cama, A., Cziáky, Z., ... Ferrante, C. (2020). Bridelia speciosa Müll.Arg. Stem bark Extracts as a Potential Biomedicine: From Tropical Western Africa to the Pharmacy Shelf. Antioxidants, 9(2), 128. https://doi.org/10.3390/antiox9020128