Stevia Rebaudiana Bertoni, a Source of High-Potency Natural Sweetener—Biochemical and Genetic Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis
2.2. Molecular Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Phytochemical Assays
3.2.1. Sample Preparation and Extraction
3.2.2. Fractionation of Steviol Glycosides Compounds using HPLC
3.2.3. Quantification of Phenolics
3.2.4. DPPH Radical Scavenging Assay.
3.2.5. Chemical Reagents
3.3. Molecular Assays
3.3.1. DNA Extraction
3.3.2. RAPD Analysis.
3.4. Chemical and DNA Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pradhan, N.; Dwivedi, P. In vitro Shoot multiplication of Stevia rebaudiana, an important plant with high economic and medicinal values. Vegetos 2016, 29, 4. [Google Scholar] [CrossRef]
- Kaplan, B.; Turgut, K. Improvement of rebaudioside A diterpene glycoside content in Stevia rebaudiana Bertoni using clone selection. Turk. J. Agric. For. 2019, 43, 232–240. [Google Scholar] [CrossRef]
- Gupta, E.; Purwar, S.; Sundaram, S.; Rai, G.K. Nutritional and therapeutic values of Stevia rebaudiana: A review. J. Med. Plant Res. 2013, 7, 3343–3353. [Google Scholar]
- Goyal, S.K.; Samsher et Goyal, R.K. Stevia (Stevia rebaudiana) a bio-sweetener: A review. Int. J. Food Sci. Nutr. 2010, 61, 1–10. [Google Scholar] [CrossRef]
- Šic Žlabur, J.; Voća, S.; Dobričević, N.; Ježek, D.; Bosiljkov, T.; Brnčić, M. Stevia rebaudiana Bertoni—A review of nutritional and biochemical properties of natural sweetener. Agric. Conspec. Ssci. 2013, 78, 25–30. [Google Scholar]
- Guasmi, F.; Elfalleh, W.; Hannachi, H.; Fères, K.; Touil, L.; Marzougui, N.; Triki, T.; Ferchichi, A. The use of ISSR and RAPD markers for genetic diversity among South Tunisian barley. ISRN Agronomy 2012. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.P. Molecular characterization and genetic diversity determination of Hibiscus species using RAPD molecular markers. Asian J. Plant Sci. Res. 2014, 4, 50–56. [Google Scholar]
- Thiyagarajan, M.; Venkatachalam, P. Assessment of genetic and biochemical diversity of Stevia rebaudiana Bertoni by DNA fingerprinting and HPLC analysis. Ann. Phytomed. 2015, 4, 79–85. [Google Scholar]
- Abdelsalam, N.R.; Haraz, A.S.M.; Khalid, A.E.; Saleh, M.S.H.; Elsheikh, A.E.A. Genetic Improvement through selection of different Stevia rebaudiana genotypes. Alexandria Sci. Exch. J. 2016, 37, 10–25. [Google Scholar]
- Grover, A.; Sharma, P.C. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 2016, 36, 290–302. [Google Scholar] [CrossRef]
- Bairu, M.W.; Aremu, A.O.; Van Staden, J. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul. 2011, 63, 147–173. [Google Scholar] [CrossRef]
- Charon, K.M.; Świtoński, M. Animal Genetic and Genomics; Scientific Publishing House: Warsaw, Poland, 2012. [Google Scholar]
- Khiraoui, A.; Bakha, M.; Amchra, F.; Ourouadi, S.; Boulli, A.; Faiz, C.A.; Hasib, A. Nutritional and biochemical properties of natural sweeteners of six cultivars of Stevia rebaudiana Bertoni leaves grown in Morocco. J. Materials Environment. Sci. 2010, 8, 1015–1022. [Google Scholar]
- Khiraoui, A.; Hasib, A.; Faiz, C.A.; Amchra, F.; Bakha, M.; Boulli, A. Stevia rebaudiana Bertoni (Honey Leaf): A magnificent natural bio-sweetener, biochemical composition, nutritional and therapeutic values. J. Nat. Sci. Res. 2017, 7, 75–85. [Google Scholar]
- Mishra, P.; Singh, R.; Kumar, U.; Prakash, V. Stevia rebaudiana—A magical sweetener. Global. J. Biotech. Biochem. 2010, 5, 62–74. [Google Scholar]
- Parris, C.A.; Shock, C.C.; Qian, M. Dry leaf and steviol glycoside productivity of Stevia rebaudiana in the Western United States. HortScience. 2016, 51, 1220–1227. [Google Scholar] [CrossRef] [Green Version]
- Vouillamoz, J.F.; Wolfram-Schilling, E.; Carron, C.A.; Baroffio, C.A. Agronomical and phytochemical evaluation of Stevia rebaudiana genotypes. Presented at 6th International Symposium Breeding Research on Medicinal and Aromatic Plants (BREEDMAP 6), Quedlinburg, Germany, June 2016. [Google Scholar]
- Raina, R.; Bhandari, S.K.; Chand, R.; Sharma, Y.P. Strategies to improve poor seed germination in Stevia rebaudiana, a low calorie sweetener. J. Med. Plants Res. 2013, 7, 1793–1799. [Google Scholar]
- Pereira, C.; Storck, L.; Lopes, S.J.; Martin, T.N.; Bisognin, D.A. Dry biomass and glycosides yield from Stevia rebaudiana leaves under different harvesting times. Biosci. J. 2016, 32, 1462–1471. [Google Scholar] [CrossRef]
- Gardana, C.; Scaglianti, M.; Simonetti, P. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high performance liquid chromatography–mass spectrometry. J. Chromatogr. A. 2010, 1217, 1463–1470. [Google Scholar] [CrossRef]
- Atteh, J.; Onagbesan, O.; Tona, K.; Buyse, J.; Decuypere, E.; Geuns, J. Potential use of Stevia rebaudiana in animal feeds. Arch. Zootec. 2011, 60, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, K.; Krynitsky, A.J.; Rader, J.I. Simultaneous analysis of steviol and steviol glycosides by liquid chromatography with ultraviolet detection on a mixed-mode column: Application to Stevia plant material and Stevia-containing dietary supplements. J. AOAC Int. 2012, 95, 1588–1596. [Google Scholar] [CrossRef]
- Makapugay, H.C.; Nanayakkara, N.P.D.; Kinghorn, A.D. Improved highperformance liquid chromatographic separation of the Stevia rebaudiana sweet diterpene glycosides using linear gradient elution. J. Chromatogr. 1984, 283, 390–395. [Google Scholar] [CrossRef]
- Geuns, J. Stevioside. Phytochem 2003, 64, 913–921. [Google Scholar] [CrossRef]
- Gupta, N.; Bhadauria, R.; Kitchlu, S.; Gupta, A.; Rai, A.; Penna, S.; Gudipati, T. Assessment of genetic and chemo-diversity among different Indian ecotypes of Stevia rebaudiana Bertoni. Int. J. Curr. Res. Biosci. Plant Biol. 2017, 4, 96–105. [Google Scholar]
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Periche, A.; Castelló, M.L.; Heredia, A.; Escriche, I. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves. Food Chem. 2015, 172, 1–6. [Google Scholar] [CrossRef]
- Chester, K.; Tamboli, E.T.; Parveen, R.; Ahmad, S. Genetic and metabolic diversity in Stevia rebaudiana using RAPD and HPTLC analysis. Pharm. Biol. 2013, 51, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Brandle, J.E.; Rosa, N. Heritability for yield, leaf: Stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can. J. Plant Sci. 1992, 72, 1263–1266. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Polish Pharmacopoeia, VI; PTFarm: Warsaw, Poland, 2002.
- Polish Pharmacopoeia, X; PTFarm: Warsaw, Poland, 2014.
- Price, M.L.; Socoyoc, S.V.; Butler, L.G. A critical evaluation of vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Najda, A. Ontogenetic Variability of Mint (Mentha Species) A Factor Conditioning the Content of Bioactive Components in the Raw Material; Publisher of the University of Life Sciences: Lublin, Poland, 2017. [Google Scholar]
- Chin, Y.G.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000, 70, 437–441. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Prevost, A.; Wilkinson, M.J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 1999, 98, 107–112. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Elect. 2001, 4, 9. [Google Scholar]
- Statistica 13.1. StatSoft Polska, 2017. Available online: http://www.ststsoft.pl (accessed on 13 January 2019).
Sample Availability: Not available. |
Genotypes | Stevioside | Rebaudioside A | Reb A/Stv Ratio | Rebaudioside C | Rebaudioside D | Total |
---|---|---|---|---|---|---|
1 | 2.72 ± 0.23 a1 | 4.41 ± 0.02 c | 1.62 | 1.01 ± 0.02 d | 0.32 ± 0.04 c | 8.46 b |
2 | 7.66 ± 0.41 c | 3.73 ± 0.01 bc | 0.49 | 0.85 ± 0.02 c | 0.24 ± 0.01 b | 12.48 c |
3 | 2.68 ± 0.09 a | 4.33 ± 0.06 c | 1.61 | 0.98 ± 0.01 d | 0.32 ± 0.07 c | 8.31 b |
4 | 3.70 ± 0.13 b | 1.17 ± 0.08 a | 0.32 | 0.27 ± 0.03 a | 0.12 ± 0.01 a | 5.26 a |
5 | 3.61 ± 0.04 b | 1.22 ± 0.13 a | 0.34 | 0.28 ± 0.01 a | 0.12 ± 0.02 a | 5.22 a |
6 | 8.09 ± 0.23 c | 3.78 ± 0.03 bc | 0.47 | 0.86 ± 0.05 c | 0.25 ± 0.08 b | 12.97 c |
7 | 7.83 ± 0.20 c | 3.29 ± 0.09 b | 0.42 | 0.75 ± 0.06 b | 0.21 ± 0.05 b | 12.08 c |
8 | 2.73 ± 0.16 a | 4.34 ± 0.06 c | 1.59 | 0.98 ± 0.02 d | 0.34 ± 0.06 c | 8.39 b |
9 | 2.71 ± 0.08 a | 4.48 ± 0.02 c | 1.65 | 1.01 ± 0.02 d | 0.35 ± 0.01 c | 8.55 b |
10 | 7.15 ± 0.17 c | 3.34 ± 0.04 b | 0.47 | 0.76 ± 0.01 b | 0.17 ± 0.01 a | 11.42 c |
Average | 4.89 | 3.41 | 0.90 | 0.77 | 0.24 | 9.31 |
Genotypes | Total Phenols | Total Flavonoids | Phenolic Acid | Total Tanins | DPPH• |
---|---|---|---|---|---|
1 | 22.28 ± 0.01 b1 | 10.19 ± 0.11 e | 2.34 ± 0.12 b | 1.56 ± 0.06 a | 24.04 ± 0.17 a |
2 | 16.14 ± 0.07 a | 12.94 ± 0.19 f | 1.22 ± 0.01 a | 1.11 ± 0.01 a | 48.16 ± 0.29 d |
3 | 26.27 ± 0.04 c | 6.60 ± 0.29 ab | 3.24 ± 0.11 c | 1.51 ± 0.15 a | 21.05± 0.08 a |
4 | 26.27 ± 0.05 c | 6,51 ± 0.10 a | 3.43 ± 0.21 cd | 1.86 ± 0.09 a | 32.69 ± 0.30 b |
5 | 27.81 ± 0.03 c | 5.87 ± 0.14 a | 4.06 ± 0.22 d | 1.76 ± 0.12 a | 29.10 ± 0.27 b |
6 | 14.91 ± 0.24 a | 12.99 ± 0.23 f | 1.01 ± 0.04 a | 1.45 ± 0.07 a | 43.25 ± 0.33 c |
7 | 15.88 ± 0.11 a | 12.50 ± 0.14 f | 1.66 ± 0.06 a | 1.41 ± 0.01 a | 47.04 ± 0.24 cd |
8 | 25.25 ± 0.04 c | 7.32 ± 0.04 c | 3.09 ± 0.10 c | 1.75 ± 0.05 a | 20.58 ± 0.08 a |
9 | 24.61 ± 0.01 b | 9.18 ± 0.05 d | 2.72 ± 0.08 bc | 1.84 ± 0.10 a | 20.23 ± 0.11 a |
10 | 15.83 ± 0.09 a | 12.38 ± 0.16 f | 1.62 ± 0.14 a | 1.42 ± 0.03 a | 45.08 ± 0.25 cd |
Average | 21.52 | 9.65 | 2.44 | 1.57 | 33.12 |
No. | Primer Sequence 5′-3′ | Number of Products | Rp 2 | |||||
---|---|---|---|---|---|---|---|---|
Total | Polymorphic | Specific | Monomorphic | % P 1 | Range of Size (bp) | |||
RAPD 1 | CGATTGGACG | 9 | 7 | 1 | 1 | 77.8 | 600–2000 | 4.0 |
RAPD 2 | ATGCCGCGAT | 10 | 7 | 0 | 3 | 70.0 | 400–2100 | 5.2 |
RAPD 3 | TAGCGCCAAT | 11 | 7 | 1 | 3 | 63.7 | 600–2800 | 5.0 |
RAPD 4 | TTAAGGCCT | 12 | 9 | 1 | 2 | 75.0 | 600–1600 | 6.4 |
RAPD 5 | CACCCGATGA | 3 | 2 | 0 | 1 | 66.7 | 400–2200 | 1.2 |
RAPD 6 | ATGTGCCGTA | 8 | 6 | 1 | 1 | 75.0 | 700–2200 | 4.6 |
RAPD 7 | TGGCGCAATA | 5 | 4 | 0 | 1 | 80.0 | 800–2200 | 2.2 |
RAPD 8 | ACAACGCCTC | 8 | 5 | 1 | 2 | 62.5 | 700–1000 | 4.4 |
RAPD 9 | GACCGCTTTG | 8 | 7 | 0 | 1 | 87.5 | 800–2200 | 4.8 |
RAPD 10 | CCTCCTCATC | 5 | 3 | 1 | 1 | 60.0 | 700–2200 | 2.0 |
Average/primer | 7.9 | 5.7 | 0.6 | 1,6 | - | - | 3.98 | |
Total | 79 | 57 | 6 | 16 | 72.2 | 400–2200 | - |
GENOTYPE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0.56 | 0.86 | 0.86 | 0.87 | 0.58 | 0.59 | 0.64 | 0.50 | 0.57 |
2 | 1 | 0.58 | 0.62 | 0.61 | 0.81 | 0.74 | 0.67 | 0.80 | 0.73 | |
3 | 1 | 0.82 | 0.80 | 0.56 | 0.54 | 0.67 | 0.52 | 0.57 | ||
4 | 1 | 0.92 | 0.54 | 0.58 | 0.68 | 0.54 | 0.59 | |||
5 | 1 | 0.59 | 0.59 | 0.64 | 0.55 | 0.60 | ||||
6 | 1 | 0.91 | 0.72 | 0.90 | 0.78 | |||||
7 | 1 | 0.76 | 0.83 | 0.70 | ||||||
8 | 1 | 0.70 | 0.67 | |||||||
9 | 1 | 0.81 | ||||||||
10 | 1 |
Genotypes | Origin |
---|---|
1. | China (Pingnan Junong Mountain Farming Specialized Farmers Cooperative, Ningde, 26°40′N 119°31′E) |
2. | Poland (Zgierz 51°51’N, 19°24′E) |
3. | India (Sneartha Bio Tech Private Limited, Ahmedabad, 23°1′N, 72°34′E) |
4. | Malaysia (Agricultural Research and Development Institute, Serdang, 3°20′N, 101°30′E) |
5. | Paraguay (Plant Word Sedds, Capiatá, 25º21′S, 57º25′W) |
6. | Morocco (Regional Centre of Agronomic Research of Tangier, 35°46′N 5°48′W) |
7. | Egipt (Giza Seeds and Herbs, Giza, 30°00′N, 31°12′E) |
8. | Pakistan (University of Agriculture, Faisalabad, 31°25′N, 73°5′E) |
9. | Australia (Central Queensland University, Rockhampton, 23°22′S, 150°30′E) |
10. | Nigeria (Herbarium of Obafemi Awolowo University, Ile-Ife, 7°28′N, 4°34′E) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyduch-Siemińska, M.; Najda, A.; Gawroński, J.; Balant, S.; Świca, K.; Żaba, A. Stevia Rebaudiana Bertoni, a Source of High-Potency Natural Sweetener—Biochemical and Genetic Characterization. Molecules 2020, 25, 767. https://doi.org/10.3390/molecules25040767
Dyduch-Siemińska M, Najda A, Gawroński J, Balant S, Świca K, Żaba A. Stevia Rebaudiana Bertoni, a Source of High-Potency Natural Sweetener—Biochemical and Genetic Characterization. Molecules. 2020; 25(4):767. https://doi.org/10.3390/molecules25040767
Chicago/Turabian StyleDyduch-Siemińska, Magdalena, Agnieszka Najda, Jacek Gawroński, Sebastian Balant, Klaudia Świca, and Agnieszka Żaba. 2020. "Stevia Rebaudiana Bertoni, a Source of High-Potency Natural Sweetener—Biochemical and Genetic Characterization" Molecules 25, no. 4: 767. https://doi.org/10.3390/molecules25040767
APA StyleDyduch-Siemińska, M., Najda, A., Gawroński, J., Balant, S., Świca, K., & Żaba, A. (2020). Stevia Rebaudiana Bertoni, a Source of High-Potency Natural Sweetener—Biochemical and Genetic Characterization. Molecules, 25(4), 767. https://doi.org/10.3390/molecules25040767