Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Granulocyte Isolation by Different Methods
2.2. Characterization, Morphology, Viability and Yield of the Methods with High Purity
2.3. M-SPION Optical Characterization and Analysis of Size Polydispersion, Stability, and Zeta Potential
2.4. Visualization of M-SPION Internalization into Granulocytes and Cellular Viability
2.5. Quantification of M-SPIONs Internalized into Granulocytes by MRI, ICP-MS and NIRF
2.5.1. MRI Quantification
2.5.2. NIRF Quantification
2.5.3. ICP-MS Quantification
3. Discussion
4. Materials and Methods
4.1. Granulocyte Isolation from Human Peripheral Blood
4.2. Granulocyte Isolation Methods
4.2.1. Isolation method with Percoll Density Gradient
4.2.2. Isolation method with Percoll Density Gradients and PBS
4.2.3. Isolation Method with Percoll Density Gradients and Hanks′ Solution
4.2.4. Isolation Method with PERCOLL Gradients and Ficoll
4.3. Visualization of Granulocyte Isolation Methods
4.4. Evaluation of Isolated Granulocyte Purity
4.5. Granulocyte Viability after Isolation Methods
4.6. Multimodal Superparamagnetic Iron Oxide Nanoparticles (M-SPIONs)
4.7. M-SPION Optical Characterization and Analysis of Size Polydispersion, Stability, and Zeta Potential
4.8. Labeling of Granulocytes with M-SPIONs
4.9. Visualization of M-SPIONs Internalized in Granulocytes
4.10. Granulocyte Viability Evaluation after M-SPION Labeling
4.11. Quantification of M-SPION Internalized in Granulocytes
4.11.1. Quantification by MRI
4.11.2. Quantification of Iron Load by ICP-MS
4.11.3. Quantification of Iron Load by NIRF
4.12. Statistics Analyses
Author Contributions
Funding
Conflicts of Interest
Abbreviations
M-SPION | Multimodal superparamagnetic iron oxide nanoparticle |
MRI | Magnetic resonance imaging |
NIRF | Near-infrared fluorescence |
ICP-MS | Inductively coupled plasma mass spectrometry |
CT | Computer tomography |
pg | Picogram |
mL | Milliliter |
PET | Positron emission tomography |
SPECT | Single-photon emission tomography |
SPION | Superparamagnetic iron oxide nanoparticle |
USPIO | Ultrasmall superparamagnetic iron oxides |
MPIO | Microparticle iron oxide |
PBS | Phosphate buffer solution |
HBSS | Hank’s balanced salts solution |
SD | Standard deviation |
SE | Standard error |
FITC | Fluorescein isothiocyanate |
PI-PE | Propidium iodine – phycoerythrin |
DAPI | 4′,6-Diamidine-2′-phenylindole dihydrochloride |
FSC | Forward scatter |
SSC | Side scatter |
r2 | Transverse relaxivity |
T2 | Transversal relaxation time |
TE | Echo time |
ms | Millisecond |
µg | Microgram |
Fe | Iron |
ppb | Part per billion |
cps | Counts per second |
HD | Hydrodynamic diameter |
mV | Millivolts |
FBS | Fetal bovine serum |
IR-750 | Infrared-absorption in 750 |
TR | Repetition time |
r1 | Longitudinal relaxivity |
g | Gravitational force |
I.U. | International unit |
NaCl | Sodium chloride |
DMEM | Dulbecco′s modified Eagle medium |
RPM | Rotation per minute |
cm | Centimeter |
SE_MS | Spin echo multi slice |
mm | Millimeter |
FOV | Field of view |
ROI | Region of interest |
Diameter of multimodal superparamagnetic iron oxide nanoparticle | |
Density of multimodal superparamagnetic iron oxide nanoparticle |
References
- Williams, J.G.; Maier, R.V. The Inflammatory Response. J. Intensive Care Med. 1992, 7, 53–66. [Google Scholar] [CrossRef]
- Tseng, J.C.; Kung, A.L. In Vivo Imaging Method to Distinguish Acute and Chronic Inflammation. J. Vis. Exp. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schett, G.; Neurath, M.F. Resolution of Chronic Inflammatory Disease: Universal and Tissue-Specific Concepts. Nat. Commun. 2018, 9, 3261. [Google Scholar] [CrossRef]
- Troeger, C.; Blacker, B.; Khalil, I.A.; Rao, P.C.; Cao, J.; Zimsen, S.R.M.; Albertson, S.B.; Deshpande, A.; Farag, T.; Abebe, Z.; et al. Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of lower Respiratory Infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, Regional, and National Causes of Child Mortality in 2008: A Systematic Analysis. Lancet (Lond. Engl.) 2010, 375, 1969–1987. [Google Scholar] [CrossRef]
- Caballero, M.T.; Bianchi, A.M.; Nuno, A.; Ferretti, A.J.P.; Polack, L.M.; Remondino, I.; Rodriguez, M.G.; Orizzonte, L.; Vallone, F.; Bergel, E.; et al. Mortality Associated With Acute Respiratory Infections Among Children at Home. J. Infect. Dis. 2019, 219, 358–364. [Google Scholar] [CrossRef]
- Rhee, C.; Jones, T.M.; Hamad, Y.; Pande, A.; Varon, J.; O’Brien, C.; Anderson, D.J.; Warren, D.K.; Dantes, R.B.; Epstein, L.; et al. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA. Netw. Open 2019, 2, e187571. [Google Scholar] [CrossRef] [Green Version]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009–2014. Jama 2017, 318, 1241–1249. [Google Scholar] [CrossRef]
- Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; et al. A Guiding Map for Inflammation. Nat. Immunol. 2017, 18, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Straub, R.H.; Schradin, C. Chronic Inflammatory Systemic Diseases: An Evolutionary Trade-off between Acutely Beneficial but Chronically Harmful Programs. Evol. Med. Public Health 2016, 2016, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Arnow, P.M.; Flaherty, J.P. Fever of Unknown Origin. Lancet (Lond. Engl.) 1997, 350, 575–580. [Google Scholar] [CrossRef]
- Miralles, P.; Moreno, S.; Perez-Tascon, M.; Cosin, J.; Diaz, M.D.; Bouza, E. Fever of Uncertain Origin in Patients Infected with the Human Immunodeficiency Virus. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1995, 20, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Keidar, Z.; Gurman-Balbir, A.; Gaitini, D.; Israel, O. Fever of Unknown Origin: The Role of 18F-FDG PET/CT. J. Nucl. Med. 2008, 49, 1980–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellors, J.W.; Horwitz, R.I.; Harvey, M.R.; Horwitz, S.M. A Simple Index to Identify Occult Bacterial Infection in Adults with Acute Unexplained Fever. Arch. Intern. Med. 1987, 147, 666–671. [Google Scholar] [CrossRef]
- Johnson, J.A.; Christie, M.J.; Sandler, M.P.; Parks, P.F., Jr.; Homra, L.; Kaye, J.J. Detection of Occult Infection Following Total Joint Arthroplasty Using Sequential Technetium-99m HDP Bone Scintigraphy and Indium-111 WBC Imaging. J. Nucl. Med. 1988, 29, 1347–1353. [Google Scholar]
- Boerman, O.C.; Rennen, H.; Oyen, W.J.; Corstens, F.H. Radiopharmaceuticals to Image Infection and Inflammation. Semin. Nucl. Med. 2001, 31, 286–295. [Google Scholar] [CrossRef]
- Kumar, R.; Basu, S.; Torigian, D.; Anand, V.; Zhuang, H.; Alavi, A. Role of Modern Imaging Techniques for Diagnosis of Infection in the Era of 18F-fluorodeoxyglucose Positron Emission Tomography. Clin. Microbiol. Rev. 2008, 21, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Das, S.S.; Hall, A.V.; Wareham, D.W.; Britton, K.E. Infection Imaging with Radiopharmaceuticals in the 21st Century. Braz. Arch. Biol. Technol. 2002, 45, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Aydin, F.; Kin Cengiz, A.; Gungor, F. Tc-99m Labeled HMPAO white Blood Cell Scintigraphy in Pediatric Patients. Mol. Imaging Radionucl. Ther. 2012, 21, 13–18. [Google Scholar] [CrossRef]
- Ben-Haim, S.; Gacinovic, S.; Israel, O. Cardiovascular Infection and Inflammation. Semin. Nucl. Med. 2009, 39, 103–114. [Google Scholar] [CrossRef]
- Pellegrino, D.; Bonab, A.A.; Dragotakes, S.C.; Pitman, J.T.; Mariani, G.; Carter, E.A. Inflammation and Infection: Imaging Properties of 18F-FDG-labeled White Blood Cells Versus 18F-FDG. J. Nucl. Med. 2005, 46, 1522–1530. [Google Scholar] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.A. Leukocyte-endothelial cell interactions in the inflammatory response. Lab. Investig. A. J. Tech. Methods Pathol. 2002, 82, 521–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, K.; Luo, Z.; Zhang, B.; Pang, Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 2018, 8, 23–33. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Reviews. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef]
- Nathan, C. Points of Control in Inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef]
- Shen, X.F.; Cao, K.; Jiang, J.P.; Guan, W.X.; Du, J.F. Neutrophil Dysregulation During Sepsis: An Overview and Update. J. Cell. Mol. Med. 2017, 21, 1687–1697. [Google Scholar] [CrossRef] [Green Version]
- Sursal, N.; Cakmak, A.; Yildiz, K. Neutrophil Isolation from Feline Blood Using Discontinuous Percoll Dilutions. Tierarztl. Praxis. Ausg. KKleintiere/Heimtiere 2018, 46, 399–402. [Google Scholar] [CrossRef]
- Sroka, J.; Kordecka, A.; Wlosiak, P.; Madeja, Z.; Korohoda, W. Separation Methods for Isolation of Human Polymorphonuclear Leukocytes Affect their Motile Activity. Eur. J. Cell Biol. 2009, 88, 531–539. [Google Scholar] [CrossRef]
- Soltys, J.; Swain, S.D.; Sipes, K.M.; Nelson, L.K.; Hanson, A.J.; Kantele, J.M.; Jutila, M.A.; Quinn, M.T. Isolation of Bovine Neutrophils with Biomagnetic Beads: Comparison with Standard Percoll Density Gradient Isolation Methods. J. Immunol. Methods. 1999, 226, 71–84. [Google Scholar] [CrossRef]
- Kuhns, D.B.; Long Priel, D.A.; Chu, J.; Zarember, K.A. Isolation and Functional Analysis of Human Neutrophils. Curr. Protoc. Immunol. 2015, 111, 7.23.1–7.23.16. [Google Scholar] [CrossRef]
- Kjeldsen, L.; Sengelov, H.; Borregaard, N. Subcellular Fractionation of Human Neutrophils on Percoll Density Gradients. J. Immunol. Methods 1999, 232, 131–143. [Google Scholar] [CrossRef]
- Lichtenberger, C.; Zakeri, S.; Baier, K.; Willheim, M.; Holub, M.; Reinisch, W. A Novel High-Purity Isolation Method for Human Peripheral Blood Neutrophils Permitting Polymerase Chain Reaction-Based mRNA Studies. J. Immunol. Methods 1999, 227, 75–84. [Google Scholar] [CrossRef]
- Mosca, T.; Forte, W.C. Comparative Efficiency and Impact on the Activity of Blood Neutrophils Isolated by Percoll, Ficoll and Spontaneous Sedimentation Methods. Immunol. Invest. 2016, 45, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Swain, A.; Nakanishi, Y.; Sugiyama, D. Multicolor Analysis of Cell Surface Marker of Human Leukemia Cell Lines Using Flow Cytometry. Anticancer Res. 2014, 34, 4539–4550. [Google Scholar]
- Hammoud, D.A. Molecular Imaging of Inflammation: Current Status. J. Nucl. Med. 2016, 57, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Leitgeb, R.A.; Baumann, B. Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography. Front. Phys. 2018, 6. [Google Scholar] [CrossRef]
- Lu, F.-M.; Yuan, Z. PET/SPECT Molecular Imaging in Clinical Neuroscience: Recent Advances in the Investigation of CNS Diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [PubMed]
- Townsend, D.; Cheng, Z.; Georg, D.; Drexler, W.; Moser, E. Grand Challenges in Biomedical Physics. Front. Phys. 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Signore, A.; Glaudemans, A.W.; Galli, F.; Rouzet, F. Imaging Infection and Inflammation. Biomed. Res. Int. 2015, 2015, 615150. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Qi, T.; Chu, B.; Peng, J.; Luo, F.; Qian, Z. Multifunctional Nanostructured Materials for Multimodal Cancer Imaging and Therapy. J. Nanosci. Nanotechnol. 2014, 14, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.P.; Cawthorne, C.; Archibald, S.J. Multimodal Nanoparticle Imaging Agents: Design and Applications. Philos. Transactions. Ser. AMathematicalphysicaland Eng. Sci. 2017, 375, 2017. [Google Scholar] [CrossRef] [PubMed]
- Oyen, W.J.; Boerman, O.C.; Storm, G.; van Bloois, L.; Koenders, E.B.; Claessens, R.A.; Perenboom, R.M.; Crommelin, D.J.; van der Meer, J.W.; Corstens, F.H. Detecting Infection and Inflammation with Technetium-99m-labeled Stealth Liposomes. J. Nucl. Med. 1996, 37, 1392–1397. [Google Scholar]
- Key, J.; Leary, J.F. Nanoparticles for Multimodal in Vivo Imaging in Nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. [Google Scholar] [CrossRef] [Green Version]
- Nune, S.K.; Gunda, P.; Thallapally, P.K.; Lin, Y.Y.; Forrest, M.L.; Berkland, C.J. Nanoparticles for Biomedical Imaging. Expert Opin. Drug Deliv. 2009, 6, 1175–1194. [Google Scholar] [CrossRef] [Green Version]
- Rudramurthy, G.R.; Swamy, M.K. Potential Applications of Engineered Nanoparticles in Medicine and Biology: An Update. JBIC J. Biol. Inorg. Chem. 2018, 23, 1185–1204. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jin, R.; Feng, T.; Liu, L.; Yang, L.; Tao, Y.; Anderson, J.M.; Ai, H.; Li, H. Iron Oxide Nanoparticles and Induced Autophagy in Human Monocytes. Int. J. Nanomed. 2017, 12, 3993–4005. [Google Scholar] [CrossRef] [Green Version]
- Gauberti, M.; Montagne, A.; Quenault, A.; Vivien, D. Molecular Magnetic Resonance Imaging of Brain-Immune Interactions. Front Cell Neurosci. 2014, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Baraki, H.; Zinne, N.; Wedekind, D.; Meier, M.; Bleich, A.; Glage, S.; Hedrich, H.J.; Kutschka, I.; Haverich, A. Magnetic Resonance Imaging of Soft Tissue Infection with Iron Oxide Labeled Granulocytes in a Rat Model. PLoS ONE 2012, 7, e51770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuwelt, A.; Sidhu, N.; Hu, C.A.; Mlady, G.; Eberhardt, S.C.; Sillerud, L.O. Iron-Based Superparamagnetic Nanoparticle Contrast Agents for MRI of Infection and Inflammation. AJR. Am. J. Roentgenol 2015, 204, W302–W313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pala, A.; Liberatore, M.; D’Elia, P.; Nepi, F.; Megna, V.; Mastantuono, M.; Al-Nahhas, A.; Rubello, D.; Barteri, M. Labelling of Granulocytes by Phagocytic Engulfment with 64Cu-labelled Chitosan-Coated Magnetic Nanoparticles. Mol. Imaging Biol. 2012, 14, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Shanhua, H.; Huijing, H.; Moon, M.J.; Heo, S.H.; Lim, H.S.; Park, I.K.; Cho, C.S.; Kwak, S.H.; Jeong, Y.Y. MR detection of LPS-Induced Neutrophil Activation Using Mannan-Coated Superparamagnetic Iron Oxide Nanoparticles. Mol. Imaging Biol. 2013, 15, 685–692. [Google Scholar] [CrossRef]
- McAteer, M.A.; Schneider, J.E.; Ali, Z.A.; Warrick, N.; Bursill, C.A.; von zur Muhlen, C.; Greaves, D.R.; Neubauer, S.; Channon, K.M.; Choudhury, R.P. Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide. Arter. Thromb. Vasc. Biol. 2008, 28, 77–83. [Google Scholar] [CrossRef] [Green Version]
- McAteer, M.A.; Sibson, N.R.; von Zur Muhlen, C.; Schneider, J.E.; Lowe, A.S.; Warrick, N.; Channon, K.M.; Anthony, D.C.; Choudhury, R.P. In Vivo Magnetic Resonance Imaging of Acute Brain Inflammation Using Microparticles of Iron Oxide. Nat. Med. 2007, 13, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Bilyy, R.; Unterweger, H.; Weigel, B.; Dumych, T.; Paryzhak, S.; Vovk, V.; Liao, Z.; Alexiou, C.; Herrmann, M.; Janko, C. Inert Coats of Magnetic Nanoparticles Prevent Formation of Occlusive Intravascular Co-aggregates With Neutrophil Extracellular Traps. Front Immunol. 2018, 9, 2266. [Google Scholar] [CrossRef] [Green Version]
- Couto, D.; Freitas, M.; Vilas-Boas, V.; Dias, I.; Porto, G.; Lopez-Quintela, M.A.; Rivas, J.; Freitas, P.; Carvalho, F.; Fernandes, E. Interaction of Polyacrylic Acid Coated and Non-Coated Iron Oxide Nanoparticles with Human Neutrophils. Toxicol Lett. 2014, 225, 57–65. [Google Scholar] [CrossRef]
- Gifford, G.; Vu, V.P.; Banda, N.K.; Holers, V.M.; Wang, G.; Groman, E.V.; Backos, D.; Scheinman, R.; Moghimi, S.M.; Simberg, D. Complement Therapeutics Meets Nanomedicine: Overcoming Human Complement Activation and Leukocyte Uptake of Nanomedicines with Soluble Domains of CD55. J. Control. Release Off. J. Control. Release Soc. 2019, 302, 181–189. [Google Scholar] [CrossRef]
- Inturi, S.; Wang, G.; Chen, F.; Banda, N.K.; Holers, V.M.; Wu, L.; Moghimi, S.M.; Simberg, D. Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake. ACS. Nano. 2015, 9, 10758–10768. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.S.; Hann, B.; Shapiro, E.M. On the Use of Micron-Sized Iron Oxide Particles (MPIOS) to Label Resting Monocytes in Bone Marrow. Mol. Imaging Biol. 2011, 13, 819–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, T.; Valenzuela, A.; Petit, F.; Chow, S.; Leung, K.; Gorin, F.; Louie, A.Y.; Dhenain, M. In Vivo MRI of Functionalized Iron Oxide Nanoparticles for Brain Inflammation. Contrast Media. Mol. Imaging 2018, 2018, 3476476. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Ma, X.; Jiang, S.; Ji, G.; Han, W.; Xu, B.; Tian, J.; Tian, W. High-Efficiency Fluorescent and Magnetic Multimodal Probe for Long-Term Monitoring and Deep Penetration Imaging of Tumors. J. Mater. Chem. B. 2019, 7, 5345–5351. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional Nanoparticles for Multimodal Imaging and Theragnosis. Chem. Soc. Rev. 2012, 41, 2656–2672. [Google Scholar] [CrossRef] [PubMed]
- Louie, A. Multimodality Imaging Probes: Design and Challenges. Chem. Rev. 2010, 110, 3146–3195. [Google Scholar] [CrossRef] [Green Version]
- Mortaz, E.; Alipoor, S.D.; Adcock, I.M.; Mumby, S.; Koenderman, L. Update on Neutrophil Function in Severe Inflammation. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- de Vries, E.F.; Roca, M.; Jamar, F.; Israel, O.; Signore, A. Guidelines for the Labelling of Leucocytes with (99m)Tc-HMPAO. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Hirz, T.; Dumontet, C. Neutrophil Isolation and Analysis to Determine their Role in Lymphoma Cell Sensitivity to Therapeutic Agents. J. Vis. Exp. 2016, e53846. [Google Scholar] [CrossRef] [Green Version]
- Roca, M.; de Vries, E.F.; Jamar, F.; Israel, O.; Signore, A. Guidelines for the Labelling of Leucocytes with (111)In-oxine. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Woldehiwet, Z.; Scaife, H.; Hart, C.A.; Edwards, S.W. Purification of Ovine Neutrophils and Eosinophils: Anaplasma Phagocytophilum Affects Neutrophil Density. J. Comp. Pathol. 2003, 128, 277–282. [Google Scholar] [CrossRef]
- Pleskova, S.N.; Mikheeva, E.R.; Gornostaeva, E.E. The Interaction between Human Blood Neutrophil Granulocytes and Quantum dots. Micron 2018, 105, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Somasundaram, R.; Nederhof, R.F.; Dijkstra, G.; Faber, K.N.; Peppelenbosch, M.P.; Fuhler, G.M. Impact of Human Granulocyte and Monocyte Isolation Procedures on Functional Studies. Clin. Vaccine Immunol. 2012, 19, 1065–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, F.; Georgsen, J.; Antonsen, S.; Grunnet, N. Phagocytic Properties of Granulocytes after Intravenous Injection of Ioxaglate or Iohexol. Acta. Radiol. 1992, 33, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Riding, G.A.; Willadsen, P. Simultaneous Isolation of Bovine Eosinophils and Neutrophils on Gradients of Percoll. J. Immunol. Methods 1981, 46, 113–119. [Google Scholar] [CrossRef]
- Gallin, J.I. Degranulating Stimuli Decrease the Neagative Surface Charge and Increase the Adhesiveness of Human Neutrophils. J. Clin. Investig. 1980, 65, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Gratton, S.E.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The Effect of Particle Design on Cellular Internalization Pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics 2013, 3, 595–615. [Google Scholar] [CrossRef]
- Pellico, J.; Lechuga-Vieco, A.V.; Almarza, E.; Hidalgo, A.; Mesa-Nuñez, C.; Fernández-Barahona, I.; Quintana, J.A.; Bueren, J.; Enríquez, J.A.; Ruiz-Cabello, J.; et al. In Vivo Imaging of Lung Inflammation with Neutrophil-Specific (68)Ga nano-radiotracer. Sci. Rep. 2017, 7, 13242. [Google Scholar] [CrossRef] [Green Version]
- Kandahari, A.M.; Yang, X.; Dighe, A.S.; Pan, D.; Cui, Q. Recognition of Immune Response for the Early Diagnosis and Treatment of Osteoarthritis. J. Immunol. Res. 2015, 2015, 192415. [Google Scholar] [CrossRef]
- Vaas, M.; Enzmann, G.; Perinat, T.; Siler, U.; Reichenbach, J.; Licha, K.; Kipar, A.; Rudin, M.; Engelhardt, B.; Klohs, J. Non-Invasive Near-Infrared Fluorescence Imaging of the Neutrophil Response in a Mouse Model of Transient Cerebral Ischaemia. J. Cereb. Blood Flow. Metab. 2017, 37, 2833–2847. [Google Scholar] [CrossRef] [Green Version]
- Mulder, W.J.; Jaffer, F.A.; Fayad, Z.A.; Nahrendorf, M. Imaging and Nanomedicine in Inflammatory Atherosclerosis. Sci. Transl. Med. 2014, 6, 239sr231. [Google Scholar] [CrossRef] [Green Version]
- Al-Jamal, W.T.; Al-Jamal, K.T.; Bomans, P.H.; Frederik, P.M.; Kostarelos, K. Functionalized-quantum-dot-liposome Hybrids as Multimodal Nanoparticles for Cancer. Small (Weinh. Der Bergstr. Ger.) 2008, 4, 1406–1415. [Google Scholar] [CrossRef]
- Hu, L.; Mao, Z.; Gao, C. Colloidal Particles for Cellular Uptake and Delivery. J. Mater. Chem. 2009, 19, 3108–3115. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Portney, N.G.; Cui, D.; Budak, G.; Ozbay, E.; Ozkan, M.; Ozkan, C.S. Zeta Potential: A Surface Electrical Characteristic to Probe the Interaction of Nanoparticles with Normal and Cancer Human Breast Epithelial Cells. Biomed. Microdevices 2008, 10, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.; Stenvik, J.; Nilsen, A.M. Iron Oxide Nanoparticles Modulate Lipopolysaccharide-Induced Inflammatory Responses in Primary Human Monocytes. Int. J. Nanomed. 2016, 11, 4625–4642. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Xing, W.; Lu, H.; Han, H. Early Diagnostic Method for Sepsis Based on Neutrophil MR Imaging. Radiol. Infect. Dis. 2015, 2, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, D.M.; Chiasson, S.; Girard, D. Activation of Human Neutrophils by Titanium Dioxide (TiO2) Nanoparticles. Toxicol Vitr. 2010, 24, 1002–1008. [Google Scholar] [CrossRef]
- Labens, R.; Daniel, C.; Hall, S.; Xia, X.R.; Schwarz, T. Effect of Intra-articular Administration of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for MRI Assessment of the Cartilage Barrier in a Large Animal Model. PLoS ONE 2017, 12, e0190216. [Google Scholar] [CrossRef] [Green Version]
- Unterweger, H.; Dézsi, L.; Matuszak, J.; Janko, C.; Poettler, M.; Jordan, J.; Bäuerle, T.; Szebeni, J.; Fey, T.; Boccaccini, A.R.; et al. Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging: Evaluation of Size-Dependent Imaging Properties, Storage Stability and Safety. Int. J. Nanomed. 2018, 13, 1899–1915. [Google Scholar] [CrossRef] [Green Version]
- Miyaki, L.A.M.; Sibov, T.T.; Pavon, L.F.; Mamani, J.B.; Gamarra, L.F. Study of Internalization and Viability of Multimodal Nanoparticles for Labeling of Human Umbilical Cord Mesenchymal Stem Cells. Einstein (Sao PauloBrazil) 2012, 10, 189–196. [Google Scholar] [CrossRef] [Green Version]
- da Silva, H.R.; Mamani, J.B.; Nucci, M.P.; Nucci, L.P.; Kondo, A.T.; Fantacini, D.M.C.; de Souza, L.E.B.; Picanco-Castro, V.; Covas, D.T.; Kutner, J.M.; et al. Triple-Modal Imaging of Stem-Cells Labeled with Multimodal Nanoparticles, Applied in a Stroke Model. World J. Stem Cells 2019, 11, 100–123. [Google Scholar] [CrossRef]
- Sibov, T.T.; Pavon, L.F.; Miyaki, L.A.; Mamani, J.B.; Nucci, L.P.; Alvarim, L.T.; Silveira, P.H.; Marti, L.C.; Gamarra, L. Umbilical Cord Mesenchymal Stem Cells Labeled with Multimodal Iron Oxide Nanoparticles with Fluorescent and Magnetic Properties: Application for in Vivo Cell Tracking. Int. J. Nanomed. 2014, 9, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evrard, M.; Kwok, I.W.H.; Chong, S.Z.; Teng, K.W.W.; Becht, E.; Chen, J.; Sieow, J.L.; Penny, H.L.; Ching, G.C.; Devi, S.; et al. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018, 48, 364–379.e368. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Gordon, A.C.; Kim, H.; Park, W.; Cho, S.; Lee, B.; Larson, A.C.; Rozhkova, E.A.; Kim, D.H. Targeted Multimodal Nano-Reporters for Pre-Procedural MRI and Intra-Operative Image-Guidance. Biomaterials 2016, 109, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Laurent, S.; Jo, Y.S.; Roch, A.; Mikhaylova, M.; Bhujwalla, Z.M.; Muller, R.N.; Mohammed, M. A High-Performance Magnetic Resonance Imaging T2 Contrast Agent. Adv. Mater. 2007, 19, 1874–1878. [Google Scholar] [CrossRef]
- Mamani, J.B.; Pavon, L.F.; Miyaki, L.A.M.; Sibov, T.T.; Rossan, F.; Silveira, P.H.; Cárdenas, W.H.Z.; Junior, E.A.; Gamarra, L.F. Intracellular Labeling and Quantification Process by Magnetic Resonance Imaging Using Iron Oxide Magnetic Nanoparticles in Rat C6 Glioma Cell Line. Einstein (Sao PauloBrazil) 2012, 10, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, T.; Tan, W.; Talham, D.R. Size-Dependent MRI Relaxivity and Dual Imaging with Eu0.2Gd0.8PO4.H2O Nanoparticles. Langmuir ACS J. Surf. Colloids 2014, 30, 5873–5879. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo, M.B.M.; Melo, V.H.; Soares, C.R.; Gamarra, L.F.; Barros, C.H.; Tasic, L. Poly(3-hydroxi-butyrate-co-3-hydroxy-valerate) (PHB-HV) Microparticles Loaded with Holmium Acetylacetonate as Potential Contrast Agents for Magnetic Resonance Images. Int. J. Nanomed. 2019, 14, 6869–6889. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, E.M.; Skrtic, S.; Sharer, K.; Hill, J.M.; Dunbar, C.E.; Koretsky, A.P. MRI Detection of Single Particles for Cellular Imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieg, F.M.; Andres, R.Y.; Winterhalter, K.H. Superparamagnetically Labelled Neutrophils as Potential Abscess-Specific Contrast Agent for MRI. Magn. Reson. Imaging 1995, 13, 393–400. [Google Scholar] [CrossRef]
- Engberink, R.D.O.; van der Pol, S.M.A.; Walczak, P.; van der Toorn, A.; Viergever, M.A.; Dijkstra, C.D.; Bulte, J.W.M.; de Vries, H.E.; Blezer, E.L.A. Magnetic Resonance Imaging of Monocytes Labeled with Ultrasmall Superparamagnetic Particles of Iron Oxide Using Magnetoelectroporation in An Animal Model of Multiple Sclerosis. Mol. Imaging 2010, 9. [Google Scholar] [CrossRef]
- Montet-Abou, K.; Daire, J.-L.; Hyacinthe, J.-N.; Jorge-Costa, M.; Grosdemange, K.; Mach, F.; Petri-Fink, A.; Hofmann, H.; Morel, D.R.; Vallée, J.-P.; et al. In Vivo labelling of Resting Monocytes in the Reticuloendothelial System with Fluorescent Iron Oxide Nanoparticles Prior to Injury Reveals that they are Mobilized to Infarcted Myocardium. Eur. Heart J. 2009, 31, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Zelivyanskaya, M.L.; Nelson, J.A.; Poluektova, L.; Uberti, M.; Mellon, M.; Gendelman, H.E.; Boskal, M.D. Tracking Superparamagnetic Iron Oxide Labeled Monocytes in Brain by High-Field Magnetic Resonance Imaging. J. Neurosci. Res. 2003, 73, 284–295. [Google Scholar] [CrossRef]
- Roberts, R.L.; Gallin, J.I. Rapid Method for Isolation of Normal Human Peripheral Blood Eosinophils on Discontinuous Percoll Gradients and Comparison with Neutrophils. Blood 1985, 65, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monceaux, V.; Chiche-Lapierre, C.; Chaput, C.; Witko-Sarsat, V.; Prevost, M.C.; Taylor, C.T.; Ungeheuer, M.N.; Sansonetti, P.J.; Marteyn, B.S. Anoxia and Glucose Supplementation Preserve Neutrophil Viability and Function. Blood 2016, 128, 993–1002. [Google Scholar] [CrossRef]
- Sedgwick, J.B.; Shikama, Y.; Nagata, M.; Brener, K.; Busse, W.W. Effect of Isolation Protocol on Eosinophil Function: Percoll Gradients Versus Immunomagnetic Beads. J. Immunol. Methods 1996, 198, 15–24. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Method | Mean | SD | N |
---|---|---|---|
Method I: Percoll gradients | 57.89 | 6.477 | 8 |
Method II: Percoll with PBS | 47.86 | 2.814 | 8 |
Method III: Percoll with HBSS | 82.75 | 7.890 | 12 |
Method IV: Percoll and Ficoll | 95.92 | 1.625 | 8 |
Methods | Mean Difference | SE | t | p | |
---|---|---|---|---|---|
Method I | Method II | 10.03 | 2.867 | 3.496 | 0.008 |
Method III | −24.86 | 2.617 | −9.499 | <0.001 | |
Method IV | −38.04 | 2.867 | −13.266 | <0.001 | |
Method II | Method III | −34.89 | 2.617 | −13.329 | <0.001 |
Method IV | −48.06 | 2.867 | −16.762 | <0.001 | |
Method III | Method IV | −13.18 | 2.617 | −5.033 | <0.001 |
Methods | Mean | SD | N |
---|---|---|---|
Method I: Percoll gradients | 20.675 | 8.690 | 8 |
Method II: Percoll with PBS | 37.850 | 1.335 | 8 |
Method III: Percoll with HBSS | 10.950 | 6.212 | 12 |
Method IV: Percoll and Ficoll | 0.887 | 0.615 | 8 |
Methods | Mean Difference | SE | t | p | |
---|---|---|---|---|---|
Method I | Method II | −17.175 | 2.750 | −6.245 | <0.001 |
Method III | 9.725 | 2.511 | 3.874 | 0.003 | |
Method IV | 19.788 | 2.750 | 7.195 | <0.001 | |
Method II | Method III | 26.900 | 2.511 | 10.715 | <0.001 |
Method IV | 36.962 | 2.750 | 13.440 | <0.001 | |
Method III | Method IV | 10.063 | 2.511 | 4.008 | 0.002 |
Methods | N | Mean | SD | p |
---|---|---|---|---|
Method III: Percoll with HBSS | 12 | 82.75 | 7.890 | <0.001 |
Method IV: Percoll and Ficoll | 8 | 95.92 | 1.625 |
Methods | N | Mean | SD | p |
---|---|---|---|---|
Method III: Percoll with HBSS | 12 | 10.950 | 6.212 | <0.001 |
Method IV: Percoll and Ficoll | 8 | 0.887 | 0.615 |
[Fe] | MRI | ICP-MS | NIRF | |||
---|---|---|---|---|---|---|
(µg/mL) | Mass (pg Fe/cell) | N of M-SPIONs *104/cell | Mass (pg Fe/cell) | N of M-SPIONs *104/cell | Mass (pg Fe/cell) | N of M-SPIONs *104/cell |
10 | 0.83 ± 0.11 | 1.04 ± 0.14 | 1.08 ± 0.26 | 1.35 ± 0.32 | 0.59 ± 0.10 | 0.74 ± 0.13 |
30 | 2.41 ± 0.15 | 3.03 ± 0.19 | 2.56 ± 0.16 | 3.21 ± 0.20 | 3.49 ± 0.19 | 4.39 ± 0.23 |
50 | 6.40 ± 0.18 | 8.06 ± 0.22 | 6.83 ± 0.47 | 8.56 ± 0.59 | 4.64 ± 0.14 | 5.84 ± 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvieri, F.; Mamani, J.B.; Nucci, M.P.; Oliveira, F.A.; Filgueiras, I.S.; Rego, G.N.A.; de Barboza, M.F.; da Silva, H.R.; Gamarra, L.F. Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles. Molecules 2020, 25, 765. https://doi.org/10.3390/molecules25040765
Alvieri F, Mamani JB, Nucci MP, Oliveira FA, Filgueiras IS, Rego GNA, de Barboza MF, da Silva HR, Gamarra LF. Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles. Molecules. 2020; 25(4):765. https://doi.org/10.3390/molecules25040765
Chicago/Turabian StyleAlvieri, Fernando, Javier B. Mamani, Mariana P. Nucci, Fernando A. Oliveira, Igor S. Filgueiras, Gabriel N. A. Rego, Marycel F. de Barboza, Helio R. da Silva, and Lionel F. Gamarra. 2020. "Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles" Molecules 25, no. 4: 765. https://doi.org/10.3390/molecules25040765
APA StyleAlvieri, F., Mamani, J. B., Nucci, M. P., Oliveira, F. A., Filgueiras, I. S., Rego, G. N. A., de Barboza, M. F., da Silva, H. R., & Gamarra, L. F. (2020). Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles. Molecules, 25(4), 765. https://doi.org/10.3390/molecules25040765