Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials
2.3. Extraction Procedure
2.4. Total Iridoids Content (TIC)
2.5. Total Phenols Content (TPC)
2.6. Total Flavonoids Content (TFC)
2.7. Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry (LC-ESI-QTOF-MS)
2.8. Antioxidant Activity
2.8.1. DPPH Radical Scavenging Activity Assay
2.8.2. ABTS Radical Scavenging Activity Assay
2.8.3. β-Carotene Bleaching Test
2.8.4. Ferric Reducing Activity Power (FRAP) Assay
2.8.5. Global Antioxidant Score (GAS) Calculation
2.8.6. Relative Antioxidant Capacity Index (RACI)
2.9. Cell Viability Assay
2.9.1. Cell Culture
2.9.2. MTT Bioassay
2.10. Measurement of Nitrite and Nitrate Concentration
2.11. In Vitro Evaluation of Hypoglycaemic Activity
2.11.1. α-Amylase Inhibitory Activity Assay
2.11.2. α-Glucosidase Inhibitory Activity Assay
2.12. Statistical Analysis
3. Results and Discussion
3.1. Effects of Extractive Methods on Extraction Yield and Phytochemical Contents
3.2. Phytochemicals Identification
3.2.1. Phenolic Acids and Phenolic Glucosides
3.2.2. Flavonoids
3.2.3. Proanthocyanidins
3.2.4. Iridoids
3.3. Antioxidant Activity
3.4. Inhibitory Effects on Nitric Oxide (NO) Production
3.5. Hypoglycaemic Activity
3.6. Correlation between Phytochemicals Content and Bioactivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Islam, M.A.; Alam, F.; Solayman, M.; Khalil, M.I.; Kamal, M.A.; Gan, S.H. Dietary phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxidative Med. Cell. Longev. 2016, 2016, 5137431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, R.; Maier, O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxidative Med. Cell. Longev. 2015, 2015, 610813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparetto, J.C.; Martins, C.A.; Hayashi, S.S.; Otuky, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. J. Pharm. Pharmacol. 2012, 64, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Abidi, E.; Habib, J.; Mahjoub, T.; Belhadj, F.; Garra, M.; Elkak, A. Chemical composition, antioxidant and antibacterial activities of extracts obtained from the roots bark of Arbutus andrachne L. a Lebanese tree. Int. J. Phytomed. 2016, 8, 104–112. [Google Scholar]
- Watzl, B. Anti-inflammatory effects of plant-based foods and of their constituents. Int. J. Vitam. Nutr. Res. 2008, 78, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, R.; Iauk, L. Natural polyphenols as anti-inflammatory agents. Front. Biosci. 2010, 2, 318–331. [Google Scholar]
- Ahh, Y.G.; Shin, J.H.; Kim, H.Y.; Khim, J.; Lee, M.K.; Hong, J. Application of solid phase extraction coupled with freezing lipid filtration clean-up for the determination of the determination of endocrine-disrupting phenols in fish. Anal. Chim. 2007, 603, 67–75. [Google Scholar]
- Co, M.; Fagerlund, A.; Engman, L.; Sunnerheim, K.; Sjoberg, P.J.R.; Turner, C. Extraction of antioxidants from Spruce (Picea abies) bark using ecofriendly solvents. Phytochem. Anal. 2012, 23, 1–11. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Abedrabba, M.; Bouix, M.; Hamdi, M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenica L. fruit extracts. Food Chem. 2007, 105, 1126–1134. [Google Scholar] [CrossRef]
- Ollanketo, M.; Peltoketo, A.; Hartonen, K.; Hiltunen, R.; Riekkola, M.L. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Activity of the extracts. Eur. Food Res. Technol. 2002, 215, 158–163. [Google Scholar] [CrossRef]
- Morgado, S.; Morgado, M.; Plácido, A.I.; Roque, F.; Duarte, A.P. Arbutus unedo L.: From traditional medicine to potential uses in modern pharmacotherapy. J. Ethnopharmacol. 2018, 225, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Maldini, M.; D’Urso, G.; Pagliuca, G.; Petretto, G.L.; Foddai, M.; Gallo, F.R.; Multari, G.; Caruso, D.; Montoro, P.; Pintore, G. HPTLC-PCA complementary to HRMS-PCA in the case study of Arbutus unedo antioxidant phenolic profiling. Foods 2019, 8, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenuta, M.C.; Tundis, R.; Xiao, J.; Loizzo, M.R.; Dugay, A.; Deguin, B. Arbutus species (Ericaceae) as source of valuable bioactive products. Crit. Rev. Food Sci. Nutr. 2018, 59, 864–881. [Google Scholar] [CrossRef] [PubMed]
- Mrabti, H.N.; El Abbes Faouzi, M.; Mayuk, F.M.; Makrane, H.; Limas-Nzouzi, N.; Dibong, S.D.; Cherrah, Y.; Elombo, F.K.; Gressier, B.; Desjeux, J.F.; et al. Arbutus unedo L., (Ericaceae) inhibits intestinal glucose absorption and improves glucose tolerance in rodents. J. Ethnopharmacol. 2019, 235, 385–391. [Google Scholar] [CrossRef]
- Oliveira, I.; Coelho, V.; Baltasar, R.; Pereira, J.A.; Baptista, P. Scavenging capacity of strawberry tree (Arbutus unedo L.) leaves on free radicals. Food Chem. Toxicol. 2009, 47, 1507–1511. [Google Scholar] [CrossRef]
- Orak, H.H.; Yagar, H.; Isbilir, S.S.; Demirci, A.Ş.; Gümüş, T.; Ekinci, N. Evaluation of antioxidant and antimicrobial potential of strawberry tree (Arbutus unedo L.) leaf. Food Sci. Biotechnol. 2011, 20, 1249–1256. [Google Scholar] [CrossRef]
- Orak, H.H.; Aktas, T.; Yagar, H.; Isbilir, S.S.; Ekinci, N.; Sahin, F.H. Effects of hot air and freeze-drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L.) fruit. Food Sci. Technol. Int. 2012, 18, 391–402. [Google Scholar] [CrossRef]
- Benayad, Z.; Martinez-Villaluenga, C.; Frias, J.; Gomez-Cordoves, C.; Es-Safi, N.E. Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind. Crops Prod. 2014, 62, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of Sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, W.; Huang, M.; Li, H.; Ye, M.; Zhang, X.; Chu, K. Qualitative and quantitative analysis of phenolic acids, flavonoids and iridoid glycosides in Yinhua Kanggan tablet by UPLC-QqQ-MS/MS. Molecules 2015, 20, 12209–12228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loizzo, M.R.; Tundis, R.; Chandrika, U.G.; Abeysekera, A.M.; Menichini, F.; Frega, N.G. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts. J. Food Sci. 2010, 75, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Amin, I.; Zamaliah, M.M.; Chin, W.F. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar]
- Leeuw, R.W.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Sun, T.; Tanumihardjo, S.A. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007, 72, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Malfa, G.A.; Tomasello, B.; Sinatra, F.; Villaggio, G.; Amenta, F.; Avola, R.; Renis, M. “Reactive” response evaluation of primary human astrocytes after methylmercury exposure. J. Neurosci. Res. 2014, 92, 95–103. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef]
- Saijo, F.; Milsom, A.B.; Bryan, N.S.; Bauer, S.M.; Vowinkel, T.; Ivanovic, M.; Andry, C.; Granger, D.N.; Rodriguez, J.; Feelisch, M. On the dynamics of nitrite, nitrate and other biomarkers of nitric oxide production in inflammatory bowel disease. Nitric Oxide 2010, 22, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Bonesi, M.; Sicari, V.; Pellicanò, T.M.; Tenuta, M.C.; Leporini, M.; Menichini, F.; Loizzo, M.R. Poncirus trifoliata (L.) Raf.: Chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J. Funct. Foods 2016, 25, 477–485. [Google Scholar] [CrossRef]
- Isbilir, S.S.; Orak, H.H.; Yagar, H.; Ekinci, N. Determination of antioxidant activities of strawberry tree (Arbutus unedo L.) flowers and fruits at different ripening stages. Acta Sci. Pol. Technol. 2012, 11, 223–237. [Google Scholar]
- Bouzid, K.; Toumi, F.B. Geoclimatic influences on the constituents and antioxidant activity of extracts from the fruit of Arbutus unedo L. Phytothérapie 2014, 12, 229–233. [Google Scholar] [CrossRef]
- Salem, I.B.; Ouesleti, S.; Mabrouk, Y.; Landolsi, A.; Saidi, M.; Boulilla, A. Exploring the nutraceutical potential and biological activities of Arbutus unedo L. (Ericaceae) fruits. Ind. Crops Prod. 2018, 122, 726–731. [Google Scholar] [CrossRef]
- Karikas, G.A. Iridoids from Arbutus unedo. Fitoterapia 1993, 64, 187–193. [Google Scholar]
- Maleš, Ž.; Plazibat, M.; Vundać, V.B.; Žuntar, I. Qualitative and quantitative analysis of flavonoids of the strawberry tree—Arbutus unedo L. (Ericaceae). Acta Pharm. 2006, 56, 245–250. [Google Scholar]
- Pawlowska, A.M.; De Leo, M.; Braca, A. Phenolics of Arbutus unedo L. (Ericaceae) fruits: identification of anthocyanins and gallic acid derivatives. J. Agric. Food Chem. 2006, 54, 10234–10238. [Google Scholar] [CrossRef]
- Alarcão-E-Silva, M.L.C.M.M.; Leitão, A.E.B.; Azinheira, H.G.; Leitão, M.C.A. The arbutus berry: Studies on its color and chemical characteristics at two mature stages. J. Food Compos. Anal. 2001, 14, 27–35. [Google Scholar] [CrossRef]
- Mendes, L.; de Freitas, V.; Baptista, P.; Carvalho, P. Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food Chem. Toxicol. 2011, 49, 2285–2291. [Google Scholar] [CrossRef]
- Sakar, M.K.; Berkman, M.Z.; Nahrstedt, A.; Albrecht, M. Flavonoids of Arbutus Andrachne L. leaves. J. Pharm. 1992, 2, 17–23. [Google Scholar]
- Su, Z. Anthocyanins and flavonoids of Vaccinium L. Pharm. Crops 2012, 3, 7–37. [Google Scholar] [CrossRef] [Green Version]
- Taneyama, M.; Yoshida, S.; Kobayashi, M.; Hasegawa, M. Isolation of norbergenin from Saxifraga stolonifera. Phytochemistry 1983, 22, 1053–1054. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Kucukislamoglu, M.; Reunanen, M. Sugar, non-volatile and phenolic acids composition of strawberry tree (Arbutus unedo L. var. ellipsoidea) fruits. J. Food Compos. Anal. 2000, 13, 171–177. [Google Scholar] [CrossRef]
- El Shibani, F.A.E.S. A Pharmacognostical Study of Arbutus pavarii Pampan. Family Ericaceae and Sarcopoterium spinosum L. Family Rosaceae Growing in Libya. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2017. [Google Scholar]
- Guendouze-Bouchefa, N.; Madani, K.; Chibane, M.; Boulekbache-Makhlouf, L.; Hauchard, D.; Kiendrebeogo, M.; Stévigny, C.; Okusa, P.N.; Duez, P. Phenolic compounds, antioxidant and antibacterial activities of three Ericaceae from Algeria. Ind. Crops Prod. 2015, 70, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Hamad, H.H.; Mariam, I.H.H.; Gonaid, H.; Mojahidul, I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. J. Nat. Prod. Plant Resour. 2011, 1, 15–23. [Google Scholar]
- Yoshida, T.; Amakura, Y.; Liu, Y.Z.; Okuda, T. Tannins and related polyphenols of euphorbiaceous plants. XI. Three new hydrolyzable tannins and a polyphenol glucoside from Euphorbia humifusa. Chem. Pharm. Bull. 1994, 42, 1803–1807. [Google Scholar]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Davini, E.; Davini, P.; Esposito, C.; Iavarone, C.T. Structure and configuration of unedide, an iridoid glucoside from Arbutus unedo. Phytochemistry 1981, 20, 1583–1585. [Google Scholar] [CrossRef]
- Pellegrini, M.; Serafini, B.; Colombi, D.; del Rio, S.; Salvatora, M.; Bianchi Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kosaka, M.; Watanabe, Y.; Nakade, K.; Fukuyama, Y. Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity. Bioorg. Med. Chem. 2003, 11, 1781–1788. [Google Scholar] [CrossRef]
- Tangmouo, J.G.; Ho, R.; Lannang, M.A.; Komguem, J.; Lontsi, A.T.; Lontsi, D.; Hostettmann, K. Norbergenin derivatives from the stem bark of Diospyros sanza-minika (Ebenaceae) and their radical scavenging activity. Phytochem. Lett. 2009, 2, 192–195. [Google Scholar] [CrossRef]
- Zamarrud; Ali, I.; Hussain, H.; Ahmad, V.U.; Qaiser, M.; Amyn, A.; Mohammad, F.V. Two new antioxidant bergenin derivatives from the stem of Rivea hypocrateriformis. Fitoterapia 2011, 82, 722–725. [Google Scholar] [CrossRef]
- Chen, J.H.; Ho, C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Masek, A.; Chrzescijanska, E.; Latos, M. Determination of antioxidant activity of caffeic acid and p-coumaric acid by using electrochemical and spectrophotometric assays. Int. J. Electrochem. Sci. 2016, 11, 10644–10658. [Google Scholar] [CrossRef]
- Sidoryk, K.; Jaromin, A.; Filipczak, N.; Cmoch, P.; Cybulski, M. Synthesis and antioxidant activity of caffeic acid derivatives. Molecules 2018, 23, 2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, S.H.; Han, S.J.; Kim, D.H. Hydrolysis of arbutin to hydroquinone by human skin bacteria and its effect on antioxidant activity. J. Cosmet. Dermatol. 2008, 7, 189–193. [Google Scholar] [CrossRef]
- Takebayashi, J.; Ishii, R.; Chen, J.; Matsumoto, T.; Ishimi, Y.; Tai, A. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radic. Res. 2010, 44, 473–478. [Google Scholar] [CrossRef]
- Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods 2014, 6, 3203–3210. [Google Scholar] [CrossRef]
- Gálvez, M.; Martin-Cordero, C.; Houghton, P.J.; Ayuso, M.J. Antioxidant activity of Plantago bellardii All. Phytother. Res. 2005, 19, 1074–1076. [Google Scholar] [CrossRef]
- Mariotto, S.; Ciampa, A.R.; Carcereri de Prati, A.; Darra, E.; Vincenzi, S.; Sega, M.; Cavalieri, E.; Shoji, K.; Suzuki, H. Aqueous extract of Arbutus unedo Inhibits STAT1 activation in human breast cancer cell line MDA-MB-231 and human fibroblasts through SHP2 activation. Med. Chem. 2008, 4, 219–228. [Google Scholar] [CrossRef]
- Bonesi, M.; Loizzo, M.R.; Acquaviva, R.; Malfa, G.A.; Aiello, F.; Tundis, R. Anti-inflammatory and antioxidant agents from Salvia genus (Lamiaceae): An assessment of the current state of knowledge. Antiinflamm. Antiallergy Agents Med. Chem. 2017, 16, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.P.; Harmon, J.; Tran, P.O.; Tanaka, Y.; Takahashi, H. Glucose toxicity in beta-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003, 52, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.; Powers, A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. Diabetes Care 2014, 37, 1751–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bnouham, M.; Merhfour, F.Z.; Ziyyat, A.; Aziz, M.; Legssyer, A.; Mekhfi, H. Antidiabetic effect of some medicinal plants of Oriental Morocco in neonatal non-insulin-dependent diabetes mellitus rats. Hum. Exp. Toxicol. 2010, 29, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Mrabti, H.N.; Sayah, K.; Jaradat, N.; Kichou, F.; Ed-Dra, A.; Belarj, B.; Cherrah, Y.; Faouzi, M.E.A. Antidiabetic and protective effects of the aqueous extract of Arbutus unedo L. in streptozotocin-nicotinamide-induced diabetic mice. J. Complement. Integr. Med. 2018, 15. [Google Scholar] [CrossRef]
A. unedo Extracts | Total Phenols Content (TPC) a | Total Flavonoids Content (TFC) b | Total Iridoids Content (TIC) c |
---|---|---|---|
Leaves | |||
FL1 | 305.87 ± 1.74 | 178.67 ± 1.5 | 105.01 ± 0.75 |
FL2 | 173.33 ± 1.20 | 87.07 ± 1.02 | 102.70 ± 0.72 |
FL3 | 376.01 ± 1.93 | 153.62 ± 1.80 | 115.33 ± 0.63 |
FL4 | 298.67 ± 2.50 | 99.87 ± 0.62 | 211.31 ± 1.31 |
FL5 | 320.21 ± 3.24 | 137.33 ± 1.41 | 220.14 ± 1.02 |
DL1 | 272.67 ± 2.20 | 152.02 ± 1.52 | 118.15 ± 1.26 |
DL2 | 329.33 ± 2.32 | 98.01 ± 1.20 | 170.67 ± 2.05 |
DL3 | 290.66 ± 1.90 | 83.73 ± 1.11 | 116.22 ± 1.25 |
DL4 | 187.73 ± 1.44 | 99.21 ± 1.23 | 102.03 ± 1.23 |
DL5 | 252.12 ± 1.74 | 190.04 ± 1.24 | 135.30 ± 1.21 |
Fruits | |||
FF1 | 39.93 ± 0.41 | 26.07 ± 0.11 | 119.33 ± 1.30 |
FF2 | 40.06 ± 0.35 | 29.13 ± 0.20 | 104.67 ± 1.02 |
FF3 | 34.53 ± 0.44 | 25.13 ± 0.34 | 104.11 ± 1.23 |
FF4 | 35.87 ± 0.53 | 25.22 ± 0.23 | 158.67 ± 1.60 |
FF5 | 35.02 ± 0.55 | 26.61 ± 0.2 | 108.21 ± 1.24 |
DF1 | 82.20 ± 1.03 | 27.73 ± 0.22 | 147.33 ± 1.20 |
DF2 | 42.27 ± 0.21 | 26.02 ± 0.31 | 176.66 ± 1.93 |
DF3 | 81.73 ± 1.15 | 26.86 ± 0.20 | 116.61 ± 1.20 |
DF4 | 39.27 ± 0.64 | 27.27 ± 0.23 | 166.22 ± 1.01 |
DF5 | 36.13 ± 0.73 | 26.13 ± 0.13 | 195.30 ± 1.92 |
Compound | Rt (min) | Molecular Formula | MH+/ MNa+ | Error (ppm) | Score (%) | MS fragment (m/z) | UV λ (nm) | Fresh Leaves | Dried Leaves | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FL1 | FL2 | FL3 | FL4 | FL5 | DL1 | DL2 | DL3 | DL4 | DL5 | |||||||||
Phenolic acids | ||||||||||||||||||
Anisic acid | 1.4 | C8H8O3Na | 175.0389 | 1.2 | 95 | 283 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [42] | |
Caffeic acid | 5.5 | C9H8O4 | 181.0498 | 0.4 | 100 | 238, 322 | √ | √ | [43] | |||||||||
Ellagic acid | 12.1 | C14H6O8 | 303.0136 | 0.8 | 100 | 255, 365 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [44] | |
Ellagic acid 4-O-β-D-glucopyranoside | 10.1 | C20H16O13 | 465.0659 | 0.7 | 100 | 303.0136 | 256, 348 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [46] |
Ferulic acid | 1.7 | C10H10O4 | 195.0652 | 2.1 | 100 | 325 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [45] | |
Gallic acid | 3.2 | C7H6O5 | 171.0287 | 0.3 | 100 | 217, 271 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [42] | |
Galloyl quinic acid (3-O- or 5-O-) | 3.9 | C14H16O10 | 345.0814 | 0.3 | 98 | Nd | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [36] | |
Quinic acid | 0.9 | C7H12O6 | 193.0706 | 0.5 | 100 | - | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [43] | |
Shikimic acid gallate (3-O- or 5-O-) | 7.1 | C14H14O9 | 327.0711 | 0.7 | 100 | 174.1350 | 215, 277 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [36] |
Syringic acid | 10.6 | C9H10O5 | 199.0601 | 0.1 | 100 | 273 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [44] | |
Flavonoids | ||||||||||||||||||
Afzelin | 14.4 | C21H20O10 | 433.1131 | 0.1 | 100 | 287.0550 | 265, 301, 347 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [44] |
Catechin | 9.4 | C15H14O6 | 291.0866 | 1.2 | 100 | 280 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] | |
Isovitexin 7-O-glucoside | 12.9 | C27H30O15 | 595.1658 | 0.1 | 100 | 432.3768 | 265, 330 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [43] |
Kaempferol | 14.2 | C15H10O7 | 287.0550 | 0.1 | 100 | 254, 365 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] | |
Kaempferol 3-O-glucoside | 13.2 | C21H20O11 | 449.1077 | 0.3 | 100 | 287.0488 | 264, 347 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [40] |
Myricetin 3-O-xyloside | 12.4 | C20H18O12 | 451.0752 | 0.5 | 100 | 319.0435 | 255, 373 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] |
Naringenin 7-O-glucoside | 12.4 | C21H22O10 | 435.1257 | 0.2 | 100 | 273.5640 | 283, 332 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [43] |
Norbergenin | 9.2 | C13H14O9 | 315.0710 | 0.5 | 100 | 222, 289 | √ | √ | [41] | |||||||||
Rutin | 12.4 | C27H30O16 | 611.1612 | 0.2 | 100 | 303.0499 | 253, 352 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] |
Hyperoside(*) | 12.8 | C21H20O12 | 465.1031 | 0.8 | 100 | 303.0499 | 254, 353 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] |
Isoquercitrin(*) | 12.8 | C21H20O12 | 465.1031 | 0.8 | 100 | 303.0499 | 253, 353 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] |
Myricetin | 12.6 | C15H10O8 | 319.0446 | 0.1 | 100 | 255, 375 | √ | √ | √ | [45] | ||||||||
Myricetin 3-O-rhamnopyranoside(*) | 12.7 | C21H20O12 | 465.1031 | 0.4 | 100 | 319.0389 | 253, 365 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [39] |
Quercetin 3-O-arabinoside(**) | 13.4 | C20H18O11 | 435.7749 | 0.3 | 100 | 303.0499 | 253, 353 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [39] |
Quercetin 3-O-xyloside(**) | 13.5 | C20H18O11 | 435.7749 | 0.3 | 100 | 303.0499 | 254, 356 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] |
Quercitrin | 13.6 | C21H20O11 | 449.1079 | 0.7 | 100 | 303.0499 | 254, 356 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] |
Proanthocyanidins | ||||||||||||||||||
Gallocatechin | 6.8 | C15H14O7 | 307.0811 | 2.9 | 89 | 271 | √ | √ | √ | √ | √ | [47] | ||||||
Epicatechin-4,6-catechin(***) | 9.5 | C30H26O12 | 579.1495 | 0.1 | 100 | 291.0851 | 280 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] |
Epicatechin-4,8-epicatechin(***) | 11.8 | C30H26O12 | 579.1492 | 0.3 | 100 | 291.0851 | 280 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] |
Iridoids | ||||||||||||||||||
Asperuloside | 1.8 | C18H22O11 | 415.1214 | 4.4 | 84 | 239 | √ | √ | √ | [34] | ||||||||
Gardenoside | 5.9 | C17H24O11 | 405.1391 | 0.5 | 96 | 237 | √ | √ | √ | √ | √ | √ | √ | √ | [34] | |||
Geniposide | 10.5 | C17H24O10 | 389.1447 | 0.8 | 98 | 239 | √ | √ | [34] | |||||||||
Stilbericoside | 15.7 | C14H20O10 | 349.1129 | 0.1 | 99 | Nd | √ | [48] | ||||||||||
Unedide | 1.2 | C16H24O12 | 409.1340 | 0.4 | 100 | Nd | √ | √ | √ | √ | √ | √ | [48] | |||||
Unedoside | 11.2 | C14H20O10 | 333.0819 | 0.4 | 95 | Nd | √ | √ | [48] | |||||||||
Phenolic glucosides | ||||||||||||||||||
Arbutin | 1.8 | C12H16O7Na | 295.0793 | 0.8 | 96 | 230, 282 | √ | √ | [44] | |||||||||
p-hydroxybenzoic acid glucuronide | 9.8 | C13H14O9 | 315.0712 | 0.5 | 94 | 253 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [42] |
Compound | Rt (min) | Molecular Formula | MH+/ MNa+ | Error (ppm) | Score (%) | MS Fragment (m/z) | UV λ (nm) | Fresh Fruits | Dried Fruits | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FF1 | FF2 | FF3 | FF4 | FF5 | DF1 | DF2 | DF3 | DF4 | DF5 | |||||||||
Phenolic acids | ||||||||||||||||||
Anisic acid | 1.4 | C8H8O3Na | 175.039 | 1.2 | 95 | 283 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [42] | |
Ellagic acid 4-O-β-D-glucopyranoside | 10.1 | C20H16O13 | 465.066 | 0.7 | 100 | 303.0136 | 256, 348 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [46] |
Ferulic acid | 1.7 | C10H10O4 | 195.065 | 2.1 | 100 | 325 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [45] | |
Gallic acid | 3.2 | C7H6O5 | 171.029 | 0.3 | 100 | 217, 271 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [42] | |
Galloyl quinic acid (3- O- or 5-O-) | 3.9 | C14H16O10 | 345.081 | 0.3 | 98 | Nd | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [36] | |
Protocatechuic acid | 6.2 | C7H6O4 | 155.035 | 1.8 | 100 | 290 | √ | √ | √ | √ | [42] | |||||||
Quinic acid | 0.9 | C7H12O6 | 193.071 | 0.5 | 100 | - | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [43] | |
Shikimic acid gallate (3-O- or 5-O-) | 7.1 | C14H14O9 | 327.071 | 0.7 | 100 | 215, 277 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [36] | |
Syringic acid | 10.6 | C9H10O5 | 199.060 | 0.1 | 100 | 218, 273 | √ | √ | √ | [44] | ||||||||
Flavonoids | ||||||||||||||||||
Catechin | 9.4 | C15H14O6 | 291.087 | 1.2 | 100 | 280 | √ | [47] | ||||||||||
Hyperoside (*) | 12.8 | C21H20O12 | 465.103 | 0.8 | 100 | 303.0499 | 213,278, 350 | √ | √ | √ | √ | √ | [35] | |||||
Isoquercitrin (*) | 12.8 | C21H20O12 | 465.103 | 0.8 | 100 | 303.0499 | 213,253, 353 | √ | √ | √ | √ | √ | [35] | |||||
Myricetin | 12.6 | C15H10O8 | 319.045 | 0.1 | 100 | 220,255, 375 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [45] | |
Myricetin 3-O-rhamnopyranoside (*) | 12.7 | C21H20O12 | 465.103 | 0.4 | 100 | 319.0389 | 219,253, 365 | √ | √ | √ | √ | √ | [39] | |||||
Quercetin 3-O-arabinoside (**) | 13.4 | C20H18O11 | 435.775 | 0.3 | 100 | 303.0499 | 213,253, 353 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [39] |
Quercetin 3-O-xyloside (**) | 13.5 | C20H18O11 | 435.775 | 0.3 | 100 | 303.0499 | 213,254, 356 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [47] |
Quercitrin | 13.6 | C21H20O11 | 449.108 | 0.7 | 100 | 303.0499 | 213,254, 356 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] |
Iridoids | ||||||||||||||||||
Asperuloside | 1.8 | C18H22O11 | 415.121 | 4.4 | 84 | 239 | √ | [34] | ||||||||||
Stilbericoside | 15.7 | C14H20O10 | 349.113 | 0.1 | 99 | Nd | √ | √ | √ | √ | √ | √ | [48] | |||||
Unedide | 1.2 | C16H24O12 | 409.134 | 0.4 | 100 | Nd | √ | √ | √ | √ | √ | [48] |
A. unedo | ABTS Test IC50 (μg/mL) | DPPH Test IC50 (μg/mL) | FRAP Test IC50 (μM Fe (II)/g) | β-Carotene Bleaching Test IC50 (μg/mL) | |
---|---|---|---|---|---|
Leaves | 30 min | 60 min | |||
FL1 | 6.82 ± 0.61 **** | 6.89 ± 0.70 **** | 94.20 ± 3.56 | 63.68 ± 2.06 **** | 8.87 ± 0.28 **** |
FL2 | 7.01 ± 0.72 **** | 7.88 ± 0.85 **** | 83.03 ± 2.50 | 13.19 ± 1.01 **** | 32.71 ± 1.03 **** |
FL3 | 1.16 ± 0.02 | 14.86 ± 1.15 **** | 17.98 ± 1.77 **** | 31.21 ± 1.34 **** | 46.03 ± 1.04 **** |
FL4 | 7.50 ± 0.75 **** | 7.88 ± 0.64 **** | 91.82 ± 3.83 | 27.92 ± 1.02 **** | 12.82 ± 1.01 *** |
FL5 | 8.22 ± 0.80 **** | 6.89 ± 0.83 **** | 84.42 ± 2.78 | 41.06 ± 2.04 **** | 7.94 ± 0.71 **** |
DL1 | 0.39 ± 0.03 | 3.94 ± 0.04 *** | 17.95 ± 1.96 **** | 1.85 ± 0.02 | 4.09 ± 0.43 *** |
DL2 | 0.42 ± 0.04 | 0.98 ± 0.09 | 32.78 ± 2.44 **** | 3.21 ± 0.03 | 4.28 ± 0.61 *** |
DL3 | 1.51 ± 0.21 * | 3.94 ± 0.03 *** | 24.88 ± 1.96 **** | 8.22 ± 0.81 **** | 10.75 ± 0.66 *** |
DL4 | 0.78 ± 0.08 | 27.83 ± 1.45 **** | 32.49 ± 2.78 **** | 13.38 ± 1.42 **** | 12.63 ± 1.16 *** |
DL5 | 1.30 ± 0.09 * | 24.83 ± 1.13 **** | 32.56 ± 3.92 **** | 36.74 ± 1.63 **** | 13.10 ± 0.83 **** |
Fruits | |||||
FF1 | 51.30 ± 2.55 **** | 69.07 ± 2.07 **** | 25.70 ± 1.12 **** | 32.68% a | 31.77% a |
FF2 | 38.02 ± 1.30 **** | 47.15 ± 1.04 **** | 35.76 ± 2.13 **** | 41.13% a | 45.78% a |
FF3 | 1.93 ± 0.54 | 67.19 ± 1.05 **** | 24.74 ± 1.67 **** | 27.08 ± 2.54 **** | 28.39 ± 1.89 **** |
FF4 | 54.62 ± 4.81 **** | 56.81 ± 1.02 **** | 32.08 ± 2.77 **** | 186.42 ± 10.22 **** | 198.44 ± 15.01 **** |
FF5 | 50.07 ± 2.52 ***** | 70.94 ± 2.07 **** | 20.55 ± 2.55 **** | 98.76 ± 5.30 **** | 46.45% a |
DF1 | 3.90 ± 1.98 ** | 61.93 ± 2.70 **** | 24.04 ± 1.78 **** | 2.54 ± 0.35 * | 4.81 ± 1.23 *** |
DF2 | 1.93 ± 0.96 | 53.06 ± 1.29 **** | 35.31 ± 2.09 **** | 19.29 ± 1.45 **** | 21.92 ± 2.54 **** |
DF3 | 2.32 ± 1.56 * | 32.21 ± 2.45 **** | 30.64 ± 2.08 **** | 74.94 ± 3.64 **** | 82.45 ± 3.64 **** |
DF4 | 1.16 ± 0.35 | 49.12 ± 1.45 **** | 39.59 ± 3.05 **** | 25.11 ± 2.58 **** | 29.52 ± 2.47 **** |
DF5 | 4.30 ± 2.36 *** | 60.94 ± 5.23 **** | 24.60 ± 2.27 **** | 39.09 ± 3.65 **** | 48.01 ± 1.36 **** |
Positive control | |||||
Ascorbic acid | 1.70 ± 0.21 | 5.03 ± 0.80 | |||
BHT | 63.20 ± 4.31 | ||||
Propyl gallate | 1.01 ± 0.01 | 1.02 ± 0.01 |
A. unedo | α-Amylase | α-Glucosidase |
---|---|---|
Leaves | ||
FL1 | 63.43 ± 1.68 | 232.73 ± 6.49 **** |
FL2 | 191.56 ± 2.58 **** | 31.38 ± 0.24 |
FL3 | 222.22 ± 3.67 **** | 162.66 ± 5.47 **** |
FL4 | 329.07 ± 4.58 **** | 267.76 ± 6.36 **** |
FL5 | 291.41 ± 10.36 **** | 19.56 ± 0.22 |
DL1 | 269.51 ± 6.57 **** | 379.00 ± 2.14 **** |
DL2 | 683.80 ± 9.44 **** | 146.89 ± 3.68 **** |
DL3 | 125.87 ± 2.39 **** | 125.00 ± 6.31 **** |
DL4 | 297.54 ± 3.69 **** | 193.31 ± 4.59 **** |
DL5 | 592.71 ± 4.57 **** | 201.20 ± 2.14 **** |
Fruits | ||
FF1 | 20.30% a | 181.05 ± 9.68 **** |
FF2 | 258.13 ± 12.36**** | 28.42 ± 0.82 |
FF3 | 35.14% a | 215.21 ± 6.57 **** |
FF4 | 22.83% a | 423.77 ± 5.34 **** |
FF5 | 27.18% a | 40.25 ± 0.79 |
DF1 | 107.51 ± 9.15 **** | 255.50 ± 7.89 **** |
DF2 | 146.51 ± 8.98 **** | 316.81 ± 9.68 **** |
DF3 | 295.14 ± 3.02 **** | 456.23 ± 2.56 **** |
DF4 | 77.51 ± 1.08 ** | 151.27 ± 4.63 **** |
DF5 | 120.58 ± 3.48 **** | 239.73 ± 6.58 **** |
Positive control | ||
Acarbose | 50.01 ± 1.43 | 35.50 ± 1.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenuta, M.C.; Deguin, B.; Loizzo, M.R.; Dugay, A.; Acquaviva, R.; Malfa, G.A.; Bonesi, M.; Bouzidi, C.; Tundis, R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants 2020, 9, 184. https://doi.org/10.3390/antiox9020184
Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, Bonesi M, Bouzidi C, Tundis R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants. 2020; 9(2):184. https://doi.org/10.3390/antiox9020184
Chicago/Turabian StyleTenuta, Maria Concetta, Brigitte Deguin, Monica Rosa Loizzo, Annabelle Dugay, Rosaria Acquaviva, Giuseppe Antonio Malfa, Marco Bonesi, Chouaha Bouzidi, and Rosa Tundis. 2020. "Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L." Antioxidants 9, no. 2: 184. https://doi.org/10.3390/antiox9020184
APA StyleTenuta, M. C., Deguin, B., Loizzo, M. R., Dugay, A., Acquaviva, R., Malfa, G. A., Bonesi, M., Bouzidi, C., & Tundis, R. (2020). Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants, 9(2), 184. https://doi.org/10.3390/antiox9020184