Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review
Abstract
:1. Introduction
2. Biogeographic Context of Plants and Comparative Analysis
3. Diversity and Consumption of Quelites from Mexico
4. Composition of Edible Stems, Leaves and Flowers of Quelites from Mexico
4.1. Nutritional Composition
4.2. Antioxidant Compounds
4.3. Methods and Techniques for the Determination of Compounds
5. Antioxidant Compounds and Health
5.1. Diabetes
5.2. Cancer
5.3. Obesity and Gastrointestinal Disorder
5.4. Other Disorders
6. Antibacterial and Antifungal Activity of Quelite Extracts
7. Remarks and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Crops Statistics 2018; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 May 2020).
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 11, 4001–4006. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low- and middle-income countries. Nutr. Rev. 2017, 75, 769–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachat, C.; Raneri, J.E.; Smith, K.W.; Kolsteren, P.; Van Damme, P.; Verzelen, K.; Penafiel, D.; Vanhover, W.; Kennedy, G.; Hunter, D.; et al. Dietary specie richness as a measure of food biodiversity and nutrition quality of diets. Proc. Natl. Acad. Sci. USA 2018, 15, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019; p. 212. [Google Scholar]
- Van Rensburg, W.S.J.; Venter, S.L.; Netshiluvhi, T.R.; van der Heever, E.; Vorster, H.J.; de Ronde, J.A. Role of indigenous leafy vegetables in combating hunger and malnutrition. S. Afr. J. Bot. 2004, 70, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Ngome, P.I.T.; Shackleton, C.; Degrande, A.; Tieguhong, J.C. Addressing constraints in promoting wild edible plants’ utilization in household nutrition: Case of the Congo Basin forest area. Agric. Food Secur. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.P.; Peroni, N.; Albuquerque, U.P. Knowledge, use and management of native wild edible plants from a seasonal dry forest (NE, Brazil). J. Ethnobiol. Ethnomed. 2013, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [Green Version]
- Pardo-de-Santayana, M.; Tardío, J.; Blanco, E.; Carvalho, A.M.; Lastra, J.J.; San Miguel, E.; Morales, R. Traditional knowledge of edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): A comparative study. J. Ethnobiol. Ethnomed. 2007, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Mavengahama, S.; McLachlan, M.; de Clercq, W. The role of wild vegetable species in household food security in maize based subsistence cropping systems. Food Sec. 2013, 5, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Støen, M.; Moe, S.R.; Camargo-Ricalde, S.L. Home gardens sustain crop diversity and improve farm resilience in Candelaria Loxicha, Oaxaca, Mexico. Hum. Ecol. 2009, 37, 55–77. [Google Scholar] [CrossRef]
- Balcázar-Quiñones, A.; White-Olascoaga, L.; Chávez-Mejía, C.; Zepeda-Gómez, C. The edible tender plants species richness and traditional knowledge in the Otomí community of San Pedro Arriba, Temoaya, State of Mexico. Polibotanica 2020, 48, 219–242. [Google Scholar]
- Ranhotra, G.S.; Gelroth, J.A.; Leinen, S.D.; Viñas, M.A.; Lorenz, K.J. Nutritional profile of some edible plants from Mexico. J. Food Comps. Anal. 1998, 11, 298–304. [Google Scholar] [CrossRef]
- Bordoloi, M.; Bordoloi, P.K.; Dutta, P.P.; Singh, V.; Nath, S.; Nazary, B.; Bhuyan, P.D.; Rao, P.G.; Barua, I.C. Studies on some edible herbs: Antioxidant activity, phenolic content, mineral content and antifungal properties. J. Funct. Foods 2016, 23, 220–229. [Google Scholar] [CrossRef]
- Hoidal, N.; Diaz-Gallardo, M.; Jacobsen, S.-E.; Alandia, G. Amaranth as a dual-use crop for leafy greens and seeds: Stable responses to leaf harvest across genotypes and environments. Front. Plant Sci. 2019, 10, 817. [Google Scholar] [CrossRef]
- Mapes, C.; Basurto, F. Biodiversity and edible plants of Mexico. In Ethnobotany of Mexico, Interactions of People and Plants in Mesoamerica; Lira, R., Casas, A., Blancas, J., Eds.; Springer Nature: New York, NY, USA, 2016; pp. 83–131. [Google Scholar]
- Flyman, M.V.; Aflayan, A.J. The suitability of wild vegetables for alleviating human dietary deficiencies. S. Afr. J. Bot. 2006, 72, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Sáenz, Y.O.; Hernández-Fuentes, A.D.; López-Palestina, C.U.; Garrido-Cauich, J.H.; Alatorre-Cruz, J.M.; Monroy-Torres, R. Importancia nutricional y actividad biológica de los compuestos bioactivos de quelites consumidos en México. Rev. Chil. Nutr. 2019, 46, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Guil-Guerrero, J.L. The safety of edible wild plants: Fuller discussion may be needed. J. Food Comps. Anal. 2014, 35, 18–20. [Google Scholar] [CrossRef]
- Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, J.L.; Espinosa-García, F. The alien flowering plants of Mexico. Divers. Distrib. 2004, 10, 113–123. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattazio, V.; Martens, S. Plan phenolic: Recent advances on their biosynthesis, genetics and ecophysiology. Plant. Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Panafiel, D.; Lachat, C.; Espinel, R.; van Damme, P.; Kolsteren, P. A systematic review on the contribution of edible plant and animal biodiversity to human diets. EcoHealt 2011, 8, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Boege, E. El patrimonio Biocultural de los Pueblos Indígenas de México: Hacia la Conservación in situ de la Biodiversidad y Agrobiodiversidad en los Territorios Indígenas [Biocultural Heritage of the Indigenous Communities of Mexico: Forward in situ Conservation of the Biodiversity and Agrobiodiversity in the Indigenous Territory]; Instituto Nacional de Antropología e Historia, Comisión Nacional para el Desarrollo de los Pueblos Indígenas: Mexico City, Mexico, 2010; p. 342.
- Mora-Olivo, A.; Hurtado-González, M.; Gaona-García, G.; Treviño-Carreón, J. Chochas: Las flores comestibles del desierto [Chochas: Edible flower from the desert]. CienciasUAT 2009, 4, 10–13. [Google Scholar]
- Falkowski, T.B.; Chankin, A.; Diemon, S.A.W.; Pedian, R.W. More than just corn and calories: A comprehensive assessment of the yield and nutritional content of a traditional Lacandon Maya milpa. Food Secur. 2019, 11, 389–404. [Google Scholar] [CrossRef]
- Varo-Rodríguez, R.D.; Ávila-Akerber, V.D.; Gheno-Heredia, Y.A. Traditional use of phytodiversity of Pinus hartwegii forests in two Mexican high mountain communities. Cladasia 2019, 41, 327–342. [Google Scholar] [CrossRef]
- Mascorro-de Loera, R.D.; Ferguson, B.G.; Perales-Rivera, H.R.; Charbonnier, F. Herbicides in the milpa: Application strategies and their impact on weed consumption. Ecosist. Recur. Agropec. 2019, 6, 477–486. [Google Scholar]
- Basurto-Peña, F.; Martínez-Alfaro, M.A.; Villalobos-Contreras, G. Los quelites de la Sierra Norte de Puebla, México: Inventario y formas de preparación. Bol. Soc. Bot. Mex. 1998, 62, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-García, V.; Godínez-Guevara, L.; Montes-Estrada, M.; Montes-Estrada, M.; Ortíz-Gómez, A.S. The quelites of Uxhuapan, Veracruz: Availability, supply and consumption. Agrociencia 2004, 38, 445–455. [Google Scholar]
- Rangel-Landa, S.; Casas, A.; Rivera-Lozoya, E.; Torres-García, I.; Vallejo-Ramos, M. Ixcatec ethnoecology: Plant management and biocultural heritage in Oaxaca, Mexico. J. Ethnobiol. Ethnomed. 2016, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Castillon, E.; Garza-López, M.; Villareal-Quintanilla, J.A.; Salinas-Rodríguez, M.M.; Soto-Mata, B.E.; González-Rodríguez, H.; González-Uribe, D.U.; Cantú-Silva, I.; Carrillo-Parra, A.; Cantú-Ayala, C. Ethnobotany in Rayones Nuevo Leon, Mexico. J. Ethnobiol. Ethnomed. 2014, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pérez, A.; López, P.A.; Gil-Muñoz, A.; Cuevas-Sánchez, A. Useful and relevant wild plants identified in the Mixteca Poblana, Mexico. Act. Bot. Mex. 2012, 98, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Quiñones, E.; Roldán-Toriz, J.; Sotelo-Ortiz, B.E.; Ballinas-Díaz, J.; López-Zúñiga, E.J. Plantas comestibles no convencionales de Chiapas, México [Edible plants non-conventional of Chiapas, Mexico]. Rev. Salud Pub. Nutr. 2009, 10, 2. Available online: https://www.medigraphic.com/pdfs/revsalpubnut/spn-2009/spn092g.pdf (accessed on 9 May 2020).
- Ortiz-Sánchez, A.; Monroy-Ortiz, C.; Romero-Manzanares, A.; Luna-Cavazos, M.; Catillo-España, P. Multipurpose functions of home gardens for family subsistence. Bot. Sci. 2015, 93, 791–806. [Google Scholar] [CrossRef] [Green Version]
- Luna-José, A.L.; Rendón-Aguilar, B. Recursos vegetales útiles en diez comunidades de la Sierra Madre del Sur, Oaxaca, México [Plant resources useful in ten communities from the Sierra Madre del Sur, Oaxaca, Mexico]. Polibotánica 2008, 26, 193–242. [Google Scholar]
- Kidane, B.; van der Maesen, L.J.G.; Asfaw, Z.; Sosef, M.S.M.; van Andel, T. Wild and semi-wild leafy vegetables used by the Naale and Ari ethnic communities in southern Ethiopia. Genet. Resour. Crop Evol. 2015, 62, 221–234. [Google Scholar] [CrossRef]
- Galvez-Mariscal, A.; Peña-Montes, C. Evaluation of the Mexican traditional diet: An interdisciplinary overview. Revista Digital Universitaria-UNAM 2015, 16, 2–17. [Google Scholar]
- Gutierrez, D.; Mendoza, S.; Serrano, V.; Bah, M.; Pelz, R.; Balderas, P.; Leon, F. Proximate composition, mineral content, and antioxidant properties of 14 Mexican weeds used as fodder. Weed Biol. Manag. 2008, 8, 291–296. [Google Scholar] [CrossRef]
- Adebooye, O.C.; Vijayalakshmi, R.; Singh, V. Peroxidase activity, chlorophylls and antioxidant profile of two leaf vegetables (Solanum nigrum L. and Amaranthus cruentus L.) under six pretreatment methods before cooking. Int. J. Food Sci. Technol. 2008, 43, 173–178. [Google Scholar] [CrossRef]
- Kalinova, J.; Dadakova, E. Rutin and total quercetin content in amaranth (Amaranthus spp.). Plant Foods Hum. Nutr. 2009, 64, 68–74. [Google Scholar] [CrossRef]
- Barrón-Yánez, M.R.; Villanueva-Verduzco, C.; García-Mateos, M.R.; Colinas-León, M.T. Nutrient value and saponi content of huauzontle (Chenopodium nuttalliae Saff.), zucchini (Cucurbita pepo L.), canola (Brassica napus L.) and amaranto (Amaranthus leucocarpus S. Watson syn. hypochondriacus L.) sprouts. Rev. Chapingo Ser. Hort. 2009, 15, 237–243. [Google Scholar]
- Ibarra-Alvarado, C.; Rojas, A.; Mendoza, S.; Bah, M.; Gutiérrez, D.M.; Hernández-Sandoval, L.; Martínez, M. Vasoactive and antioxidant activities of plants used in Mexican traditional medicine for the treatment of cardiovascular diseases. Pharm. Biol. 2010, 48, 732–739. [Google Scholar] [CrossRef]
- Castro-Lara, D.; Basurto-Peña, F.; Mera-Ovando, L.M.; Bye-Boettler, R.A. Los Quelites, Tradición Milenaria en México [The Quelites, Ancient Tradition in Mexico]; Universidad Autónoma Chapingo: Texcoco, Mexico, 2011; p. 36. [Google Scholar]
- Khan, M.A.; Humaira, I.; Haroon, K.; Mohammmad, S.; Ikhtair, K.; Rahman, I. Antimicrobial activities of the whole plant of Cestrum nocturnum against pathogenic microorganisms. Afr. J. Microbiol. Res. 2011, 5, 612–616. [Google Scholar]
- López-Mejía, O.A.; López-Malo, A.; Palou, E. Antioxidant capacity of extracts from amaranth (Amaranthus hypochondriacus L.) seeds or leaves. Ind. Crop. Prod. 2014, 53, 55–59. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Comps. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Evaluation of minerals, phytochemical compounds and antioxidant activity of Mexican, Central American, and African green leafy vegetables. Plant Foods Hum. Nutr. 2015, 70, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Salome-Abarca, L.F.; Cruz-Cruz, E.; Leyva-Vasquez, A.; Damian-Nava, A.; Palemon, F.A.; Hernández-Castro, E.; Vargas-Álvarez, A.; Sánchez-Cabañas, J.N. Biochemical characterization, antioxidant and antibacterial activity of aromatic plants from Guerrero, Mexico. Weber Medic. Plant Res. 2015, 1, 239–246. Available online: https://www.weberpub.org/wmpr/wmpr_138.pdf (accessed on 5 May 2020).
- Velázquez-Ibarra, A.M.; Covarrubias-Prieto, J.; Ramírez-Pimentel, J.G.; Aguirre-Mancilla, C.L.; de la Fuente, G.I.; Raya-Pérez, J.C. Nutritional quality of Mexican quelites (Green leafy). Ciencia Tecnol. Agrop. México 2016, 4, 1–9. [Google Scholar]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Guerrero-Beltrán, J.Á. Supercritical extraction of essential oils of Piper auritum and Porophyllum ruderale. J. Supercrit. Fluids 2017, 127, 97–102. [Google Scholar] [CrossRef]
- Román-Cortés, N.R.; García-Mateos, R.M.; Castillo-González, A.M.; Sahagún-Castellanos, J.; Jiménez-Arellanes, M.A. Características nutricionales y nutracéuticas de hortalizas de uso ancestral en México. Rev. Fitotec. Mex. 2018, 41, 245–253. [Google Scholar] [CrossRef]
- Santiago-Saenz, Y.O.; Hernández-Fuentes, A.D.; Monroy-Torres, R.; Cariño-Cortés, R.; Jiménez-Alvarado, R. Physicochemical, nutritional and antioxidant characterization of three vegetables (Amaranthus hybridus L., Chenopodium berlandieri L., Portulaca oleracea L.) as potential sources of phytochemicals and bioactive compounds. J. Food Meas. Charact. 2018, 12, 2855–2864. [Google Scholar] [CrossRef]
- Akubugwo, I.E.; Obasi, N.A.; Chinyere, G.C.; Ugbogu, A.E. Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. Afr. J. Biotechnol. 2007, 6, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Bressani, R. World Need for Improved Nutrition and the Role of Vegetables and Legumes; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1983; p. 22. [Google Scholar]
- Nwaogu, L.A.; Ujowundu, C.O.; Mgbemena, A.I. Studies on the nutritional and phytochemical composition of Amaranthus hybridus leaves. Bio-Research 2006, 4, 28–31. [Google Scholar] [CrossRef]
- Manzanero-Medina, G.I.; Pérez-Herrera, A.; Lustre-Sánchez, H.; Vásquez-Dávila, M.A.; Santos-Sánchez, N.F.; Sánchez-Medina, M.A. Ethnobotanical and nutritional study of quelites sold in two traditional markets of Oaxaca, Mexico. BioRxiv 2018, Article ID 453225. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa-Ruano, N.; Pacheco-Hernández, Y.; Cruz-Durán, R.; Lozoya-Gloria, E.; Betancourt-Jiménez, M.G. Seasonal variation in phytochemicals and nutraceutical potential of Begonia nelumbiifolia consumed in Puebla, México. J. Food Sci. Technol. 2017, 54, 1484–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, G.U.; Hwang, I.W.; Chung, S.K. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chem. 2016, 199, 612–618. [Google Scholar] [CrossRef]
- Szymańska, R.; Kruk, J. γ-Tocopherol dominates in young leaves of runner bean (Phaseolus coccineus) under a variety of growing conditions: The possible functions of γ-tocopherol. Phytochemistry 2008, 69, 2142–2148. [Google Scholar] [CrossRef]
- Ibarra-Estrada, E.; Téllez-Morales, R.; Soto-Hernández, M.; Martínez-Vázquez, M.; García-Mateos, R.; San San Miguel-Chávez, R. In vitro antifungal activity of erysovine. Rev. Fitotec. Mex. 2009, 32, 327–330. [Google Scholar]
- Rambo, D.F.; Biegelmeyer, R.; Toson, N.S.; Dresch, R.R.; Moreno, P.R.H.; Henriques, A.T. The genus Erythrina L.: A review on its alkaloids, preclinical, and clinical studies. Phytother. Res. 2019, 33, 1258–1276. [Google Scholar] [CrossRef]
- Lazo-Vélez, M.A.; Guajardo-Flores, D.; Mata-Ramírez, D.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O. Characterization and quantitation of triterpenoid saponins in raw and sprouted Chenopodium berlandieri spp. (Huauzontle) grains subjected to germination with or without selenium stress conditions. J. Food Sci. 2016, 81, C19–C26. [Google Scholar] [CrossRef]
- Gülcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compost. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Juraimi, A.S.; Rafii, M.Y.; Abdul, H.A.; Aslani, F.; Hasan, M.M.; Mohd, Z.M.; Uddin, M. Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. Biomed. Res. Int. 2014, Article ID 296063, 10 pages. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, Article ID 126621. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Gómez, M.; Figueroa-Pérez, M.G.; Guzmán-Maldonado, H.; Loarca-Piña, G.; Mendoza, S.; Quezada-Tristán, T.; Reynoso-Camacho, R. Phytochemical profile, antioxidant properties and hypoglycemic effect of chaya (Cnidoscolus chayamansa) in Stz-induced diabetic rats. J. Food Biochem. 2017, 41, 1–9. [Google Scholar] [CrossRef]
- Jesus, R.S.; Piana, M.; Freitas, R.B.; Brum, T.F.; Alves, C.F.S.; Belke, B.V.; Mossmann, N.J.; Cruz, R.C.; Santos, R.C.V.; Dalmolin, T.V.; et al. In vitro antimicrobial and antimycobacterial activity and HPLC–DAD screening of phenolics from Chenopodium ambrosioides L. Braz. J. Microb. 2019, 49, 296–302. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Juárez-Reyes, K.; Brindis, F.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Bye, R.; Linares, E.; Mata, R. Hypoglycemic, antihyperglycemic, and antioxidant effects of the edible plant Anoda cristata. J. Ethnopharmacol. 2015, 161, 36–45. [Google Scholar] [CrossRef]
- Ramadan, B.K.; Schaalan, M.F.; Tolba, A.M. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement. Altern. Med. 2017, 17, 37. [Google Scholar] [CrossRef] [Green Version]
- Tangvarasittichai, S.; Pongthaisong, S.; Tangvarasittichai, O. Tumor necrosis factor-A, interleukin-6, C-reactive protein levels and insulin resistance associated with type 2 diabetes in abdominal obesity women. Indian J. Clin. Biochem. 2016, 31, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loarca-Piña, G.; Mendoza, S.; Ramos-Gómez, M.; Reynoso, R. Antioxidant, antimutagenic, and antidiabetic activities of edible leaves from Cnidoscolus chayamansa Mc. Vaugh. J. Food Sci. 2010, 75, H68–H72. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.; Sharp, P.; Clifford, M.; Morgan, L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett. 2005, 579, 1653–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuri-García, A.; Godínez-Santillán, R.I.; Mejía, C.; Ferriz-Martínez, R.A.; García-Solís, P.; Enríquez-Vázquez, A.; García-Gasca, T.; Guzmán-Maldonado, S.H.; Chávez-Servín, J.L. Preventive effect of an infusion of the aqueous extract of Chaya leaves (Cnidoscolus aconitifolius) in an aberrant crypt foci rat model induced by azoxymethane and dextran sulfate sodium. J. Med. Food 2019, 22, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Tang, G.; Zeng, G.; Yang, Y.; Cai, X.; Li, D.; Liu, H.; Zhou, N. Purification and characterization of an antitumor polysaccharide from Portulaca oleracea L. Carbohydr. Polym. 2013, 93, 395–400. [Google Scholar] [CrossRef]
- Sekar, V.; Jayshree, N. Phytochemical analysis and in vitro anticancer study of ethanolic extract of leaves of Amaranthus cruentus Linn. against colon cancer cell line (HCT-116). World J. Pharm. Pharm. Sci. 2017, 6, 1644–1658. [Google Scholar] [CrossRef] [Green Version]
- Perk, A.A.; Shatynska-Mytsyk, I.; Gerçek, Y.C.; Boztaş, K.; Yazgan, M.; Fayyaz, S.; Farooqi, A.A. Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell Int. 2014, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jia-liang, W.; Dan-wei, M.; Ya-nan, W.; Hong, Z.; Bing, H.; Qun, L.; Zhi-yan, Z.; Jing, F. Cytotoxicity of essential oil of Chenopodium ambrosioides L. against human breast cancer MCF-7 cells. Trop. J. Pharm. Res. 2013, 12, 929–933. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, R.T.; Farias, I.V.; Grassi, L.T.; Franchi, G.C., Jr.; Nowill, A.E.; Bittencourt, C.M.D.S.; Wagner, T.M.; de Souza, M.M.; Cruza, A.B.; Malheiros, A. Characterization and evaluation of the cytotoxic potential of the essential oil of Chenopodium ambrosioides. Rev. Bras. Farmacogn. 2016, 26, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Cruz, G.V.; Pereira, P.V.S.; Patrício, F.J.; Costa, G.C.; Sousa, S.M.; Frazao, J.B.; Aragao-Filho, W.C.; Maciel, M.C.G.; Silva, L.A.; Amaral, F.M.M.; et al. Increase of cellular recruitment, phagocytosis ability and nitric oxide production induced by hydroalcoholic extract from Chenopodium ambrosioides leaves. J. Ethnopharmacol. 2007, 111, 148–154. [Google Scholar] [CrossRef]
- Sung, Y.Y.; Yoon, T.; Yang, W.K.; Kim, S.J.; Kim, D.S.; Kim, H.K. The antiobesity effect of Polygonum aviculare L. ethanol extract in high-fat diet-induced obese mice. Evid. Based Complement. Alternat. Med. 2013, Article ID 626397, 11 pages. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.Y. Antioxidant activity of extract from Polygonum aviculare L. Biol. Res. 2006, 39, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, Z.; Amresh, G.; Singh, S.; Rao, C.V. Antidiarrheal and antiulcer activity of Amaranthus spinosus in experimental animals. Pharm. Biol. 2009, 47, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Chang, E.; Uribe-Estanislao, G.V.; Martinez-Martinez, M.; Gálvez-Mariscal, A.; Romero, I. Anti-Helicobacter pylori potential of three edible plants known as Quelites in Mexico. J. Med. Food 2018, 21, 1150–1157. [Google Scholar] [CrossRef]
- Kusters, J.G.; van Vliet, A.H.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [Green Version]
- Filannino, P.; Di Cagno, R.; Trani, A.; Cantatore, V.; Gambacorta, G.; Gobbetti, M. Lactic acid fermentation enriches the profile of biogenic compounds and enhances the functional features of common purslane (Portulaca oleracea L.). J. Funct. Foods 2017, 39, 175–185. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Vincentini, O.; Cantatore, V.; Cavoski, I.; Gobbetti, M. Fermented Portulaca oleracea L. juice: A novel functional beverage with potential ameliorating effects on the intestinal inflammation and epithelial injury. Nutrients 2019, 11, 248. [Google Scholar] [CrossRef] [Green Version]
- Pereira, W.S.; da Silva, G.P.; Vigliano, M.V.; Leal, N.R.; Pinto, F.A.; Fernandes, D.C.; Santos, S.V.M.; Martino, T.; Nascimento, J.R.; de Azevedo, A.P.S.; et al. Anti-arthritic properties of crude extract from Chenopodium ambrosioides L. leaves. J. Pharm. Pharmacol. 2018, 70, 1078–1091. [Google Scholar] [CrossRef]
- Ain, Q.U.; David, M.; Shah, Q.; Ahmad, M.; Jahan, S. Antifertility effect of methanolic leaf extract of Chenopodium ambrosioides Hook. in male Sprague Dawley rats. Andrologia 2018, 50, e13129. [Google Scholar] [CrossRef]
- Assaidi, A.; Legssyer, A.; Berrichi, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; Ziyyat, A. Hypotensive property of Chenopodium ambrosioides in anesthetized normotensive rats. J. Complement. Integr. Med. 2014, 11, 1–7. [Google Scholar] [CrossRef]
- Assaidi, A.; Dib, I.; Tits, M.; Angenot, L.; Bellahcen, S.; Bouanani, N.; Legssyer, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; et al. Chenopodium ambrosioides induces an endothelium-dependent relaxation of rat isolated aorta. J. Integr. Med. 2019, 17, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Moneim, A.E.A.; Dkhil, M.A.; Al-Quraishy, S. The potential role of Portulaca oleracea as a neuroprotective agent in rotenone-induced neurotoxicity and apoptosis in the brain of rats. Pestic. Biochem. Phys. 2013, 105, 203–212. [Google Scholar] [CrossRef]
- Sokolove, J. Rheumatoid arthritis pathogenesis and pathophysiology. In Lung Disease in Rheumatoid Arthritis; Fischer, A., Lee., J.S., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 19–30. [Google Scholar]
- Gibofsky, A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am. J. Manag. Care 2012, 18, 295–302. [Google Scholar]
- Terzieva, S.; Velichkova, K.; Grozeva, N.; Valcheva, N.; Dinev, T. Antimicrobial activity of Amaranthus spp. extracts against some mycotoxigenic fungi. Bulg. J. Agric. Sci. 2019, 25, 120–123. [Google Scholar]
- Mostafa, I.; El-Aziz, E.A.; Hafez, S.; El-Shazly, A. Chemical constituents and biological activities of Galinsoga parviflora Cav. (Asteraceae) from Egypt. Zeitschrift für Naturforschung C 2013, 68, 285–292. [Google Scholar] [CrossRef]
- Agnieszka, B.; Stolarczyk, M.; Derwinska, M.; Kiss, A.K. Determination of antioxidant activity of extracts and fractions obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a qualitative study of the most active fractions using TLC and HPLC methods. Nat. Prod. Lett. 2012, 26, 1584–1593. [Google Scholar]
- Elkhayat, E.S.; Ibrahim, S.R.M.; Aziz, M.A. Portulene, a new diterpene from Portulaca oleracea L. J. Asian Nat. Prod. Res. 2008, 10, 1039–1043. [Google Scholar] [CrossRef]
- Oh, K.B.; Chang, I.M.; Hwang, K.J.; Mar, W. Detection of antifungal activity in Portulaca oleracea by a single-cell bioassay system. Phytother. Res. 2000, 14, 329–332. [Google Scholar] [CrossRef]
- Dong, C.X.; Hayashi, K.; Lee, J.B.; Hayashi, T. Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem. Pharm. Bull. 2010, 58, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Granados, J.; Chacón, C.; Ruiz-Lau, N.; Vargas-Díaz, M.E.; Zepeda, L.G.; Alvarez-Gutiérrez, P.; Meza-Gordillo, R.; Lagunas-Rivera, S. Alternative use of extracts of chipilín leaves (Crotalaria longirostrata Hook. & Arn) as antimicrobial. Sustainability 2018, 10, 883. [Google Scholar]
- Padalia, H.; Rathod, T.; Chanda, S. Evaluation of antimicrobial potential of different solvent extracts of some medicinal plants of semi-arid region. Asian J. Pharm. Clin. Res. 2017, 10, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.T.; Novello, C.R.; Ueda-Nakamura, T.; Palazzo de Mello, J.C.; Nakamura, C.V. Thiophene derivatives with antileishmanial activity isolated from aerial parts of Porophyllum ruderale (Jacq.) Cass. Molecules 2011, 16, 3469–3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeniran, O.I.; Olajide, O.O.; Igwemmar, N.C.; Orishadipe, A.T. Phytochemical constituents, antimicrobial and antioxidant potentials of tree spinach [Cnidoscolus aconitifolius (Miller) I.M. Johnston]. J. Med. Plants Res. 2013, 7, 1317–1322. [Google Scholar]
- Fagbohun, E.D.; Egbebi, A.O.; Lawal, O.U. Phytochemical screening, proximate analysis and in-vitro antimicrobial activities of methanolic extract of Cnidoscolus aconitifolius leaves. Int. J. Pharm. Sci. Rev. Res. 2012, 13, 28–33. [Google Scholar]
- Malik, T.; Kumar, P.D.; Roy, P.; Okram, A. Evaluation of Phytochemicals, Antioxidant, Antibacterial and Antidiabetic Potential of Alpinia galanga and Eryngium foetidum Plants of Manipur (India). Pharm. J. 2016, 8, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Lingaraju, D.P.; Sudarshana, M.S.; Mahendra, C.; Poornachandra, R.K. Phytochemical screening and antimicrobial activity of leaf extracts of Eryngium foetidum l. (apiaceae). Indo-Amer. J. Pharm. Res. 2016, 6, 4339–4344. [Google Scholar]
- Kouitcheu, M.L.B.; Eyoum, B.B.; Nguepi, E. In vitro and in vivo anti-Helicobacter activities of Eryngium foetidum (Apiaceae), Bidens pilosa (Asteraceae), and Galinsoga ciliata (Asteraceae) against Helicobacter pylori. Biomed Res. Int. 2016, Article ID 2171032, 7 pages. [Google Scholar] [CrossRef] [Green Version]
- Bursalıoğlu, E.O. Evaluation of antibacterial activity of Triticum monococcu seeds, Castanea sativa seeds and Begonia maculata leaves against several bacterial strains. Turk. J. Biodiv. 2020, 3, 9–14. [Google Scholar]
- Buyun, L.; Tkachenko, H.; Kurhaluk, N.; Góralczyk, A.; Tomin, V.; Osadowski, Z. Screening for antimicrobial activity of nine ethanolic extracts obtained from leaves of Begonia plant: A possible alternative in the treatment of infections caused by Citrobacter freundii. Agrobiodiv. Improv. Nutr. Health Life Q. 2019, 3, 312–322. Available online: https://agrobiodiversity.uniag.sk/scientificpapers/article/view/279 (accessed on 11 May 2020).
- Ogundare, A.O.; Oladejo, B.O. Antibacterial activities of the leaf and bark extract of Persea americana. Am. J. Ethnom. 2014, 1, 64–71. [Google Scholar]
- Tegegn, A.; Meseret, C.E.; Bekele, H. Evaluation of endod (Phytolacca dodecandra L.) extracts against Botrytis fabae, a causative agent of chocolate spot disease of Vicia faba. Cogent Food Agric. 2019, 1, 1686948. [Google Scholar] [CrossRef]
- Kosgei, C.J.; Mwendia, C.M.; Matasyoh, J.C.; Ngoci, N.S. Phytochemical analysis, cytotoxicity activity and acaricidal activity of aqueous crude extract of Phytolacca dodecandra against larvae of Rhipicephalus appendiculatus. J. Pharm. Biol. Sci. 2017, 12, 54–58. [Google Scholar]
- Jeff, B.I.; Mbayi, O.; Ngiala, B.G.; Kapepula, M.P.; Mulwahali, W.J.; Lengbiye, E.; Liyongo, I.G.; Ngunde, N.S.; Ngbolua, K. Phytochemical Analysis and Assessment of Antibacterial and Antioxidant Activities of Phytolacca dodecandra L. Herit Leaf Extracts (Phytolaccaceae). Int. J. Biomed. Eng. Clin. Sci. 2019, 5, 31–39. [Google Scholar]
- Patra, J.K.; Kim, E.S.; Oh, K.; Kim, H.J.; Kim, Y.; Baek, K.H. Antibacterial effect of crude extract and metabolites of Phytolacca americana on pathogens responsible for periodontal inflammatory diseases and dental caries. BMC Complement. Altern. Med. 2014, 14, 343. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.; Murace, M.; Ringuelet, J.; Petri, I.; Gallo, D.; Arambarri, A. Effect of aqueous and alcohol extracts of Phytolacca tetramera (Phytolaccaceae) leaves on colletotrichum gloeosporioides (ascomycota). Bol. Soc. Arg. Bot. 2013, 48, 201–209. [Google Scholar] [CrossRef]
- Mostafa, H.A.M.; El-Bakry, A.A.; Eman, A.A. Evaluation of antibacterial activity of different plant parts of Rumex Vesicarius L. at early and late vegetative stages of growth. Int. J. Pharm. Pharm. Sci. 2012, 4, 426–435. [Google Scholar]
- Humeera, N.; Kamili, A.N.; Bandh, S.A.; Lone, B.A.; Gousia, N. Antimicrobial and antioxidant activities of alcoholic extracts of Rumex dentatus L. Microb. Pathog. 2013, 57, 17–20. [Google Scholar] [CrossRef]
- Mhalla, D.; Bouaziz, A.; Ennouri, K.; Chawech, R.; Smaoui, S.; Jarraya, R.; Tounsi, S.; Trigui, M. Antimicrobial activity and bioguided fractionation of Rumex tingitanus extracts for meat preservation. Meat Sci. 2017, 125, 22–29. [Google Scholar] [CrossRef]
- Orbán-Gyapai, O.; Liktor-Busa, E.; Kúsz, N.; Stefkó, D.; Urbán, E.; Hohmann, J.; Vasas, A. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitoterapia 2017, 118, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez, A.A.L.; Gómez, J.D.; Cudmani, N.M.; Vattuone, M.A.; Isla, M.I. Antimicrobial activity of nine extracts of Sechium edule (Jacq.) Swartz. Microb. Ecol. Health Dis. 2003, 15, 33–39. [Google Scholar] [CrossRef]
- Bari, M.A.; Islam, W.; Khan, A.R.; Mandal, A. Antibacterial and antifungal activity of Solanum torvum (Solanaceae). Int. J. Agric. Biol. 2010, 12, 386–390. [Google Scholar]
- Doss, A.; Mohammed, M.H.; Dhanabalan, R. Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Ind. J. Sci. Technol. 2009, 2, 41–43. [Google Scholar]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Dias Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Edziria, H.L.; Smachd, M.A.; Ammarc, S.; Mahjoubc, M.A.; Mighric, Z.; Aounia, M.; Mastourib, M. Antioxidant, antibacterial, and antiviral effects of Lactuca sativa extracts. Ind. Crop. Prod. 2011, 34, 1182–1185. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Abu-Ghazaleh, A.; Lightfoot, D.A. Evaluation of the antimicrobial activities of ultrasonicated spinach leaf extracts using RAPD markers and electron microscopy. Arch. Microbiol. 2017, 199, 1417–1429. [Google Scholar] [CrossRef] [Green Version]
- Vale, A.P.; Santos, J.; Melia, N.; Peixoto, V.; Brito, N.V.; Beatriz, M.; Oliveira, P. Phytochemical composition and antimicrobial properties of four varieties of Brassica oleracea sprouts. Food Control 2015, 55, 248–256. [Google Scholar] [CrossRef]
- Rashed, K.N.; Ćirić, A.; Glamočlija, J.; Calhelha, R.C.; Ferreira, C.F.R.I.; Soković, M. Identification of the bioactive constituents and the antibacterial, antifungal and cytotoxic activities of different fractions from Cestrum nocturnum L. Jordan J. Biol. Sci. 2018, 11, 273–279. [Google Scholar]
- Punjabi, Y.S.; Khilnani, V.L.; Damle, P.N. The investigation of antibacterial activity of Cestrum nocturnum. Pharmacophore 2015, 6, 81–87. [Google Scholar]
- Sharif, M.A.; Atiqur, R.; Yunus, A.; Sun, C.K. Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pest. Biochem. Physiol. 2010, 96, 86–92. [Google Scholar]
Plant Genera | Plant Genera | Plant Genera | Plant Genera |
---|---|---|---|
Agave spp. | Cucurbita spp. | Lilaeopsis spp. | Portulaca spp. |
Amaranthus spp. | Cyclanthera spp. | Lippia spp. | Quercus spp. |
Anoda spp. | Dhalia spp. | Lobelia spp. | Rauwolfia spp. |
Arthrostema spp. | Diastatea spp. | Lycianthes spp. | Rumex spp. |
Arbutus spp. | Diphysa spp. | Microsechium spp. | Sechium spp. |
Attalea spp. | Disocactus spp. | Mimulus spp. | Senecio spp. |
Bacharis spp. | Dysphania spp. | Mosntera spp. | Sicyos spp. |
Begonia spp. | Erblichia spp. | Opuntia spp. | Singonium spp. |
Berula spp. | Erygium spp. | Orbignya spp. | Smilax spp. |
Bidens spp. | Erythrina spp. | Oxalis spp. | Solanum spp. |
Brassica spp. | Eupatorium spp. | Ouratea spp. | Sonchus spp. |
Calindrinia spp | Galinsoga spp. | Peperomia spp. | Spergula spp. |
Cestrum spp. | Hydrocotyle spp. | Persea spp. | Stellaria spp. |
Cichorium spp. | Hylocereus spp. | Petroselinum spp. | Suaeda spp. |
Chamaedorea spp. | Ipomea spp. | Phacelia spp. | Taraxacum spp. |
Chenopodium spp. | Jaltomata spp. | Phaseolus spp. | Tauschia spp. |
Claytonia spp. | Lantana spp. | Phytolacca spp. | Tinantia spp. |
Cnidoscolus spp. | Lepidium spp. | Pilea spp. | Tridax spp. |
Cotula spp. | Leucaena spp. | Piper spp. | Urtica spp. |
Crysophila spp. | Lycianthes spp | Poeppigia spp. | Xanthosoma spp. |
Crotalaria spp. | Lilaea spp. | Porophyllum spp. | Yucca spp. |
Region, Municipalities or States of Mexico | Food Species | Ref. |
---|---|---|
Isidro Fabela, Estado de México and Mariano Escobedo, Veracruz | 12 (11 1) | [28] |
Candelaria Loxicha, Oaxaca | 73 (16) | [12] |
Amatenango del Valle, Chiapas | 13 (11) | [29] |
Lacanja Chansayab, Chiapas | 26 (5) | [27] |
Sierra Norte de Puebla | 94 (80) | [30] |
San Pedro Arriba, Temoaya, Estado de México | 68 (49) | [13] |
Ixhuapan, Meyacapan, Veracruz | 69 (48) | [31] |
Santa María Ixcatlán, Oaxaca | 138 (ns) | [32] |
Rayones, Nuevo León | 83 (ns) | [33] |
San Lucas Huajotitlán y Buenavista de Juárez, Chietla, Puebla | 28 (ns) | [34] |
59 communities of Chiapas | 71 (ns) | [35] |
Tilzopotla, Puente de Ixtla, Morelos | 61 (ns) | [36] |
San Agustín Loxicha, Candelaría Loxicha and Pluma Hidalgo, Oaxaca | 131 (ns) | [37] |
Species | Plant Part | Antioxidant Compounds | Antioxidant Activity 1 | Ref. |
---|---|---|---|---|
Amaranthus cruentus | Whole plant | Total phenolics (gallic acid), total flavonoids (catechin) and tannins | [41] | |
A. hypochondriacus, A. caudatus and A. cruentus | Leaves, stalks, flowers, sprouts and seeds | Betalain; amaranthine; iso-amaranthine; betanin; iso-betanin-gallic, protocatechuic, chlorogenic, gentistic, 2,4-dihydroxybenzoic, ferulic, ellagic and salicylic acids; rutin; kaempferol-3-rutinoside; and quercetin | FRAP and ORAC | [48] |
A. hybridus | Leaves | Alkaloids, flavonoids, saponins, tannins, phenols, hydrocyanic acid and phytic acid | [55] | |
A. spinosus and A. viridis | Leaves | Chlorophyll, total carotenoids, β-cyanin and β-xanthin content, β-carotene, vitamin C, total polyphenols and total flavonoids | DPPH and ABTS | [68] |
A. acanthochiton, A. deflexus and A. viridis | Leaves | Vitamin C, total phenolics (gallic acid), flavonoids (catechin) | ORAC | [69] |
A. hybridus, Chenopodium berlandieri and Portulaca oleracea | Leaves | Chlorophyll; carotenoids; ferulic, chlorogenic, caffeic, gallic, chlorogenic, vanillic, p-hydroxybenzoic, p-coumaric and syringic acids; rutin; phloridzin; myricetin; quercetin; naringenin; phloretin; galangin; apigenin | DPPH, ABTS and FRAP | [54] |
Portulaca oleracea, Chenopodium spp., Amaranthus spp., Chenopodium spp. and Suaeda spp. | Leaves | Total phenolics (gallic acid), total flavonoids (quercetin) and condensed tannins | DPPH, ABTS and DMPD | [53] |
Cnidoscolus aconitifolius, Solanum scabrum, Crotalaria longirostrata and Gynandropsis gynandra | Leaves | Vitamin C, total phenolics (gallic acid) and total flavonoids (catechin) | ORAC | [49] |
Begonia nelumbiifolia | Stalks and leaves | β-Carotene, lutein, β-cryptoxanthin, α-carotene, quercetin, rutin and kaempferol | DPPH | [60] |
Brassica rapa | Leaves | Caffeic acid, sinapic acid, p-coumaric acid, ferulic acid and myricetin | DPPH, FRAP, TEAC and ORAC | [61] |
Phaseolus coccineous | Young leaves | α-Tocopherols, γ-tocopherols and δ- tocopherols | [62] | |
Portulaca oleracea | Whole plants | Total phenolics (gallic acid), total flavonoids (rutin) and total carotenoids | DPPH and FRAP | [70] |
Piper auritum | Leaves | β-Pinene, α-terpinene, trans-β-ocimene, terpinolene, safrole, β-caryophyllene, germacrene D, trans-nerolidol and phytol | ABTS | [52] |
Compounds | Methods of Determination/Identification | Species Evaluated | Ref. |
---|---|---|---|
Minerals | Atomic absorption spectrophotometry (AAS) | A. hybridus, A. viridis. A. spinosus, C. chaymansa, C. berlandieri, P. oleracea | [15,54,55,68,70] |
Inductively coupled plasma-optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS) | P. oleracea, C. chaymansa, C. berlandieri, C. acnotifolius, C. longirostrata. | [49,64,72] | |
Amino acids | High-performance liquid chromatography (HPLC) | P. oleracea | [72] |
Vitamin A, C, α-tocopherol, phenols, carotenoids, flavonoids, betalains, betacyanins, saponins | UV-vis spectrophotometry and HPLC-DAD/HPLC-MS | P. oleracea, C. chaymansa, B. nelumbiifolia, A. cruentus, A. hypochondriacus, A. caudatus, A. viridis, A. spinosus, A. hybridus, C. berlandieri, C. lingirostrata, C. nuttallie | [15,47,48,49,54,60,65,68,70,72,73] |
Phenolic compounds and profiles | High-performance liquid chromatography with diode array detection (HPLC-DAD), ultrahigh-performance liquid chromatography with diode array detection (UHPLC-DAD) and gas chromatography-mass spectrometry (GC-MS) | C. ambrosioides, C. chaymansa, A. viridis, A. cruentus, A. hypochondriacus, A. caudatus | [47,55,73,74] |
Organic acids | Ultrafast liquid chromatography coupled to a photodiode array detector (UFLC-PDA) and HPLC-DAD | C. ambrosioides, B. nelumbiifolia | [60,75] |
Quelite Species | Extract 1 (Plant Part) | Identified Compounds 2 | Microorganisms | MIC 3 (μg/mL) | Ref. |
---|---|---|---|---|---|
Amaranthus retroflexus | EE and ME (whole plants) | NE | Penicillium verrucosum var. verrucosum (NBIMCC 2003 NRRL F-143), P. expansum, Fusarium graminearum (NBIMCC 2294 IMI 155426) and Aspergillus ochraceus (NBIMCC 2002 IM-BAS) and A. niger | 125,000 | [101] |
Galinsoga parviflora | EE (whole plants) | Caffeoyl derivatives, isoquercitrin, quercimeritrin and quercetagetin | Bacillus subtilis (6633), Pseudomonas aeruginosa (27853), Escherichia coli (10538), Aspergillus niger (16404) and Candida albicans (10231) | 100,000 | [102] |
Portulaca oleracea | ME (whole plants) | Lupeol, β-sitosterol and daucosterol | Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhea, Staphylococcus aureus, Bacillus subtilis, and Streptococcus faecalis and Candida albicans | 1000 | [104] |
Crotalaria longirostrata | PF, EAF, AF, DMF, EEF and SDW (leaves) | Phenolic compounds, alkaloids, essential oils and glycosides | Escherichia coli (ITTG-1879), Citrobacter freundii (Cf-ITTG) and Staphylococcus epidermidis (ITTG-850). Fusarium oxysporum A. Comiteca (FoC-ITTG), Fusarium oxysporum A. tequilana (FoT-ITTG) and Fusarium solani A. comiteca (FsC-ITTG). | 200,000 | [107] |
Suaeda nigra | PEE, EAE, ACE, ME and AE (leaves) | Cardiac glycosides | Bacillus cereus (ATCC11778), Staphylococcus aureus (ATCC29737), Corynebacterium rubrum (ATCC14898), Escherichia coli (NCIM2931), Pseudomonas aeruginosa (ATCC9027), Salmonella typhimurium (ATCC23564), and Klebsiella pneumonia (NCIM2719) Candida albicans (ATCC209l), Cryptococcus neoformans (ATCC34664), Candida glabrata (NCIM3448) and Candida apicola (NCIM3367) | 20 | [108] |
Porophyllum ruderale | DE (leaves) | Thiophene derivatives: 5-methyl-2,2′:5′,2″-terthiophene and 5′-methyl–[5–(4–acetoxy-1–butynyl)]–2,2′-bisthiophene | Leishmania amazonensis (WHOM/BR/75/JOSEFA) | 60.3–77.7 | [109] |
Dysphania ambrosioides and Chenopodium ambrosioides | EE, CF, EAF and BF (leaves) | Rutin, quercetin and chrysin | Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 340), Enterococcus faecalis (ATCC 29212), Paenibacillus apiaries, P. thiaminolyticus, Mycobacterium tuberculosis (ATCC 25618), M. smegmatis (ATCC 700084) and M. avium (LR541CDC) | 4300–68,800 | [110] |
Cnidoscolus aconitifolius | EE (roots, leaves, and stems) | Steroids, tannins, alkaloids, cardiac glycosides, terpenoids and saponins | Klebsiella oxytoca, Escherichia coli, Proteus species, Bacillus subtilis and Pseudomonas aeruginosa | 20,000 | [111] |
ME (leaves) | Alkaloids, tannins, saponin, flavonoids and cardiac glycoside | Bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli Fungi: Aspergillus tamarii and Aspergillus niger | 31,250–500,000 | [112] | |
Eryngium foetidum | EE, ME and AE (leaves) | Flavonoids, phenols, saponins and tannins | Bacillus megaterium (MTCC 8510), Bacillus subtilis (MTCC 441), Bacillus flexus (MTCC 7024), Staphylococcus aureus (MTCC 96), Pseudomonas oleovorans (MTCC 617), Klebsiella pneumoniae (MTCC 7028), Salmonella enteric (MTCC 1164) and Escherichia coli (MTCC 723) | 25 | [113] |
PEE, CE, EAE, ME and AE (leaves) | Anthocyanins, sterols, triterpenoids and anthraquinones | (a) Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. (b) Candida albicans | (a) 3.12–200 (b) 1.56–12.5 | [114] | |
ME and AE (leaves) | Alkaloids, phenols, flavonoids, anthraquinones and sterols | Helicobacter pylori | 64–1024 | [115] | |
Erythrina americana | ME (seeds) | Alkaloids | Alternaria solani, Botrytis cinerea, Fusarium oxysporum, Monilinia fructicola, Penicillium sp. and Trichoderma harzianum | NR | [63] |
Cestrum nocturnum | CF, EAF and AF (leaves) | Triterpenes, coumarins, flavonoids, tannins, saponins and carbohydrates | (a) Enterobacter cloacae, Escherichia coli (ATCC 35210), Pseudomonas aeruginosa (ATCC 27853), Salmonella typhimurium (ATCC 13311), Bacillus cereus (clinical isolate), Listeria monocytogenes (NCTC 7973), Micrococcus flavus (ATCC 10240) and Staphylococcus aureus (ATCC 6538). (b) Fungi: Aspergillus fumigatus (ATCC 1022), Aspergillus versicolor (ATCC 11730), Aspergillus ochraceus (ATCC 12066), Aspergillus niger (ATCC 6275), Trichoderma viride (IAM 5061), Penicillium funiculosum (ATCC 36839), Penicillium ochrochloron (ATCC 9112) and Penicillium verrucosum var. cyclopium | (a) 0.6–3.75 (b) 0.075–2.5 | [135] |
EAE, ME, EE and CE (leaves and stems) | Ethyl | Escherichia coli, Klebsiella pneumonia, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella paratyphi A, Salmonella paratyphi B, Shigella flexneri and Staphylococcus aureus | 55–350 and 25–400 | [136] | |
HE, CE, EAE and ME (flower) | Acetate, ethanol, and methanol extracts | F. oxysporum (KACC 41083), Phytophthora capsici (KACC 40157), C. capsici (KACC 410978), F. solani (KACC 41092), Rhizoctonia solani (KACC 40111), S. sclerotiorum (KACC 41065) and B. cinerea (KACC 40573) | 125–1000 | [137] | |
Begonia maculata | ME (leaves) | NE | Escherichia coli (ATCC 25922), Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus | 20,000 | [116] |
Begonia soli-mutata, B. goegoensis, B. foliosa, B. erythrophylla, B. thiemei, B. peltata, B. heracleifolia B. dregei, B. mexicana | EE (leaves) | Phenol, tannins, xanthoproteins, steroids, phytosterols, triterpenoids, sapogenins, coumarins and carbohydrates | Citrobacter freundii | 52,631 | [117] |
Persea americana | ME (leaves and bark) | Saponins, tannins, phlobatannins, anthraquinone, flavonoids and terpenoids | (a) Bacillus subtilis (NCIB 3610), Staphylococcus aureus (NCIB 8588), Escherichia coli (NCIB 86), Klebsiella pneumoniae (NCIB 418) and Pseudomonas aeruginosa (NCIB 950); (b) Streptococcus pyogenes, Proteus mirabilis, Salmonella typhi, Klebsiella pneumoniae and Escherichia coli | (a) 10,000–30,000 (b) 3–12 | [118] |
Phytolacca americana | ME, HF, CF, EF and BF | Kaempferol, quercetin, quercetin 3-glucoside, isoquercitrin and ferulic acid | Porphyromonas gingivalis (ATCC BAA-1703), Streptococcus mutans (ATCC 700610) and Escherichia coli (DH5α) | 200–1800 | [122] |
Sechium edule | EE (leaves, stems and fruit) | Flavonoids | Staphylococcus aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212), Streptococcus agalactiae and Streptococcus pyogenes | 4.16–16.64 or 8.32–16.64 | [128] |
Solanum torvum | CE and ME (roots, leaves and stems) | Tannins | Bacillus cereus, B. subtilis, Streptococcus-β-haemolyticus, Salmonella typhi and Shigella dysenteriae | 64–128 | [129] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateos-Maces, L.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Aquino-Bolaños, E.N.; Alba-Jiménez, J.E.; Villagómez-González, B.B. Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants 2020, 9, 541. https://doi.org/10.3390/antiox9060541
Mateos-Maces L, Chávez-Servia JL, Vera-Guzmán AM, Aquino-Bolaños EN, Alba-Jiménez JE, Villagómez-González BB. Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants. 2020; 9(6):541. https://doi.org/10.3390/antiox9060541
Chicago/Turabian StyleMateos-Maces, Lourdes, José Luis Chávez-Servia, Araceli Minerva Vera-Guzmán, Elia Nora Aquino-Bolaños, Jimena E. Alba-Jiménez, and Bethsabe Belem Villagómez-González. 2020. "Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review" Antioxidants 9, no. 6: 541. https://doi.org/10.3390/antiox9060541
APA StyleMateos-Maces, L., Chávez-Servia, J. L., Vera-Guzmán, A. M., Aquino-Bolaños, E. N., Alba-Jiménez, J. E., & Villagómez-González, B. B. (2020). Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants, 9(6), 541. https://doi.org/10.3390/antiox9060541