Molecular Assessment of Epiretinal Membrane: Activated Microglia, Oxidative Stress and Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrollment of Subjects
2.2. Surgical Details
2.3. Histopathological Investigation
2.4. Ultrastructural Evaluations of Membranes Using Transmission Electron Microscopy
2.5. Cellular Characterization Using Immunohistochemistry
2.6. Imaging and Image Analysis
2.7. Targeted Gene Expression Profiling by qRT-PCR
2.8. Statistical Analysis
2.9. Bioinformatic Analysis
3. Results
3.1. Demographical Data
3.2. Histological Evaluations and Cellular Profiling
3.3. Ultrastructural Characterizations
3.4. Characterization of Different Cell Types in Each Group
3.5. Evaluation of Oxidative Stress among Different Pathological Condition
3.6. Gene Expression Analysis of Oxidative Stress and Inflammation-Related Pathway Genes
3.7. Protein-Protein Interactions for the Differentially Expressed Genes by In-Silico Analysis
4. Discussion
5. Conclusions and Future Scope
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoon, M.; Okawa, H.; Della Santina, L.; Wong, R.O. Functional architecture of the retina: Development and disease. Prog. Retin. Eye Res. 2014, 42, 44–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, P.N. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog. Retin. Eye Res. 2000, 19, 323–344. [Google Scholar] [CrossRef]
- Fraser-Bell, S.; Guzowski, M.; Rochtchina, E.; Wang, J.J.; Mitchell, P. Five-year cumulative incidence and progression of epiretinal membranes: The Blue Mountains Eye Study. Ophthalmology 2003, 110, 34–40. [Google Scholar] [CrossRef]
- Hisatomi, T.; Enaida, H.; Sakamoto, T.; Kagimoto, T.; Ueno, A.; Nakamura, T.; Hata, Y.; Ishibashi, T. A new method for comprehensive bird’s-eye analysis of the surgically excised internal limiting membrane. Am. J. Ophthalmol. 2005, 139, 1121–1122. [Google Scholar] [CrossRef]
- Bu, S.C.; Kuijer, R.; Li, X.R.; Hooymans, J.M.; Los, L.I. Idiopathic epiretinal membrane. Retina 2014, 34, 2317–2335. [Google Scholar] [CrossRef]
- Sandali, O.; El Sanharawi, M.; Basli, E.; Bonnel, S.; Lecuen, N.; Barale, P.O.; Borderie, V.; Laroche, L.; Monin, C. Epiretinal membrane recurrence: Incidence, characteristics, evolution, and preventive and risk factors. Retina 2013, 33, 2032–2038. [Google Scholar] [CrossRef]
- Anderson, R.E.; Rapp, L.M.; Wiegand, R.D. Lipid peroxidation and retinal degeneration. Curr. Eye Res. 1984, 3, 223–227. [Google Scholar] [CrossRef]
- Schechet, S.A.; DeVience, E.; Thompson, J.T. The Effect of Internal Limiting Membrane Peeling on Idiopathic Epiretinal Membrane Surgery, with a Review of the Literature. Retina 2017, 37, 873–880. [Google Scholar] [CrossRef]
- Kwok, A.; Lai, T.Y.; Yuen, K.S. Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin. Exp. Ophthalmol. 2005, 33, 379–385. [Google Scholar] [CrossRef]
- Morino, I.; Hiscott, P.; McKechnie, N.; Grierson, I. Variation in epiretinal membrane components with clinical duration of the proliferative tissue. Br. J. Ophthalmol. 1990, 74, 393–399. [Google Scholar] [CrossRef]
- Bellhorn, M.B.; Friedman, A.H.; Wise, G.N.; Henkind, P. Ultrastructure and clinicopathologic correlation of idiopathic preretinal macular fibrosis. Am. J. Ophthalmol. 1975, 79, 366–373. [Google Scholar] [CrossRef]
- Cheville, N.F.; Stasko, J. Techniques in electron microscopy of animal tissue. Vet. Pathol. 2014, 51, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verardo, M.R.; Lewis, G.P.; Takeda, M.; Linberg, K.A.; Byun, J.; Luna, G.; Wilhelmsson, U.; Pekny, M.; Chen, D.F.; Fisher, S.K. Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3659–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uga, S.; Ikui, H.; Kono, T. Electron microscope study on astrocytes in the human retina (author’s transl). Nippon Ganka Gakkai Zasshi 1974, 78, 681–685. [Google Scholar] [PubMed]
- Castejon, O.J. Electron microscopy of astrocyte changes and subtypes in traumatic human edematous cerebral cortex: A review. Ultrastruct. Pathol. 2013, 37, 417–424. [Google Scholar] [CrossRef]
- Mori, S.; Leblond, C.P. Identification of microglia in light and electron microscopy. J. Comp. Neurol. 1969, 135, 57–80. [Google Scholar] [CrossRef]
- García-Cabezas, M.Á.; John, Y.J.; Barbas, H.; Zikopoulos, B. Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features. Front. Neuroanat. 2016, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.C.; Picard, K.; González-Ibáñez, F.; Tremblay, M.È. A Brief History of Microglial Ultrastructure: Distinctive Features, Phenotypes, and Functions Discovered Over the Past 60 Years by Electron Microscopy. Front. Immunol. 2018, 9, 803. [Google Scholar] [CrossRef]
- Shahid, M.; Idrees, M.; Butt, A.M.; Raza, S.M.; Amin, I.; Rasul, A.; Afzal, S. Blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue injury in chronic hepatitis C patients. Arch. Virol. 2020, 165, 809–822. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Lai, T.T.; Li, C.J. The Oxidative Stress and Mitochondrial Dysfunction during the Pathogenesis of Diabetic Retinopathy. Oxid. Med. Cell. Longev. 2018, 18, 3420187. [Google Scholar] [CrossRef]
- Karlstetter, M.; Scholz, R.; Rutar, M.; Wong, W.T.; Provis, J.M.; Langmann, T. Retinal microglia: Just bystander or target for therapy? Prog. Retin. Eye Res. 2015, 45, 30–57. [Google Scholar] [CrossRef] [PubMed]
- Akhtar-Schäfer, I.; Wang, L.; Krohne, T.U.; Xu, H.; Langmann, T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol. Med. 2018, 10, e8259. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ulland, T.K.; Ulrich, J.D.; Song, W.; Tzaferis, J.A.; Hole, J.T.; Yuan, P.; Mahan, T.E.; Shi, Y.; Gilfillan, S.; et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 2016, 213, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Martín, R.M.; Martín-Oliva, D.; Sierra-Martín, A.; Carrasco, M.C.; Martín-Estebané, M.; Calvente, R.; Martín-Guerrero, S.M.; Marín-Teva, J.L.; Navascués, J.; Cuadros, M.A. Microglial Activation Promotes Cell Survival in Organotypic Cultures of Postnatal Mouse Retinal Explants. PLoS ONE 2015, 10, e0135238. [Google Scholar] [CrossRef]
- Shahulhameed, S.; Vishwakarma, S.; Chhablani, J.; Tyagi, M.; Pappuru, R.R.; Jakati, S.; Chakrabarti, S.; Kaur, I. A Systematic Investigation on Complement Pathway Activation in Diabetic Retinopathy. Front. Immunol. 2020, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Chona, F.R.; Swan, A.; Ferrell, W.D.; Jiang, L.; Baehr, W.; Chien, W.M.; Fero, M.; Marc, R.E.; Levine, E.M. Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function. BMC Neurosci. 2011, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Méhes, E.; Czirók, A.; Hegedüs, B.; Szabó, B.; Vicsek, T.; Satz, J.; Campbell, K.; Jancsik, V. Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: Combined velocity and directionality analysis. Glia 2005, 49, 492–500. [Google Scholar] [CrossRef]
- Caspi, R.R.; Roberge, F.G. Glial cells as suppressor cells: Characterization of the inhibitory function. J. Autoimmun. 1989, 2, 709–722. [Google Scholar] [CrossRef]
- Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015, 3, 136. [Google Scholar]
- Zeng, H.Y.; Green, W.R.; Tso, M.O. Microglial activation in human diabetic retinopathy. Arch. Ophthalmol. 2008, 126, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Ji, J.; Li, F.; Guo, J.; Zheng, Y.; Li, S.; Xu, W. Activation of the Notch Nox4 reactive oxygen species signaling pathway induces cell death in high glucose treated human retinal endothelial cells. Mol. Med. Rep. 2019, 19, 667–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazio, C.; Piazzi, G.; Vitaglione, P.; Fogliano, V.; Munarini, A.; Prossomariti, A.; Milazzo, M.; D’Angelo, L.; Napolitano, M.; Chieco, P.; et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci. Rep. 2017, 6, 20670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, P.L.; Finelli, M.J.; Edwards, B.; Bitoun, E.; Butts, D.L.; Becker, E.B.; Cheeseman, M.T.; Davies, B.; Davies, K.E. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet. 2011, 7, e1002338. [Google Scholar] [CrossRef] [Green Version]
- Robaszkiewicz, J.; Chmielewska, K.; Figurska, M.; Wierzbowska, J.; Stankiewicz, A. Müller glial cells–the mediators of vascular disorders with vitreomacular interface pathology in diabetic maculopathy. Klin. Ocz. 2010, 112, 328–332. [Google Scholar]
- Clark, A.; Balducci, N.; Pichi, F.; Veronese, C.; Morara, M.; Torrazza, C.; Ciardella, A.P. Swelling of the arcuate nerve fiber layer after internal limiting membrane peeling. Retina 2012, 32, 1608–1613. [Google Scholar] [CrossRef]
- Bovey, E.H.; Uffer, S.; Achache, F. Surgery for epimacular membrane: Impact of retinal internal limiting membrane removal on functional outcome. Retina 2004, 24, 728–735. [Google Scholar] [CrossRef]
S. No. | Pathology | H&E | Cell Specific Marker | Mean no. of Positive Cells (n = 3) ± SD |
---|---|---|---|---|
1. | MH | No pigmentation | GFAP | 0 ± 0 |
CRALBP | 0 ± 0 | |||
CD11b | 0 ± 0 | |||
2. | RD | Pigmentation | GFAP | 8 ± 8.4 |
CRALBP | 19 ± 7.0 | |||
CD11b | 2.5 ± 3.5 | |||
3. | PDR | No pigmentation | GFAP | 11 ± 8.7 |
CRALBP | 6.3 ± 6.6 | |||
CD11b | 1.6 ± 1.5 |
S. No. | #Term ID | Term Description | Observed Gene Count | Background Gene Count | False Discovery Rate | Matching Proteins in the Network (Labels) |
---|---|---|---|---|---|---|
1 | hsa04066 | HIF-1 signaling pathway | 17 | 98 | 7.73 × 10−23 | AKT1,ARNT,CREBBP,CUL2,EGLN1,EGLN2,EP300,FLT1,HIF1A,HMOX1,MAPK3,STAT3,TCEB1,TCEB2,TIMP1,VEGFA,VHL |
2 | hsa04330 | Notch signaling pathway | 10 | 48 | 5.83 × 10−14 | CREBBP,EP300,MAML1,MAML2,MAML3,NOTCH1,NOTCH2,NOTCH3,NOTCH4,RBPJ |
3 | hsa04010 | MAPK signaling pathway | 14 | 293 | 1.23 × 10−11 | AKT1,DUSP6,FIGF,FLT1,IL1A,IL1B,IL1R1,JUN,KDR,MAPK3,PGF,VEGFA,VEGFB,VEGFC |
4 | hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 10 | 98 | 2.75 × 10−11 | AKT1,FIGF,IL1A,IL1B,JUN,MAPK3,STAT3,VEGFA,VEGFB,VEGFC |
5 | hsa04610 | Complement and coagulation cascades | 8 | 78 | 2.56 × 10−9 | C3,CD46,CD55,CFB,CFH,CFI,CR1,ITGAM |
6 | hsa04060 | Cytokine-cytokine receptor interaction | 11 | 263 | 7.33 × 10−9 | FIGF,FLT1,IL10,IL1A,IL1B,IL1R1,IL1R2,KDR,VEGFA,VEGFB,VEGFC |
7 | hsa04014 | Ras signaling pathway | 10 | 228 | 2.3 × 10−8 | AKT1,FIGF,FLT1,KDR,MAPK3,PGF,PTPN11,VEGFA,VEGFB,VEGFC |
8 | hsa04668 | TNF signaling pathway | 6 | 108 | 6.86 × 10−6 | AKT1,IL1B,JUN,MAPK3,MMP9,VEGFC |
9 | hsa04151 | PI3K-Akt signaling pathway | 9 | 348 | 6.87 × 10−6 | AKT1,FIGF,FLT1,KDR,MAPK3,PGF,VEGFA,VEGFB,VEGFC |
10 | hsa04310 | Wnt signaling pathway | 6 | 143 | 2.51 × 10−5 | CREBBP,DKK1,EP300,JUN,LRP5,LRP6 |
11 | hsa04630 | Jak-STAT signaling pathway | 6 | 160 | 4.36 × 10−5 | AKT1,CREBBP,EP300,IL10,PTPN11,STAT3 |
12 | hsa04370 | VEGF signaling pathway | 4 | 59 | 1.4 × 10−4 | AKT1,KDR,MAPK3,VEGFA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishwakarma, S.; Gupta, R.K.; Jakati, S.; Tyagi, M.; Pappuru, R.R.; Reddig, K.; Hendricks, G.; Volkert, M.R.; Khanna, H.; Chhablani, J.; et al. Molecular Assessment of Epiretinal Membrane: Activated Microglia, Oxidative Stress and Inflammation. Antioxidants 2020, 9, 654. https://doi.org/10.3390/antiox9080654
Vishwakarma S, Gupta RK, Jakati S, Tyagi M, Pappuru RR, Reddig K, Hendricks G, Volkert MR, Khanna H, Chhablani J, et al. Molecular Assessment of Epiretinal Membrane: Activated Microglia, Oxidative Stress and Inflammation. Antioxidants. 2020; 9(8):654. https://doi.org/10.3390/antiox9080654
Chicago/Turabian StyleVishwakarma, Sushma, Rishikesh Kumar Gupta, Saumya Jakati, Mudit Tyagi, Rajeev Reddy Pappuru, Keith Reddig, Gregory Hendricks, Michael R. Volkert, Hemant Khanna, Jay Chhablani, and et al. 2020. "Molecular Assessment of Epiretinal Membrane: Activated Microglia, Oxidative Stress and Inflammation" Antioxidants 9, no. 8: 654. https://doi.org/10.3390/antiox9080654
APA StyleVishwakarma, S., Gupta, R. K., Jakati, S., Tyagi, M., Pappuru, R. R., Reddig, K., Hendricks, G., Volkert, M. R., Khanna, H., Chhablani, J., & Kaur, I. (2020). Molecular Assessment of Epiretinal Membrane: Activated Microglia, Oxidative Stress and Inflammation. Antioxidants, 9(8), 654. https://doi.org/10.3390/antiox9080654