Stability of Phenolic Compounds in Grape Stem Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Determination of the Antioxidant Capacity of Grape Stem Extracts during Storage
2.3. Total Phenolic Content Determination of Grape Stem Extracts during Storage
2.4. Identification and Quantification of Phenolic Compounds in Grape Stem Extracts by HPLC
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Capacity and Total Phenolic Content
3.2. Stability of Phenolic Compounds during Storage under Different Conditions of Light and Temperature
3.2.1. Phenolic Acids
3.2.2. Flavonoids
3.2.3. Stilbenes
3.3. Statistical Analysis of the Influence of Light and Temperature on the Stability of Phenolic Compounds in Grape Stem Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodríguez, J.A.; Wasim Siddiqui, M.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential Uses and Applications of Treated Wine Waste: A Review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Roselló, C.; Teissedre, P.L. Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). J. Agric. Food Chem. 2012, 60, 11850–11858. [Google Scholar] [CrossRef]
- Piñeiro, Z.; Guerrero, R.F.; Fernández-Marin, M.I.; Cantos-Villar, E.; Palma, M. Ultrasound-Assisted Extraction of Stilbenoids from Grape Stems. J. Agric. Food Chem. 2013, 61, 12549–12556. [Google Scholar] [CrossRef]
- Ewald, P.; Delker, U.; Winterhalter, P. Quantification of Stilbenoids in Grapevine Canes and Grape Cluster Stems with a Focus on Long-Term Storage Effects on Stilbenoid Concentration in Grapevine Canes. Food Res. Int. 2017, 100, 326–331. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Galmarini, M.V.; Maury, C.; Mehinagic, E.; Sanchez, V.; Baeza, R.I.; Mignot, S.; Zamora, M.C.; Chirife, J. Stability of Individual Phenolic Compounds and Antioxidant Activity during Storage of a Red Wine Powder. Food Bioprocess Technol. 2013, 6, 3585–3595. [Google Scholar] [CrossRef] [Green Version]
- Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [Green Version]
- Hurst, W.J.; Krake, S.H.; Bergmeier, S.C.; Payne, M.J.; Miller, K.B.; Stuart, D.A. Impact of Fermentation, Drying, Roasting and Dutch Processing on Flavan-3-ol Stereochemistry in Cacao Beans and Cocoa Ingredients. Chem. Cent. J. 2011, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, M.; Ye, J.H.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Photo-Induced Chemical Reaction of trans-Resveratrol. Food Chem. 2015, 171, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Parra, D.F.; Lanari, M.C.; Zamora, M.C.; Chirife, J. Influence of Storage Conditions on Phenolic Compounds Stability, Antioxidant Capacity and Colour of Freeze-Dried Encapsulated Red Wine. LWT Food Sci. Technol. 2016, 70, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal Stability, Antioxidant Activity, and Photo-Oxidation of Natural Polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Prieto, M.A.; Barros, L.; Ferreira, I.C.F.R. Assessment of the Stability of Catechin-Enriched Extracts Obtained from Arbutus unedo L. Fruits: Kinetic Mathematical Modeling of pH and Temperature Properties on Powder and Solution Systems. Ind. Crops Prod. 2017, 99, 150–162. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin–Ciocalteu Reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of Grape (Vitis vinifera L.) Stems from Portuguese Varieties as a Resource of (poly)Phenolic Compounds: A Comparative Study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Helsel, D.R. Statistics for Censored Environmental Data Using Minitab® and R, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Noguchi, K.; Gel, Y.R.; Brunner, E.; Konietschke, F. nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. J. Stat. Softw. 2012, 50, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.; Higaki, N.T.F.; Montrucchio, D.P.; Oliveira, C.F.; Gomes, M.L.S.; Miguel, M.D.; Miguel, O.G.; Zanin, S.M.W.; Dias, J.F.G. Development of W1/O/W2 Emulsion with Gallic acid in the Internal Aqueous Phase. Food Chem. 2020, 314, 126174. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, A.; Lamas, J.P.; Guerra, E.; Kopjar, M.; Lores, M. Thermal Stability of Catechin and Epicatechin upon Disaccharides Addition. Int. J. Food Sci. Technol. 2018, 53, 1195–1202. [Google Scholar] [CrossRef]
- Dangles, O.; Fenger, J.A. The Chemical Reactivity of Anthocyanins and its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of Thermal Processing on Anthocyanin Stability in Foods; Mechanisms and Kinetics of Degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Hidalgo Togores, J. Tratado De Enología. Tomo II, 2nd ed.; Mundi-Prensa: Madrid, Spain, 2011. [Google Scholar]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Thermal Stability of Anthocyanins and Colorless Phenolics in Pomegranate (Punica granatum L.) Juices and Model Solutions. Food Chem. 2013, 138, 1800–1809. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH Degradation Kinetics of Anthocyanins in Natural Food Colorant Prepared from Black Rice Bran. J. Food Sci. Technol. 2016, 53, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Mao, Y.; Sui, L.; Yang, N.; Li, S.; Zhu, Z.; Wang, C.; Yin, S.; He, J.; He, Y. Degradation of Anthocyanins and Polymeric Color Formation during Heat Treatment of Purple Sweet Potato Extract at Different pH. Food Chem. 2019, 274, 460–470. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Marconi Germer, S.P.; Dutra Alvim, I.; de Aguirre, J.M. Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Dry. Technol. 2013, 31, 470–478. [Google Scholar] [CrossRef]
- Zorić, Z.; Pelaić, Z.; Pedisić, S.; Garofulić, I.E.; Bursać Kovačević, D.; Dragović-Uzelac, V. Effect of Storage Conditions on Phenolic Content and Antioxidant Capacity of Spray Dried Sour Cherry Powder. LWT Food Sci. Technol. 2017, 79, 251–259. [Google Scholar] [CrossRef]
- Holzschuh, M.H.; Silva, D.M.; Schapoval, E.E.S.; Bassani, V.L. Thermal and Photo Stability of Phenolic Constituents of an Achyrocline satureioides Spray-Dried Powder. Pharmazie 2007, 62, 902–906. [Google Scholar]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Yordi, E.G.; Molina Pérez, E.; Matos, M.J.; Villares, E.U. Antioxidant and pro-Oxidant Effects of Polyphenolic Compounds and Structure-Activity Relationship Evidence. In Nutrition, Well-Being and Health; Bouayed, J., Bohn, T., Eds.; InTech: Rijeka, Croatia, 2012; pp. 23–48. [Google Scholar]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The Biological Activities, Chemical Stability, Metabolism and Delivery Systems of Quercetin: A Review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Trela, B.C.; Waterhouse, A.L. Resveratrol: Isomeric Molar Absorptivities and Stability. J. Agric. Food Chem. 1996, 44, 1253–1257. [Google Scholar] [CrossRef]
- Francioso, A.; Boffi, A.; Villani, C.; Manzi, L.; D’Erme, M.; Macone, A.; Mosca, L. Isolation and Identification of 2,4,6-Trihydroxyphenanthrene as a Byproduct of trans-Resveratrol Photochemical Isomerization and Electrocyclization. J. Org. Chem. 2014, 79, 9381–9384. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Cela, R. Comprehensive Evaluation of the Photo-Transformation Routes of trans-Resveratrol. J. Chromatogr. A 2015, 1410, 129–139. [Google Scholar] [CrossRef]
- Willenberg, I.; Brauer, W.; Empl, M.T.; Schebb, J.N. Development of a Rapid LC-UV Method for the Investigation of Chemical and Metabolic Stability of Resveratrol Oligomers. J. Agric. Food Chem. 2012, 60, 7844–7850. [Google Scholar] [CrossRef]
- Silva, R.C.D.; Teixeira, J.A.; Nunes, W.D.G.; Zangaro, G.A.C.; Pivatto, M.; Caires, F.J.; Ionashiro, M. Resveratrol: A Thermoanalytical Study. Food Chem. 2017, 237, 561–565. [Google Scholar] [CrossRef]
- Sui, X.; Dong, X.; Zhou, W. Combined Effect of pH and High Temperature on the Stability and Antioxidant Capacity of Two Anthocyanins in Aqueous Solution. Food Chem. 2014, 163, 163–170. [Google Scholar] [CrossRef]
- Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Cua, B.L. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules 2018, 23, 84. [Google Scholar] [CrossRef] [Green Version]
- Moser, P.; Nicoletti Telis, V.R.; De Andrade Neves, N.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Storage Stability of Phenolic Compounds in Powdered BRS Violeta Grape Juice Microencapsulated with Protein and Maltodextrin Blends. Food Chem. 2017, 214, 308–318. [Google Scholar] [CrossRef]
Time (Months) | Storage Conditions | Antioxidant Capacity | Total Phenolic Content | |
---|---|---|---|---|
T (°C) | Vial | |||
0 | 0.45 ± 0.05 | 0.50 ± 0.01 | ||
2 | 25 | A | 0.33 ± 0.01 | 0.42 ± 0.01 |
T | 0.33 ± 0.01 | 0.44 ± 0.01 | ||
40 | A | 0.32 ± 0.01 | 0.40 ± 0.01 | |
T | 0.32 ± 0.01 | 0.40 ± 0.01 | ||
4 | 25 | A | 0.31 ± 0.02 | 0.44 ± 0.02 |
T | 0.32 ± 0.01 | 0.43 ± 0.01 | ||
40 | A | 0.31 ± 0.01 | 0.42 ± 0.01 | |
T | 0.29 ± 0.02 | 0.41 ± 0.01 | ||
6 | 25 | A | 0.33 ± 0.04 | 0.38 ± 0.06 |
T | 0.34 ± 0.03 | 0.38 ± 0.05 | ||
40 | A | 0.32 ± 0.03 | 0.36 ± 0.02 | |
T | 0.29 ± 0.01 | 0.33 ± 0.02 |
Time (Months) | Storage Conditions | Malvidin-3-Glucoside | Unknown Anthocyanin | |
---|---|---|---|---|
T (°C) | Vial | |||
0 | 0.13 ± 0.01 | 0.14 ± 0.01 | ||
2 | 25 | A | 0.09 ± 0.01 | 0.098 ± 0.001 |
T | 0.08 ± 0.01 | 0.09 ± 0.01 | ||
40 | A | 0.07 ± 0.01 | 0.070 ± 0.001 | |
T | tr | 0.056 ± 0.004 | ||
4 | 25 | A | tr | 0.067 ± 0.002 |
T | tr | 0.047 ± 0.002 | ||
40 | A | tr | 0.046 ± 0.005 | |
T | nd | tr | ||
6 | 25 | A | tr | 0.05 ± 0.01 |
T | tr | tr | ||
40 | A | nd | tr | |
T | nd | tr |
Storage Conditions | k (Month−1) | t1/2 (Month) | R2 |
---|---|---|---|
25 °C, protected from light | 0.167 ± 0.024 | 4.1 ± 0.6 | 0.997 |
25 °C, exposed to light | 0.255 ± 0.037 | 2.7 ± 0.4 | 0.981 |
40 °C, protected from light | 0.281 ± 0.039 | 2.6 ± 0.4 | 0.979 |
40 °C, exposed to light | 0.442 ± 0.070 | 1.6 ± 0.2 | 1.000 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esparza, I.; Cimminelli, M.J.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Stability of Phenolic Compounds in Grape Stem Extracts. Antioxidants 2020, 9, 720. https://doi.org/10.3390/antiox9080720
Esparza I, Cimminelli MJ, Moler JA, Jiménez-Moreno N, Ancín-Azpilicueta C. Stability of Phenolic Compounds in Grape Stem Extracts. Antioxidants. 2020; 9(8):720. https://doi.org/10.3390/antiox9080720
Chicago/Turabian StyleEsparza, Irene, María José Cimminelli, Jose Antonio Moler, Nerea Jiménez-Moreno, and Carmen Ancín-Azpilicueta. 2020. "Stability of Phenolic Compounds in Grape Stem Extracts" Antioxidants 9, no. 8: 720. https://doi.org/10.3390/antiox9080720
APA StyleEsparza, I., Cimminelli, M. J., Moler, J. A., Jiménez-Moreno, N., & Ancín-Azpilicueta, C. (2020). Stability of Phenolic Compounds in Grape Stem Extracts. Antioxidants, 9(8), 720. https://doi.org/10.3390/antiox9080720