Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement of AGEs in the Fingertip Skin
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Foster, A.; Resnikoff, S. The impact of Vision 2020 on global blindness. Eye 2005, 19, 1133–1135. [Google Scholar] [CrossRef] [Green Version]
- Iwase, A.; Araie, M.; Tomidokoro, A.; Yamamoto, T.; Shimizu, H.; Kitazawa, Y. Prevalence and causes of low vision and blindness in a Japanese adult population: The Tajimi Study. Ophthalmology 2006, 113, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef]
- Alvarado, J.A.; Murphy, C.G. Outflow obstruction in pigmentary and primary open angle glaucoma. Arch. Ophthalmol. 1992, 110, 1769–1778. [Google Scholar]
- Lütjen-Drecoll, E.; Shimizu, T.; Rohrbach, M.; Rohen, J.W. Quantitative analysis of “plaque material” in the inner- and outer wall of Schlemm’s canal in normal- and glaucomatous eyes. Exp. Eye Res. 1986, 42, 443–455. [Google Scholar] [CrossRef]
- Izzotti, A.; Bagnis, A.; Saccà, S.C. The role of oxidative stress in glaucoma. Mutat. Res. 2006, 612, 105–114. [Google Scholar] [CrossRef]
- Izzotti, A.; Longobardi, M.; Cartiglia, C.; Saccà, S.C. Mitochondrial damage in the trabecular meshwork occurs only in primary open-angle glaucoma and in pseudoexfoliative glaucoma. PLoS ONE 2011, 6, e14567. [Google Scholar] [CrossRef] [Green Version]
- Takai, Y.; Tanito, M.; Ohira, A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest. Ophthalmol. Vis. Sci. 2012, 53, 241–247. [Google Scholar] [PubMed] [Green Version]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS ONE 2012, 7, e49680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Horie, M.; Yoshida, Y. Comprehensive measurements of hydroxylinoleate and hydroxyarachidonate isomers in blood samples from primary open-angle glaucoma patients and controls. Sci. Rep. 2019, 9, 2171. [Google Scholar] [CrossRef] [PubMed]
- Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Yoshida, Y. Involvement of free radical-mediated oxidation in the pathogenesis of pseudoexfoliation syndrome detected based on specific hydroxylinoleate isomers. Free Radic. Biol. Med. 2020, 147, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Correlation between Systemic Oxidative Stress and Intraocular Pressure Level. PLoS ONE 2015, 10, e0133582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Association between systemic oxidative stress and visual field damage in open-angle glaucoma. Sci. Rep. 2016, 6, 25792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, E.; Himori, N.; Kunikata, H.; Omodaka, K.; Ogawa, H.; Ichinose, M.; Nakazawa, T. The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome. Acta Ophthalmol. 2018, 96, e479–e484. [Google Scholar] [CrossRef]
- Manabe, K.; Kaidzu, S.; Tsutsui, A.; Mochiji, M.; Matsuoka, Y.; Takagi, Y.; Miyamoto, E.; Tanito, M. Effects of French maritime pine bark/bilberry fruit extracts on intraocular pressure for primary open-angle glaucoma. J. Clin. Biol. Chem. (in print). [CrossRef]
- Monnier, V.M. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J. Gerontol. 1990, 45, B105–B111. [Google Scholar] [CrossRef]
- Tessier, F.J. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol. Biol. 2010, 58, 214–219. [Google Scholar] [CrossRef]
- Verzijl, N.; DeGroot, J.; Thorpe, S.R.; Bank, R.A.; Shaw, J.N.; Lyons, T.J.; Bijlsma, J.W.; Lafeber, F.P.; Baynes, J.W.; TeKoppele, J.M. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 2000, 275, 39027–39031. [Google Scholar] [CrossRef] [Green Version]
- Meerwaldt, R.; Graaff, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W.; Gans, R.O.B.; Smit, A.J. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 2004, 47, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Sugisawa, E.; Miura, J.; Iwamoto, Y.; Uchigata, Y. Skin autofluorescence reflects integration of past long-term glycemic control in patients with type 1 diabetes. Diabetes Care 2013, 36, 2339–2345. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, C.; Cougnard-Gregoire, A.; Rigalleau, V.; Dartigues, J.F.; Malet, F.; Rougier, M.B.; Delyfer, M.N.; Helmer, C.; Korobelnik, J.F.; Delcourt, C. Autofluorescence of Skin Advanced Glycation End Products as a Risk Factor for Open Angle Glaucoma: The ALIENOR Study. Invest. Ophthalmol. Vis. Sci. 2018, 59, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beisswenger, P.J.; Makita, Z.; Curphey, T.J.; Moore, L.L.; Jean, S.; Brinck-Johnsen, T.; Bucala, R.; Vlassara, H. Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes 1995, 44, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Kilhovd, B.K.; Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Torjesen, P.A.; Hanssen, K.F.; Laakso, M. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia 2007, 50, 1409–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordzij, M.J.; Mulder, D.J.; Oomen, P.H.; Brouwer, T.; Jager, J.; Castro Cabezas, M.; Lefrandt, J.D.; Smit, A.J. Skin autofluorescence and risk of micro- and macrovascular complications in patients with Type 2 diabetes mellitus-a multi-centre study. Diabet. Med. 2012, 29, 1556–1561. [Google Scholar] [CrossRef]
- Meerwaldt, R.; Links, T.P.; Graaff, R.; Hoogenberg, K.; Lefrandt, J.D.; Baynes, J.W.; Gans, R.O.; Smit, A.J. Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia 2005, 48, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Tabara, Y.; Ikezoe, T.; Yamanaka, M.; Setoh, K.; Segawa, H.; Kawaguchi, T.; Kosugi, S.; Nakayama, T.; Ichihashi, N.; Tsuboyama, T.; et al. Advanced Glycation End Product Accumulation Is Associated With Low Skeletal Muscle Mass, Weak Muscle Strength, and Reduced Bone Density: The Nagahama Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1446–1453. [Google Scholar] [CrossRef]
- Tabara, Y.; Yamanaka, M.; Setoh, K.; Segawa, H.; Kawaguchi, T.; Kosugi, S.; Nakayama, T.; Matsuda, F. Advanced Glycation End Product Accumulation is Associated with Lower Cognitive Performance in an Older General Population: The Nagahama Study. J. Alzheimers Dis. 2020, 74, 741–746. [Google Scholar] [CrossRef]
- Nowotny, K.; Jung, T.; Grune, T.; Höhn, A. Accumulation of modified proteins and aggregate formation in aging. Exp. Gerontol. 2014, 57, 122–131. [Google Scholar] [CrossRef]
- Dyer, D.G.; Dunn, J.A.; Thorpe, S.R.; Bailie, K.E.; Lyons, T.J.; McCance, D.R.; Baynes, J.W. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 1993, 91, 2463–2469. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, D.; Sun, L.; Lu, Y.; Zhang, Z. Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. J. Neurol. Sci. 2012, 317, 1–5. [Google Scholar] [CrossRef]
- Kandarakis, S.A.; Piperi, C.; Topouzis, F.; Papavassiliou, A.G. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog. Retin. Eye Res. 2014, 42, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Satish Kumar, M.; Mrudula, T.; Mitra, N.; Bhanuprakash Reddy, G. Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification. Exp. Eye Res. 2004, 79, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Murata, T.; Hangai, M.; Nagai, R.; Horiuchi, S.; Lopez, P.F.; Hinton, D.R.; Ryan, S.J. Advanced glycation end products in age-related macular degeneration. Arch. Ophthalmol. 1998, 116, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog. Retin. Eye Res. 2006, 25, 490–513. [Google Scholar] [CrossRef] [Green Version]
- Hondur, G.; Göktas, E.; Yang, X.; Al-Aswad, L.; Auran, J.D.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M.; Suh, L.H.; Trief, D.; et al. Oxidative Stress-Related Molecular Biomarker Candidates for Glaucoma. Invest. Ophthalmol. Vis. Sci. 2017, 58, 4078–4088. [Google Scholar] [CrossRef] [Green Version]
- Amano, S.; Kaji, Y.; Oshika, T.; Oka, T.; Machinami, R.; Nagai, R.; Horiuchi, S. Advanced glycation end products in human optic nerve head. Br. J. Ophthalmol. 2001, 85, 52–55. [Google Scholar] [CrossRef]
- Tezel, G.; Luo, C.; Yang, X. Accelerated aging in glaucoma: Immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest. Ophthalmol. Vis. Sci. 2007, 48, 1201–1211. [Google Scholar] [CrossRef]
- Bentata, R.; Cougnard-Grégoire, A.; Delyfer, M.N.; Delcourt, C.; Blanco, L.; Pupier, E.; Rougier, M.B.; Rajaobelina, K.; Hugo, M.; Korobelnik, J.F.; et al. Skin autofluorescence, renal insufficiency and retinopathy in patients with type 2 diabetes. J. Diabetes Complicat. 2017, 31, 619–623. [Google Scholar] [CrossRef]
- Yasuda, M.; Shimura, M.; Kunikata, H.; Kanazawa, H.; Yasuda, K.; Tanaka, Y.; Konno, H.; Takahashi, M.; Kokubun, T.; Maruyama, K.; et al. Relationship of skin autofluorescence to severity of retinopathy in type 2 diabetes. Curr. Eye Res. 2015, 40, 338–345. [Google Scholar] [CrossRef]
- Gerrits, E.G.; Lutgers, H.L.; Kleefstra, N.; Graaff, R.; Groenier, K.H.; Smit, A.J.; Gans, R.O.; Bilo, H.J. Skin autofluorescence: A tool to identify type 2 diabetic patients at risk for developing microvascular complications. Diabetes Care 2008, 31, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, M.; Matsumura, T.; Ohno, R.; Fujiwara, Y.; Shinagawa, M.; Sugawa, H.; Hatano, K.; Shirakawa, J.; Kinoshita, H.; Ito, K.; et al. Non-invasive measurement of skin autofluorescence to evaluate diabetic complications. J. Clin. Biochem. Nutr. 2016, 58, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, N.J.; Fluck, R.J.; McIntyre, C.W.; Taal, M.W. Skin autofluorescence and the association with renal and cardiovascular risk factors in chronic kidney disease stage 3. Clin. J. Am. Soc. Nephrol. 2011, 6, 2356–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Hollander, N.C.; Mulder, D.J.; Graaff, R.; Thorpe, S.R.; Baynes, J.W.; Smit, G.P.; Smit, A.J. Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia. J. Inherit. Metab. Dis. 2007, 30, 916–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, M.S.; Damanhouri, Z.A.; Kimhofer, T.; Mosli, H.H.; Holmes, E. A new gender-specific model for skin autofluorescence risk stratification. Sci. Rep. 2015, 5, 10198. [Google Scholar] [CrossRef] [Green Version]
- Noordzij, M.J.; Lefrandt, J.D.; Graaff, R.; Smit, A.J. Dermal factors influencing measurement of skin autofluorescence. Diabetes Technol. Ther. 2011, 13, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Koetsier, M.; Nur, E.; Chunmao, H.; Lutgers, H.L.; Links, T.P.; Smit, A.J.; Rakhorst, G.; Graaff, R. Skin color independent assessment of aging using skin autofluorescence. Opt. Express 2010, 18, 14416–14429. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Hu, H.; Koetsier, M.; Graaff, R.; Han, C. Reference values for the Chinese population of skin autofluorescence as a marker of advanced glycation end products accumulated in tissue. Diabet. Med. 2011, 28, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Mulder, D.J.; Water, T.V.; Lutgers, H.L.; Graaff, R.; Gans, R.O.; Zijlstra, F.; Smit, A.J. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: An overview of current clinical studies, evidence, and limitations. Diabetes Technol. Ther. 2006, 8, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Dinish, U.S.; Aguirre, J.; Bi, R.; Dev, K.; Attia, A.B.E.; Nitkunanantharajah, S.; Lim, Q.H.; Schwarz, M.; Yew, Y.W.; et al. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. J. Biophotonics 2019, 12, e201800442. [Google Scholar] [CrossRef]
- Chan, I.L.; Cohen, S.; da Cunha, M.G.; Maluf, L.C. Characteristics and management of Asian skin. Int. J. Dermatol. 2019, 58, 131–143. [Google Scholar] [CrossRef]
- Himori, N.; Kunikata, H.; Kawasaki, R.; Shiga, Y.; Omodaka, K.; Takahashi, H.; Miyata, T.; Nakazawa, T. The association between skin autofluorescence and mean deviation in patients with open-angle glaucoma. Br. J. Ophthalmol. 2017, 101, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Himori, N.; Kunikata, H.; Shiga, Y.; Omodaka, K.; Maruyama, K.; Takahashi, H.; Nakazawa, T. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawczynski, J.; Vater, C.; Kasper, M.; Franke, S.; Augsten, R.; Jurkutat, S.; Strobel, J.; Königsdörffer, E. Advanced glycation end products and pseudoexfoliation—Correlation between clinical outcome and histological findings. Klin Monbl Augenheilkd 2006, 223, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, Y.; Yue, B.Y. Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells from an ocular tissue: The trabecular meshwork. J. Cell. Physiol. 1999, 180, 182–189. [Google Scholar] [CrossRef]
- Yoshida, Y.; Umeno, A.; Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013, 52, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeno, A.; Shichiri, M.; Ishida, N.; Hashimoto, Y.; Abe, K.; Kataoka, M.; Yoshino, K.; Hagihara, Y.; Aki, N.; Funaki, M.; et al. Singlet oxygen induced products of linoleates, 10- and 12-(Z,E)-hydroxyoctadecadienoic acids (HODE), can be potential biomarkers for early detection of type 2 diabetes. PLoS ONE 2013, 8, e63542. [Google Scholar] [CrossRef] [Green Version]
- Thornalley, P.J. Pharmacology of methylglyoxal: Formation, modification of proteins and nucleic acids, and enzymatic detoxification—A role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 1996, 27, 565–573. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Westwood, M.; Lo, T.W.; McLellan, A.C. Formation of methylglyoxal-modified proteins in vitro and in vivo and their involvement in AGE-related processes. Contrib. Nephrol. 1995, 112, 24–31. [Google Scholar] [PubMed]
- Fu, M.X.; Wells-Knecht, K.J.; Blackledge, J.A.; Lyons, T.J.; Thorpe, S.R.; Baynes, J.W. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 1994, 43, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Beppu, M.; Kikugawa, K.; Nagai, R.; Horiuchi, S. Membrane proteins of human erythrocytes are modified by advanced glycation end products during aging in the circulation. Biochem. Biophys. Res. Commun. 1999, 258, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.X.; Requena, J.R.; Jenkins, A.J.; Lyons, T.J.; Baynes, J.W.; Thorpe, S.R. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem. 1996, 271, 9982–9986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholl, I.D.; Bucala, R. Advanced glycation endproducts and cigarette smoking. Cell. Mol. Biol. 1998, 44, 1025–1033. [Google Scholar] [PubMed]
- Cerami, C.; Founds, H.; Nicholl, I.; Mitsuhashi, T.; Giordano, D.; Vanpatten, S.; Lee, A.; Al-Abed, Y.; Vlassara, H.; Bucala, R.; et al. Tobacco smoke is a source of toxic reactive glycation products. Proc. Nat. Acad. Sci. USA 1997, 94, 13915–13920. [Google Scholar] [CrossRef] [Green Version]
Group | Control | PG | EG | p Value |
---|---|---|---|---|
n | 133 | 316 | 127 | |
Age (years) | ||||
Mean ± SD | 70.1 ± 16.1 | 69.6 ± 11.8 | 78.2 ± 8.9 | <0.0001a ** |
95% CI | 67.3 to 72.8 | 68.3 to 70.9 | 76.6 to 79.7 | |
vs control, p = 0.7020c | vs control, p < 0.0001c ## | |||
vs PG, p < 0.0001c ## | ||||
Sex | ||||
Male, n (%) | 39 (29) | 156 (49) | 59 (47) | 0.0004b ** |
Female, n (%) | 94 (71) | 160 (51) | 68 (53) | |
vs control, p = 0.0001d ## | vs control, p = 0.0049d # | |||
vs PG, p = 0.6004d | ||||
BCVA (logMAR) | ||||
Mean ± SD | 0.04 ± 0.11 | 0.18 ± 0.38 | 0.25 ± 0.37 | <0.0001a ** |
95% CI | 0.06 to 0.01 | 0.22 to 0.14 | 0.31 to 0.18 | |
vs control, p < 0.0001c ## | vs control, p < 0.0001c ## | |||
vs PG, p = 0.0517c | ||||
IOP (mmHg) | ||||
Mean ± SD | 14.4 ± 2.7 | 13.8 ± 4.3 | 13.9 ± 5.9 | 0.4169a |
95% CI | 13.9 to 14.9 | 13.3 to 14.2 | 12.9 to 15.0 | |
vs control, p = 0.1872c | vs control, p = 0.3872c | |||
vs PG, p = 0.7730c | ||||
Highest IOP (mmHg) | ||||
Mean ± SD | 15.2 ± 2.6 | 21.0 ± 7.9 | 27.9 ± 12.9 | <0.0001a ** |
95% CI | 14.8 to 15.7 | 20.2 to 21.9 | 25.6 to 30.1 | |
vs control, p < 0.0001c ## | vs control, p < 0.0001c ## | |||
vs PG, p < 0.0001c ## | ||||
No. glaucoma medications | ||||
Mean ± SD | 0 | 1.9 ± 1.4 | 1.7 ± 1.4 | <0.0001a ** |
95% CI | 1.8 to 2.1 | 1.5 to 1.9 | ||
vs control, p < 0.0001c ## | vs control, p < 0.0001c ## | |||
vs PG, p = 0.0428c | ||||
MD (dB) | - | |||
−13.4 ± 9.2 | −15.4 ± 10.4 | 0.0216a * | ||
−14.1 to −12.0 | −17.2 to 13.5 | |||
Pseudophakia | ||||
Yes, n (%) | 32 (24%) | 163 (52%) | 98 (77%) | <0.0001b ** |
No, n (%) | 101 (76) | 153 (48) | 29 (23) | |
vs control, p < 0.0001d ## | vs control, p < 0.0001d ## | |||
vs PG, p < 0.0001d ## | ||||
Current smoking | ||||
Yes, n (%) | 14 (11) | 34 (11) | 10 (8) | 0.6464b |
No, n (%) | 119 (89) | 282 (89) | 117 (92) | |
vs control, p = 1.0000d | vs control, p = 0.5241d | |||
vs PG, p = 0.4822d | ||||
Diabetes | ||||
Yes, n (%) | 32 (24%) | 40 (13%) | 16 (13%) | 0.0058b ** |
No, n (%) | 101 (76) | 276 (87) | 111 (87) | |
vs control, p = 0.0045d # | vs control, p = 0.0245d | |||
vs PG, p = 1.000d | ||||
Hypertension | ||||
Yes, n (%) | 52 (39%) | 164 (52%) | 73 (58%) | 0.0079b ** |
No, n (%) | 81 (61) | 152 (48) | 54 (42) | |
vs control, p = 0.0172d | vs control, p = 0.0042d ## | |||
vs PG, p = 0.2944d |
Group | Control | PG | EG | p Value |
---|---|---|---|---|
Mean ± SD | 0.56 ± 0.15 | 0.56 ± 0.11 | 0.61 ± 0.11 | <0.0001a ** |
95% CI | 0.54 to 0.59 | 0.54 to 0.57 | 0.60 to 0.63 | |
vs control, p = 0.5120b | vs control, p = 0.0007b ## | |||
vs PG, p < 0.0001b ## |
Parameters | r | Lower 95% CI | Upper 95% CI | p Value |
---|---|---|---|---|
Age (years) | 0.11 | 0.03 | 0.19 | 0.0063 * |
BCVA (logMAR) | 0.04 | −0.43 | 0.12 | 0.3540 |
IOP (mmHg) | −0.02 | −0.10 | 0.06 | 0.6473 |
Highest IOP (mmHg) | 0.00 | −0.06 | 0.11 | 0.5616 |
No. glaucoma medications | 0.03 | −0.05 | 0.11 | 0.4942 |
Parameters | Mean ± SD (95% CI) | Mean ± SD (95% CI) | p Value |
---|---|---|---|
Sex | Male, 0.59 ± 0.13 (0.58 to 0.61) | Female, 0.55 ± 0.11 (0.54 to 0.57) | <0.0001 ** |
Pseudophakia | No, 0.56 ± 0.12 (0.55 to 0.58) | Yes, 0.58 ± 0.12 (0.57 to 0.59) | 0.0384 * |
Pseudoexfoliation | No, 0.56 ± 0.12 (0.55 to 0.57) | Yes, 0.61 ± 0.11 (0.59 to 0.63) | <0.0001 ** |
Current smoking status | No, 0.58 ± 0.12 (0.57 to 0.59) | Yes, 0.52 ± 0.11 (0.50 to 0.55) | 0.0012 ** |
Diabetes | No, 0.57 ± 0.16 (0.59 to 0.58) | Yes, 0.59 ± 0.15 (0.56 to 0.63) | 0.0377 * |
Hypertension | No, 0.56 ± 0.13 (0.54 to 0.57) | Yes, 0.58 ± 0.11 (0.57 to 0.59) | 0.0151* |
Parameters | r | Lower 95% CI | Upper 95% CI | p Value | Standard β |
---|---|---|---|---|---|
Age (years) | 0.00 | 0.00 | 0.00 | 0.6048 | 0.03 |
Sex (male) | 0.03 | 0.02 | 0.04 | <0.0001 ** | 0.23 |
BCVA (logMAR) | 0.00 | -0.03 | 0.03 | 0.8099 | 0.01 |
IOP (mmHg) | 0.00 | 0.00 | 0.00 | 0.6698 | −0.02 |
Highest IOP (mmHg) | 0.00 | 0.00 | 0.00 | 0.1129 | −0.08 |
No. glaucoma medications | 0.00 | 0.00 | 0.01 | 0.3504 | 0.05 |
Pseudophakia (yes) | 0.00 | −0.01 | 0.01 | 0.7486 | 0.02 |
PG (/control) | −0.03 | −0.04 | −0.01 | 0.0002 ** | −0.18 |
EG (/control) | 0.03 | 0.02 | 0.05 | 0.0004 ** | 0.19 |
Current smoking (yes) | −0.04 | −0.06 | −0.02 | <0.0001 ** | −0.19 |
Diabetes (yes) | 0.02 | 0.00 | 0.03 | 0.0311 * | 0.09 |
Hypertension (yes) | 0.01 | −0.01 | 0.02 | 0.3190 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirakami, T.; Yamanaka, M.; Fujihara, J.; Matsuoka, Y.; Gohto, Y.; Obana, A.; Tanito, M. Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation. Antioxidants 2020, 9, 755. https://doi.org/10.3390/antiox9080755
Shirakami T, Yamanaka M, Fujihara J, Matsuoka Y, Gohto Y, Obana A, Tanito M. Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation. Antioxidants. 2020; 9(8):755. https://doi.org/10.3390/antiox9080755
Chicago/Turabian StyleShirakami, Tomoki, Mikihiro Yamanaka, Jo Fujihara, Yotaro Matsuoka, Yuko Gohto, Akira Obana, and Masaki Tanito. 2020. "Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation" Antioxidants 9, no. 8: 755. https://doi.org/10.3390/antiox9080755
APA StyleShirakami, T., Yamanaka, M., Fujihara, J., Matsuoka, Y., Gohto, Y., Obana, A., & Tanito, M. (2020). Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation. Antioxidants, 9(8), 755. https://doi.org/10.3390/antiox9080755