Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
- absence of pathological conditions that could cause alterations in the peripheral microcirculation of the oral mucosa such as: rheumatoid arthritis, Sjogren’s syndrome, oral lichen planus, pemphigus, pemphigoid, scleroderma, Hashimoto’s thyroiditis, hypertension, diabetes mellitus
- no taking of drugs
- good level of oral hygiene and good oral health [38]
- absence of exposure to risk factors, such as tobacco smoke and alcohol
- absence of exposure to radio and chemo-therapeutic agents
- not having contracted COVID-19 infection
- have had two doses of the anti-COVID-19 vaccine.
- Score 1:
- easy to focus (less than 30 s from the start of the exam)
- Score 2:
- relatively easy to focus (between 30 s and 2 min from the start of the exam)
- Score 3:
- difficult to focus (more than 2 min from the start of the exam)
- Score 4:
- impossible to focus.
- loop parallel to the surface
- loop perpendicular to the surface
- ring is parallel and perpendicular.
3. Results
- LEFT CHEEK MUCOSA
- The mean value (patients vaccinated with Pfizer) is 27.92 µm/mm2.
- The mean value (patients vaccinated with Moderna) is 21.03 µm/mm2.
- The difference between these two values is statistically negligible and not significant.
- The mean value (patients vaccinated with Pfizer) is 29.91 µm/mm2.
- The mean value (patients vaccinated with Moderna) is 22.42 µm/mm2.
- The difference between these two values is statistically negligible and not significant.
- The mean value (patients vaccinated with Pfizer) is 115.06 µm.
- The mean value (patients vaccinated with Moderna) is 116.28 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 30.59 µm.
- The mean value (of patients vaccinated with Moderna) is 31.76 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 7.01 µm.
- The mean value (of patients vaccinated with Moderna) is 7.41 µm.
- The difference between these two values is statistically negligible and not significant.
- RIGHTCHEEK MUCOSA
- The mean value (of patients vaccinated with Pfizer) is 26.69 µm/mm2.
- The mean value (of patients vaccinated with Moderna) is 16.34 µm/mm2.
- The difference between these two values is statistically significant.
- The mean value (of patients vaccinated with Pfizer) is 28.73 µm/mm2.
- The mean value (of patients vaccinated with Moderna) is 15.70 µm/mm2.
- The difference between these two values is statistically significant.
- The mean value (of patients vaccinated with Pfizer) is 127.79 µm.
- The mean value (of patients vaccinated with Moderna) is 123.46 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 29.08 µm.
- The mean value (of patients vaccinated with Moderna) is 30.18 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 7.49 µm.
- The mean value (of patients vaccinated with Moderna) is 8.13 µm.
- The difference between these two values is statistically negligible and not significant.
- INFERIOR LABIAL MUCOSA
- The mean value (of patients vaccinated with Pfizer) is 30.66 µm/mm2.
- The mean value (of patients vaccinated with Moderna) is 24.08 µm/mm2.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 32.75 µm/mm2.
- The mean value (of patients vaccinated with Moderna) is 27.79 µm/mm2.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 287.46 µm.
- The mean value (of patients vaccinated with Moderna) is 283.98 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 84.58 µm.
- The mean value (of patients vaccinated with Moderna) is 82.21 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 17.92 µm.
- The mean value (of patients vaccinated with Moderna) is 18.94 µm.
- The difference between these two values is statistically negligible and not significant.
- SUPERIOR LABIAL MUCOSA
- The mean value (of patients vaccinated with Pfizer) is 27.35 µm/mm2.
- The mean value (of patients vaccinated with Moderna) is 23.33 µm/mm2.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 30.41 µm/mm2.
- The mean value (of patients vaccinated with Moderna) is 25.97 µm/mm2.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 291.17 µm.
- The mean value (of patients vaccinated with Moderna) is 307.62 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 79.05 µm.
- The mean value (of patients vaccinated with Moderna) is 84.91 µm.
- The difference between these two values is statistically negligible and not significant.
- The mean value (of patients vaccinated with Pfizer) is 18.05 µm.
- The mean value (of patients vaccinated with Moderna) is 18.95 µm.
- The difference between these two values is statistically negligible and not significant.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haak, E.; Haak, T.; Grozinger, Y.; Krebs, G.; Usadel, K.H.; Kusterer, K. The impact of contralateral cooling on skin capillary blood cell velocity in patients with diabetes mellitus. J. Vasc. Res. 1998, 35, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Halfoun, V.L.; Pire, M.L.; Fernandes, T.J.; Victer, F.; Rodrigues, K.K.; Tavares, R. Videocapillaroscopy and diabetes mellitus: Area of transverse segment in naifold capillar loops reflects vascular reactivity. Diabetes Res. Clin. Pract. 2003, 61, 155–160. [Google Scholar] [CrossRef]
- Scardina, G.A.; Messina, P. Morphologic changes in the microcirculation induced by chronic smoking habit: A videocapillaroscopic study on the human gingival mucosa. Am. J. Dent. 2005, 18, 301–304. [Google Scholar] [PubMed]
- Maricq, H.L. Diagnostic potential of in vivo capillary microscopy in scleroderma and relate disorders. Arthritis Rheum. 1980, 23, 183. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, A.; Fagrell, B. Clinical Capillaroscopy—A Guide to Its Use in Clinical Research and Practice; Hogrefe & Huber Publishers: Bern, Germany, 1990. [Google Scholar]
- Merlen, J.F. Frontières Morphologiques et Frontières Fonctionnelles Entre Macrovaisseaux et Microvais-seaux. 1er Congrès Collège franc. Path. Vasculaire. Paris 1967. Expansion Scient. Edit. 1968. [Google Scholar]
- Bloch, E.H. A quantitative study of the hemodyna- mics il the living microvascular system. Am. J. Anat. 1962, 110, 125–145. [Google Scholar] [CrossRef]
- Siddiqui, H.K.; Libby, P.; Ridker, P.M. COVID-19—A vascular disease. Trends Cardiovasc. Med. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Gomez-Mesa, J.E.; Galindo-Coral, S.; Montes, M.C.; Munoz Martin, A.J. Thrombosis and coagulopathy in COVID-19. Curr. Probl. Cardiol. 2021, 46, 100742. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Tse, G.; Wu, M.; Jiang, J.; Liu, M.; Tao, L. Electrocardiographic characteristics in patients with coronavirus infection: A single-center observational study. Ann. Noninvasive Electrocardiol. 2020, 25, e12805. [Google Scholar] [CrossRef]
- Bugert, C.L.; Kwiat, V.; Valera, I.C.; Bugert, J.J.; Parvatiyar, M.S. Cardiovascular injury due to SARS-CoV-2. Curr. Clin. Microbiol. Rep. 2021, 8, 167–177. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Modulation of hemostasis in COVID-19; blood platelets may be important pieces in the COVID-19 puzzle. Pathogens 2021, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Abrignani, M.G.; Murrone, A.; De Luca, L.; Roncon, L.; Di Lenarda, A.; Valente, S.; Caldarola, P.; Riccio, C.; Oliva, F.; Gulizia, M.M.; et al. COVID-19, vaccini ed eventi trombotici [COVID-19, vaccines, and thrombotic events]. G. Ital. Cardiol. 2006, 22, 969–980. [Google Scholar] [CrossRef]
- Sharma, O.; Sultan, A.A.; Ding, H.; Triggle, C.R. A review of the progress and challenges of developing a vaccine for COVID-19. Front. Immunol. 2020, 11, 585354. [Google Scholar] [CrossRef]
- Sissa, C.; Al-Khaffaf, A.; Frattini, F.; Gaiardoni, R.; Mimiola, E.; Montorsi, P. Relapse of thrombotic thrombocytopenic purpura after COVID-19 vaccine. Transfus. Apher. Sci. 2021, 60, 103145. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Koniari, I.; de Gregorio, C.; Velissaris, D.; Petalas, K.; Brinia, A.; Assimakopoulos, S.F.; Gogos, C.; Kouni, S.N.; Kounis, G.N.; et al. Allergic reactions to current available COVID-19 vaccinations: Pathophysiology, causality, and therapeutic considerations. Vaccines 2021, 9, 221. [Google Scholar] [CrossRef]
- Elalamy, I.; Gerotziafas, G.; Alamowitch, S.; Laroche, J.P.; Van Dreden, P.; Ageno, W.; Beyer-Westendorf, J.; Cohen, A.T.; Jimenez, D.; Brenner, B.; et al. SARS-CoV-2 vaccine and thrombosis expert opinions. Thromb Haemost. 2021, 121, 982–991. [Google Scholar]
- Hippisley-Cox, J.; Patone, M.; Mei, X.W.; Saatci, D.; Dixon, S.; Khunti, K.; Zaccardi, F.; Watkinson, P.; Shankar-Hari, M.; Doidge, J.; et al. Risk of thrombocytopenia and thromboembolism after COVID-19 vaccination and SARS-CoV-2 positive testing:self-controlled case series study. BMJ 2021, 374, n1931. [Google Scholar] [CrossRef]
- Robichaud, J.; Côté, C.; Côté, F. Syndrome de fuite capillaire systémique après l’administration du vaccin ChAdOx1 nCOV-19 (Oxford–AstraZeneca). CMAJ Can. Med. Assoc. J. J. L’association Med. Can. 2021, 193, E1673–E1677. [Google Scholar] [CrossRef]
- Buj, M.; Morales-Varas, G.; Pedrosa-Guerrero, A.; Alonso-Ciria, E. Systemic capillary leak syndrome after SARS-CoV-2 infection and after COVID-19 vaccination: A scoping review in relation to a clinical case. Rev. Clin. Esp. 2022, 222, 374–376. [Google Scholar] [CrossRef]
- Medicines & Healthcare Products Regulatory Agency. Coronavirus Vaccine—Weekly Summary of Yellow Card Reporting; Medicines & Healthcare Products Regulatory Agency: London, UK, 2021. [Google Scholar]
- D’Agostino, V.; Caranci, F.; Negro, A.; Piscitelli, V.; Tuccillo, B.; Fasano, F.; Sirabella, G.; Marano, I.; Granata, V.; Grassi, R.; et al. A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated to the COVID-19 vaccine administration. J. Pers. Med. 2021, 11, 285. [Google Scholar] [CrossRef] [PubMed]
- Althaus, K.; Marini, I.; Zlamal, J.; Pelzl, L.; Singh, A.; Häberle, H.; Mehrländer, M.; Hammer, S.; Schulze, H.; Bitzer, M.; et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 2021, 137, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Tobaiqy, M.; Elkout, H.; MacLure, K. Analysis of thrombotic adverse reactions of COVID-19 AstraZeneca vaccine reported to EudraVigilance Database. Vaccines 2021, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Shay, D.K.; Gee, J.; Su, J.R.; Myers, T.R.; Marquez, P.; Liu, R. Safety monitoring of the Janssen (Johnson & Johnson) COVID-19 vaccine—United States, March–April 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 680–684. [Google Scholar] [PubMed]
- Meo, S.A.; Bukhari, I.A.; Akram, J.; Meo, A.S.; Klonoff, D.C. COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. EurRev. Med. Pharmacol. Sci. 2021, 25, 1663–1669. [Google Scholar]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Douxfils, J.; Favresse, J.; Dogné, J.M.; Lecompte, T.; Susen, S.; Cordonnier, C.; Lebreton, A.; Gosselin, R.; Sié, P.; Pernod, G.; et al. Hypotheses behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination. Thromb. Res. 2021, 203, 163–171. [Google Scholar] [CrossRef]
- Billy, E.; Clarot, F.; Depagne, C.; Korsia-Meffre, S.; Rochoy, M.; Zores, F. Thrombotic events after AstraZeneca vaccine: What if it was related to dysfunctional immune response? Therapie 2021, 76, 367–369. [Google Scholar] [CrossRef]
- Merchant, H.A. COVID vaccines and thrombotic events: Possibility of mRNA translation and spike protein synthesis by platelets? BMJ 2021, 372, n699. [Google Scholar]
- Scardina, G.A. The effect of cigar smoking on the lingual microcirculation. Odontology 2005, 93, 41–45. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Dotan, A.; Shoenfeld, Y. Perspectives on vaccine induced thrombotic thrombocytopenia. J. Autoimmun. 2021, 121, 102663. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.C.; Eisch, A.R.; Maleque, N.; Polly, D.M.; Auld, S.C.; Druey, K.M. Fatal Exacerbations of Systemic Capillary Leak Syndrome Complicating Coronavirus Disease. Emerg. Infect. Dis. 2021, 27, 2529–2534. [Google Scholar] [CrossRef] [PubMed]
- Druey, K.M.; Philip, R.G. Narrative review: The systemic capillary leak syndrome. Ann. Intern. Med. 2010, 153, 90–98. [Google Scholar] [CrossRef] [PubMed]
- AIFA: Vaxzevria/COVID-19 Vaccine Astrazeneca. Available online: https://www.aifa.gov.it/documents/20142/1313724/NII_Vaxzevria_Capillary_leak_syndrome_IT.pdf (accessed on 10 January 2021).
- Scardina, G.A.; Fucà, G.; Messina, P. Oral diseases in a patient affected with Prader-Willi syndrome. Eur. J. Paediatr. Dent. 2007, 8, 96–99. [Google Scholar]
- Spera, E.; Tegolo, D.; Valenti, C. Segmentation and feature extraction in capillaroscopic videos. ACM Int. Conf. Proceeding Ser. 2015, 1008, 244–251. [Google Scholar]
- Curri, S.B. Anatomia del microcircolo cutaneo: Nuove acquisizione morfo funzionali sulla microangiotettoni- ca distrettuale delle diverse regioni della superficie cu- tanea e mucosa, indagata con Videocapillaroscopia a Sonda Ottica (VCSO). Flebologia 1992, 3, 247–258. [Google Scholar]
- Curri, S.B. Anatomie microvasculaire de la pesu et des ses annexes. Phlebologie 1990. [Google Scholar]
- Scardina, G.A.; Carini, F.; Messina, P. L’esame capillaroscopico orale: Nuova metodica diagnostica Oral capillaroscopy: A new diagnostic method. Reumatismo 2005, 57, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Scardina, G.A.; Ruggieri, A.; Messina, P. Oral microcirculation observed in vivo by videocapillaroscopy: A review. J. Oral Sci. 2009, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Scardina, G.A.; Ruggieri, A.; Messina, P. Periodontal disease and sjogren syndrome: A possible correlation? Angiology 2010, 61, 289–293. [Google Scholar] [CrossRef]
- Scardina, G.A.; Messina, P. Smoking habit and labial microcirculation. Ital. J. Anat. Embryol. 2004, 109, 95–103. [Google Scholar] [PubMed]
- Scardina, G.A.; Messina, P. Study of the microcirculation of oral mucosa in healthy subjects. Ital. J. Anat. Embryol. 2003, 108, 39–48. [Google Scholar] [PubMed]
- Scardina, G.A.; Ruggieri, A.; Maresi, E.; Messina, P. Angiogenesis in oral lichen planus: An in vivo and immunohistological evaluation. Arch. Immunol. Ther. Exp. 2011, 59, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Scardina, G.A.; Messina, P. Microvascular characteristics of the human filiform papillae: A videocapillaroscopic study. Ann. Anat. 2006, 188, 183–186. [Google Scholar] [CrossRef]
- Scardina, G.A.; Fucà, G.; Messina, P. Microvascular characteristics of the human interdental papilla. Anat. Histol. Embryol. 2007, 36, 266–268. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquaro, A.; Brusca, G.; Casella, S.; Cumbo, E.M.; Valle, A.D.; Karobari, M.I.; Marino, G.; Marya, A.; Messina, P.; Scardina, G.A.; et al. Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study. Vaccines 2022, 10, 1978. https://doi.org/10.3390/vaccines10111978
Acquaro A, Brusca G, Casella S, Cumbo EM, Valle AD, Karobari MI, Marino G, Marya A, Messina P, Scardina GA, et al. Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study. Vaccines. 2022; 10(11):1978. https://doi.org/10.3390/vaccines10111978
Chicago/Turabian StyleAcquaro, Adriana, Giorgia Brusca, Sofia Casella, Enzo Maria Cumbo, Antonio Della Valle, Mohmed Isaqali Karobari, Giuseppe Marino, Anand Marya, Pietro Messina, Giuseppe Alessandro Scardina, and et al. 2022. "Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study" Vaccines 10, no. 11: 1978. https://doi.org/10.3390/vaccines10111978
APA StyleAcquaro, A., Brusca, G., Casella, S., Cumbo, E. M., Valle, A. D., Karobari, M. I., Marino, G., Marya, A., Messina, P., Scardina, G. A., Tegolo, D., Tocco, A., & Valenti, C. (2022). Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study. Vaccines, 10(11), 1978. https://doi.org/10.3390/vaccines10111978