Immunological Cross-Protection between Different Rabbit Hemorrhagic Disease Viruses—Implications for Rabbit Biocontrol and Vaccine Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Cross-Protection in Rabbits with Experimentally Acquired Immunity
2.3. Cross-Protection in Rabbits Vaccinated with a Prototype Vaccine
2.4. Cross-Protection in Rabbits with Naturally Acquired Immunity
2.5. Virus Challenge
2.6. Vaccine
2.7. Monitoring, Sample Collection
2.8. Data Analyses
2.9. Serological Testing
2.10. Molecular Testing
3. Results
3.1. Survival of Seronegative Rabbits Following Various RHDV Challenges
3.2. Survival of Rabbits with Experimentally Acquired Immunity Following GI.2 Challenge
3.3. Survival of Vaccinated Rabbits Following Various RHDV Challenges
3.4. Survival of Rabbits with Naturally Acquired Immunity Following Various RHDV Challenges
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooke, B.; Chudleigh, P.; Simpson, S.; Saunders, G. The economic benefits of the biological control of rabbits in Australia, 1950–2011. Aust. Econ. Hist. Rev. 2013, 53, 91–107. [Google Scholar] [CrossRef]
- Le Pendu, J.; Abrantes, J.; Bertagnoli, S.; Guitton, J.S.; Le Gall-Recule, G.; Lopes, A.M.; Marchandeau, S.; Alda, F.; Almeida, T.; Celio, A.P.; et al. Proposal for a unified classification system and nomenclature of lagoviruses. J. Gen. Virol. 2017, 98, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.E.; Ramsey, D.S.; Sawyers, E.; Campbell, S.; Matthews, J.; Elsworth, P. The impact of RHDV-K5 on rabbit populations in Australia: An evaluation of citizen science surveys to monitor rabbit abundance. Sci. Rep. 2019, 9, 15229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strive, T.; Cox, T.E. Lethal biological control of rabbits—The most powerful tools for landscape-scale mitigation of rabbit impacts in Australia. Aust. Zool. 2019, 40, 118–128. [Google Scholar] [CrossRef]
- Mahar, J.E.; Jenckel, M.; Huang, N.; Smertina, E.; Holmes, E.C.; Strive, T.; Hall, R.N. Frequent intergenotypic recombination between the non-structural and structural genes is a major driver of epidemiological fitness in caliciviruses. Virus Evol. 2021, 7, veab080. [Google Scholar] [CrossRef] [PubMed]
- Strive, T.; Wright, J.D.; Robinson, A.J. Identification and partial characterisation of a new lagovirus in Australian wild rabbits. Virology 2009, 384, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.N.; Mahar, J.E.; Haboury, S.; Stevens, V.; Holmes, E.C.; Strive, T. Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerg. Infect. Dis. 2015, 21, 2276–2278. [Google Scholar] [CrossRef]
- Taggart, P.L.; Hall, R.N.; Cox, T.E.; Kovaliski, J.; McLeod, S.R.; Strive, T. Changes in virus transmission dynamics following the emergence of RHDV2 shed light on its competitive advantage over previously circulating variants. Transbound. Emerg. Dis. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Mutze, G.; Cooke, B.; Alexander, P. The initial impact of rabbit hemorrhagic disease on European rabbit populations in South Australia. J. Wildl. Dis. 1998, 34, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Cooke, B.; Fenner, F. Rabbit haemorrhagic disease and the biological control of wild rabbits, Oryctolagus cuniculus, in Australia and New Zealand. Wildl. Res. 2002, 29, 689–706. [Google Scholar] [CrossRef]
- Read, A.; Kirkland, P. Efficacy of a commercial vaccine against different strains of rabbit haemorrhagic disease virus. Aust. Vet. J. 2017, 95, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Le Gall-Recule, G.; Lavazza, A.; Marchandeau, S.; Bertagnoli, S.; Zwingelstein, F.; Cavadini, P.; Martinelli, N.; Lombardi, G.; Guerin, J.L.; Lemaitre, E.; et al. Emergence of a new lagovirus related to Rabbit Haemorrhagic Disease Virus. Vet. Res. 2013, 44, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, J.M.; Ramírez, M.A.; Morales, M.; Bárcena, J.; Vázquez, B.; Espuña, E.; Pagès-Manté, A.; Sánchez-Vizcaíno, J.M. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease. Vaccine 2000, 19, 174–182. [Google Scholar] [CrossRef]
- Animal Medicines Australia. Pets in Australia: A National Survey of Pets and People. Available online: https://animalmedicinesaustralia.org.au/wp-content/uploads/2019/10/ANIM001-Pet-Survey-Report19_v1.7_WEB_high-res.pdf (accessed on 25 August 2021).
- Calvete, C.; Mendoza, M.; Alcaraz, A.; Sarto, M.P.; Jiménez-de-Bagüéss, M.P.; Calvo, A.J.; Monroy, F.; Calvo, J.H. Rabbit haemorrhagic disease: Cross-protection and comparative pathogenicity of GI.2/RHDV2/b and GI.1b/RHDV lagoviruses in a challenge trial. Vet. Microbiol. 2018, 219, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strive, T.; Elsworth, P.; Liu, J.; Wright, J.D.; Kovaliski, J.; Capucci, L. The non-pathogenic Australian rabbit calicivirus RCV-A1 provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on antibody titres. Vet. Res. 2013, 44, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, C.; Hrynkiewicz, R.; Bębnowska, D.; Maldonado, J.; Baratelli, M.; Köllner, B.; Niedźwiedzka-Rystwej, P. Immunity against Lagovirus europaeus and the Impact of the Immunological Studies on Vaccination. Vaccines 2021, 9, 255. [Google Scholar] [CrossRef]
- Strive, T.; Piper, M.; Huang, N.; Mourant, R.; Kovaliski, J.; Capucci, L.; Cox, T.E.; Smith, I. Retrospective serological analysis reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection. Transbound. Emerg. Dis. 2020, 67, 822–833. [Google Scholar] [CrossRef]
- Mahar, J.E.; Hall, R.N.; Peacock, D.; Kovaliski, J.; Piper, M.; Mourant, R.; Huang, N.; Campbell, S.; Gu, X.; Read, A. Rabbit hemorrhagic disease virus 2 (RHDV2; GI. 2) is replacing endemic strains of RHDV in the Australian landscape within 18 months of its arrival. J. Virol. 2018, 92, e01374-17. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.N.; King, T.; Connor, T.; Read, A.J.; Arrow, J.; Trought, K.; Duckworth, J.; Piper, M.; Strive, T. Age and Infectious Dose Significantly Affect Disease Progression after RHDV2 Infection in Naïve Domestic Rabbits. Viruses 2021, 13, 1184. [Google Scholar] [CrossRef]
- Hall, R.N.; King, T.; O’Connor, T.W.; Read, A.J.; Vrankovic, S.; Piper, M.; Strive, T. Passive Immunisation against RHDV2 Induces Protection against Disease but Not Infection. Vaccines 2021, 9, 1197. [Google Scholar] [CrossRef]
- Bahnemann, H.G. Binary ethylenimine as an inactivant for foot-and-mouth disease virus and its application for vaccine production. Arch. Virol. 1975, 47, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Abrantes, J.; Lopes, A.M. A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms 2021, 9, 972. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 September 2021).
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using ‘Ggplot2’. 2020. Available online: https://CRAN.R-project.org/package=survminer (accessed on 1 September 2021).
- Therneau, T. A Package for Survival Analysis in R; R Package Version 3.2-13; 2021; Available online: https://CRAN.R-project.org/package=survival (accessed on 1 September 2021).
- Liu, J.; Kerr, P.J.; Strive, T. A sensitive and specific blocking ELISA for the detection of rabbit calicivirus RCV-A1 antibodies. Virol. J. 2012, 9, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, B.J.; White, J.R.; Lenghaus, C.; Morrissy, C.J.; Westbury, H.A. Presence of rabbit haemorrhagic disease virus antigen in rabbit tissues as revealed by a monoclonal antibody dependent capture ELISA. J. Virol. Methods 1996, 58, 145–154. [Google Scholar] [CrossRef]
- Hall, R.N.; Mahar, J.E.; Read, A.J.; Mourant, R.; Piper, M.; Huang, N.; Strive, T. A strain-specific multiplex RT-PCR for Australian rabbit haemorrhagic disease viruses uncovers a new recombinant virus variant in rabbits and hares. Transbound. Emerg. Dis. 2018, 65, e444–e456. [Google Scholar] [CrossRef]
- Gall, A.; Hoffmann, B.; Teifke, J.P.; Lange, B.; Schirrmeier, H. Persistence of viral RNA in rabbits which overcome an experimental RHDV infection detected by a highly sensitive multiplex real-time RT-PCR. Vet. Microbiol. 2007, 120, 17–32. [Google Scholar] [CrossRef]
- Qin, S.; Underwood, D.; Driver, L.; Kistler, C.; Diallo, I.; Kirkland, P.D. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus. J. Vet. Diagn. Investig. 2018, 30, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Peacock, D.; Kovaliski, J.; Sinclair, R.; Mutze, G.; Iannella, A.; Capucci, L. RHDV2 overcoming RHDV immunity in wild rabbits (Oryctolagus cuniculus) in Australia. Vet. Rec. 2017, 180, 280. [Google Scholar] [CrossRef]
- Baratelli, M.; Molist-Badiola, J.; Puigredon-Fontanet, A.; Pascual, M.; Boix, O.; Mora-Igual, F.X.; Woodward, M.; Lavazza, A.; Capucci, L. Characterization of the Maternally Derived Antibody Immunity against Rhdv-2 after Administration in Breeding Does of an Inactivated Vaccine. Vaccines 2020, 8, 484. [Google Scholar] [CrossRef]
- Robinson, A.J.; So, P.T.M.; Müller, W.J.; Cooke, B.D.; Capucci, L. Statistical models for the effect of age and maternal antibodies on the development of rabbit haemorrhagic disease in Australian wild rabbits. Wildl. Res. 2002, 29, 663–671. [Google Scholar] [CrossRef]
- Calvete, C.; Capucci, L.; Lavazza, A.; Sarto, M.P.; Calvo, A.J.; Monroy, F.; Calvo, J.H. Changes in European wild rabbit population dynamics and the epidemiology of rabbit haemorrhagic disease in response to artificially increased viral transmission. Transbound. Emerg. Dis. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bárcena, J.; Guerra, B.; Angulo, I.; González, J.; Valcárcel, F.; Mata, C.P.; Castón, J.R.; Blanco, E.; Alejo, A. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles. Vet. Res. 2015, 46, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, R.J.; Brokstad, K.A.; Ogra, P. Influenza Virus: Immunity and Vaccination Strategies. Comparison of the Immune Response to Inactivated and Live, Attenuated Influenza Vaccines. Scand. J. Immunol. 2004, 59, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Immunity Status | Age at Challenge (Weeks) | Challenge Virus | Infectious Dose (RID50 1) | Survived/Total |
---|---|---|---|---|
Seronegative | 11 | GI.2 2 | 50 | 1/8 3 |
Seronegative | 16 | GI.1a | 1500 | 0/12 |
Seronegative | 16 | GI.1c | 1500 | 0/12 |
Seronegative | 16 | GI.22 | 1500 | 0/12 |
GI.4c | 11 | GI.22 | 50 | 7/9 |
GI.1a | 11 | GI.22 | 50 | 7/7 |
GI.1 4 | 12 | GI.22 | 150 | 9/10 |
GI.1 4 | 12 | GI.22 | 1500 | 5/9 |
GI.1 4 | 33 | GI.22 | 1500 | 1/7 |
GI.1 4 | 33 | GI.1a | 1500 | 7/7 |
GI.2 | 10–12 | GI.1a | 1500 | 1/4 |
GI.2 | 10–12 | GI.1c | 1500 | 2/3 |
GI.2 | 10–12 | GI.22 | 1500 | 3/4 |
GI.2 5 | 12 | GI.1a | 150 | 9/12 |
GI.2 5 | 12 | GI.1a | 1500 | 9/13 |
GI.2 5 | 12 | GI.2 2 | 150,000 | 12/12 |
Vaccination Status | Vaccine Dose (HAU 1) | Challenge Virus (Dose 1500 RID50) | Survived/Total |
---|---|---|---|
Seronegative | No vaccine | GI.1c | 0/12 |
Seronegative | No vaccine | GI.1a | 0/12 |
Seronegative | No vaccine | GI.2 2 | 0/12 |
GI.2 2 | 128 | GI.1c | 0/6 |
GI.2 2 | 128 | GI.1a | 0/6 |
GI.2 2 | 100 | GI.2 2 | 9/9 |
Multivalent | 96 | GI.1c | 6/6 |
Multivalent | 96 | GI.1a | 6/6 |
Multivalent | 96 | GI.2 2 | 6/6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, T.W.; Read, A.J.; Hall, R.N.; Strive, T.; Kirkland, P.D. Immunological Cross-Protection between Different Rabbit Hemorrhagic Disease Viruses—Implications for Rabbit Biocontrol and Vaccine Development. Vaccines 2022, 10, 666. https://doi.org/10.3390/vaccines10050666
O’Connor TW, Read AJ, Hall RN, Strive T, Kirkland PD. Immunological Cross-Protection between Different Rabbit Hemorrhagic Disease Viruses—Implications for Rabbit Biocontrol and Vaccine Development. Vaccines. 2022; 10(5):666. https://doi.org/10.3390/vaccines10050666
Chicago/Turabian StyleO’Connor, Tiffany W., Andrew J. Read, Robyn N. Hall, Tanja Strive, and Peter D. Kirkland. 2022. "Immunological Cross-Protection between Different Rabbit Hemorrhagic Disease Viruses—Implications for Rabbit Biocontrol and Vaccine Development" Vaccines 10, no. 5: 666. https://doi.org/10.3390/vaccines10050666
APA StyleO’Connor, T. W., Read, A. J., Hall, R. N., Strive, T., & Kirkland, P. D. (2022). Immunological Cross-Protection between Different Rabbit Hemorrhagic Disease Viruses—Implications for Rabbit Biocontrol and Vaccine Development. Vaccines, 10(5), 666. https://doi.org/10.3390/vaccines10050666