Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Vaccination Status
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Basic Characteristics
3.2. Risk Factors of Patient Progression to Pneumonia
3.3. Protective Effect of Inactivated COVID-19 Vaccines
3.4. Effect of Vaccination on Medical Resources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vitiello, A.; Ferrara, F.; Troiano, V.; La Porta, R. COVID-19 vaccines and decreased transmission of SARS-CoV-2. Inflammopharmacology 2021, 29, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Draft Landscape and Tracker of COVID-19 Candidate Vaccines. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 10 June 2022).
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.S. Asian-Origin Approved COVID-19 Vaccines and Current Status of COVID-19 Vaccination Program in Asia: A Critical Analysis. Vaccines 2021, 9, 600. [Google Scholar] [CrossRef]
- Updates of COVID-19 Vaccinations in China (to 29 May 2022). Available online: http://www.nhc.gov.cn/jkj/s7915/202205/2026b8ef1bcf45039af08ee14beee7c1.shtml (accessed on 10 June 2022).
- Updates of Novel Coronavirus Pneumonia (COVID-19) Caused by SARS-CoV-2 Infection (to 29 May 2022). Available online: http://www.gov.cn/xinwen/2022-05/30/content_5693002.htm (accessed on 10 June 2022).
- Patel, M.K.; Bergeri, I.; Bresee, J.S.; Cowling, B.J.; Crowcroft, N.S.; Fahmy, K.; Hirve, S.; Kang, G.; Katz, M.A.; Lanata, C.F.; et al. Evaluation of post-introduction COVID-19 vaccine effectiveness: Summary of interim guidance of the World Health Organization. Vaccines 2021, 39, 4013–4024. [Google Scholar] [CrossRef]
- Henry, D.A.; Jones, M.A.; Stehlik, P.; Glasziou, P.P. Effectiveness of COVID-19 vaccines: Findings from real world studies. Med. J. Aust. 2021, 215, 149–151.e1. [Google Scholar] [CrossRef]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Edara, V.V.; Hudson, W.H.; Xie, X.; Ahmed, R.; Suthar, M.S. Neutralizing Antibodies against SARS-CoV-2 Variants after Infection and Vaccination. JAMA 2021, 325, 1896–1898. [Google Scholar] [CrossRef]
- Planas, D.; Bruel, T.; Grzelak, L.; Guivel-Benhassine, F.; Staropoli, I.; Porrot, F.; Planchais, C.; Buchrieser, J.; Rajah, M.M.; Bishop, E.; et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 2021, 27, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A. Omicron emerges. New Sci. 2021, 252, 7. [Google Scholar] [CrossRef]
- He, X.; Hong, W.; Pan, X.; Lu, G.; Wei, X. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm 2021, 2, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.F.; Zheng, C.J.; Wang, L.P.; Geng, M.J.; Chen, H.; Zhou, S.; Ran, L.; Li, Z.; Zhang, Y.; Feng, Z.; et al. Interpretation of the protocol for prevention and control of COVID-19 in China (Edition 8). China CDC Wkly. 2021, 3, 527–530. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission of China. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 9). Available online: http://www.nhc.gov.cn/yzygj/s7653p/202203/b74ade1ba4494583805a3d2e40093d88.shtml (accessed on 10 June 2022). (In Chinese)
- World Health Organization. Update on Omicron. 28 November 2021. Available online: https://www.who.int/news/item/28-11-2021-update-on-omicron (accessed on 10 June 2022).
- Share of SARS-CoV-2 Sequences That Are the Omicron Variant, 20 September 2021 to 21 March 2022. Available online: https://ourworldindata.org/grapher/covid-cases-omicron?tab=chart&cou-try=GBR~FRA~BEL~DEU~ITA~ESP~USA~ZAF~BWA~AUS (accessed on 10 June 2022).
- Callaway, E. Omicron likely to weaken COVID vaccine protection. Nature 2021, 600, 367–368. [Google Scholar] [CrossRef]
- Brits, E.; Adepoju, P. Omicron Potential under Close Scrutiny. Available online: https://www.nature.com/articles/d44148-021-00119-9 (accessed on 10 June 2022).
- Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Amoako, D.G.; Everatt, J.; Bhiman, M.J.N.; Scheepers, C.; et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: A data linkage study. Lancet 2022, 399, 437–446. [Google Scholar] [CrossRef]
- Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared With Previous Waves. JAMA 2022, 327, 583–584. [Google Scholar] [CrossRef]
- Houhamdi, L.; Gautret, P.; Hoang, V.T.; Fournier, P.E.; Colson, P.; Raoult, D. Characteristics of the first 1119 SARS-CoV-2 Omicron variant cases, in Marseille, France, November-December 2021. J. Med. Virol. 2022, 94, 2290–2295. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.E.; Adab, P.; Cheng, K.K. COVID-19: Risk factors for severe disease and death. BMJ 2020, 368, m1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [Google Scholar] [CrossRef]
- Chenchula, S.; Karunakaran, P.; Sharma, S.; Chavan, M.; Chavan, M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J. Med. Virol. 2022, 94, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.-W.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S.; et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022, 602, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Dejnirattisai, W.; Huo, J.; Zhou, D.; Zahradník, J.; Supasa, P.; Liu, C.; Duyvesteyn, H.M.E.; Ginn, H.M.; Mentzer, A.J.; Tuekprakhon, A.; et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 2022, 185, 467–484.e15. [Google Scholar] [CrossRef]
- Andrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Thelwall, S.; Groves, N.; Dabrera, G.; et al. Duration of Protection against Mild and Severe Disease by COVID-19 Vaccines. N. Engl. J. Med. 2022, 386, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef]
- Huang, C.; Fei, L.; Xu, W.; Li, W.X.; Xie, X.D.; Li, Q.; Chen, L. Efficacy Evaluation of Thymosin Alpha 1 in Non-severe Patients with COVID-19: A Retrospective Cohort Study Based on Propensity Score Matching. Front. Med. 2021, 8, 664776. [Google Scholar] [CrossRef]
Characteristics | Clinical Outcome | Total | Statistics | p | ||
---|---|---|---|---|---|---|
Asymptomatic | Mild | Moderate | ||||
Genotype | ||||||
Delta | 13 (59.1%) | 36 (23.1%) | 62 (71.3%) | 111 (41.9%) | 56.196 | <0.001 |
Omicron | 9 (40.9%) | 120 (76.9%) | 25 (28.7%) | 154 (58.1%) | ||
Gender | ||||||
Male | 14 (63.6%) | 81 (51.9%) | 52 (59.8%) | 147 (55.5%) | 2.04 | 0.361 |
Female | 8 (36.4%) | 75 (48.1%) | 35 (40.2%) | 118 (44.5%) | ||
Age | ||||||
Mean (95% CI) | 38.9 (33.5–43.9) | 36.1 (33.4–38.8) | 49.3 (45.9–52.7) | 40.7 (38.6–42.8) | 18.103 | <0.001 |
<60 years | 22 (100%) | 144 (92.3%) | 71 (81.6%) | 237 (89.4%) | 9.599 | 0.008 |
≥60 years | (0%) | 12 (7.7%) | 16 (18.4%) | 28 (10.6%) | ||
History of disease | ||||||
Hypertension | ||||||
None | 19 (86.4%) | 140 (89.7%) | 68 (78.2%) | 227 (85.7%) | 6.11 | 0.047 |
Yes | 3 (13.6%) | 16 (10.3%) | 19 (21.8%) | 38 (14.3%) | ||
Diabetes | ||||||
None | 22 (100%) | 150 (96.2%) | 73 (83.9%) | 245 (92.5%) | 13.962 | 0.001 |
Yes | (0%) | 6 (3.8%) | 14 (16.1%) | 20 (7.5%) | ||
Heart disease | ||||||
None | 22 (100%) | 156 (100%) | 85 (97.7%) | 263 (99.2%) | 4.123 | 0.127 |
Yes | (0%) | (0%) | 2 (2.3%) | 2 (0.8%) | ||
COPD | ||||||
None | 22 (100%) | 156 (100%) | 87 (100%) | 265 (100%) | ||
Asthma | ||||||
None | 22 (100%) | 155 (99.4%) | 87 (100%) | 264 (99.6%) | 0.701 | 0.704 |
Yes | (0%) | 1 (0.6%) | (0%) | 1 (0.4%) | ||
Tumor | ||||||
None | 22 (100%) | 156 (100%) | 86 (98.9%) | 264 (99.6%) | 2.054 | 0.358 |
Yes | (0%) | (0%) | 1 (1.1%) | 1 (0.4%) | ||
Autoimmune disease | ||||||
None | 22 (100%) | 154 (98.7%) | 85 (97.7%) | 261 (98.5%) | 0.756 | 0.685 |
Yes | (0%) | 2 (1.3%) | 2 (2.3%) | 4 (1.5%) | ||
Vaccination status | ||||||
Unvaccinated | 2 (9.1%) | 16 (10.3%) | 20 (23%) | 38 (14.3%) | 16.137 | 0.013 |
Partially | (0%) | 3 (1.9%) | 4 (4.6%) | 7 (2.6%) | ||
Complete primary | 3 (13.6%) | 46 (29.5%) | 27 (31%) | 76 (28.7%) | ||
Completely booster | 17 (77.3%) | 91 (58.3%) | 36 (41.4%) | 144 (54.3%) | ||
Duration of hospitalization | ||||||
Mean (95% CI) | 15.5 (13.0–17.9) | 15.3 (14.6–16.0) | 17.9 (16.6–19.2) | 16.2 (15.5–16.8) | 6.673 | 0.001 |
Duration of Nucleic acid positive | ||||||
Mean (95% CI) | 14.2 (11.3–17.1) | 13.3 (12.4–14.0) | 14.3 (13.1–15.6) | 13.7 (13.0–14.3) | 0.984 | 0.375 |
Receiving Oxygen therapy | ||||||
Yes | 1 (4.5%) | 1 (0.6%) | 8 (9.2%) | 10 (3.8%) | 11.295 | 0.004 |
No | 21 (95.5%) | 155 (99.4%) | 79 (90.8%) | 255 (96.2%) | ||
Receiving intravenous drug use | ||||||
Yes | (0%) | 5 (3.2%) | 31 (35.6%) | 36 (13.6%) | 53.799 | <0.001 |
No | 22 (100%) | 151 (96.8%) | 56 (64.4%) | 229 (86.4%) | ||
Total | 22 (100%) | 156 (100%) | 87 (100%) | 265 (100%) |
Characteristics | Non-Pneumonia Cases | Pneumonia Cases | OR (95% CI) | p | ||
---|---|---|---|---|---|---|
(Asymptomatic + Mild) | (Moderate) | |||||
N | % | N | % | |||
All cases | ||||||
Vaccination status | ||||||
Unvaccinated or partially | 21 | 11.8% | 24 | 27.6% | Ref | |
Complete primary | 49 | 27.5% | 27 | 31.0% | 0.650 (0.257–1.643) | 0.362 |
Completely booster | 108 | 60.7% | 36 | 41.4% | 0.184 (0.076–0.444) | <0.001 |
Genotype | ||||||
Omicron | 129 | 72.5% | 25 | 28.7% | ||
Delta | 49 | 27.5% | 62 | 71.3% | 13 (6.263–26.982) | <0.001 |
Age | ||||||
<60 years | 166 | 93.3% | 71 | 81.6% | ||
≥60 years | 12 | 6.7% | 16 | 18.4% | 5.902 (1.852–18.809) | 0.003 |
History of diabetes | ||||||
None | 172 | 96.6% | 73 | 83.9% | ||
Yes | 6 | 3.4% | 14 | 16.1% | 4.888 (1.417–16.856) | 0.012 |
History of hypertension | ||||||
None | 159 | 89.3% | 68 | 78.2% | ||
Yes | 19 | 10.7% | 19 | 21.8% | 0.924 (0.377–2.263) | 0.863 |
Delta infected cases | ||||||
Vaccination status | ||||||
Unvaccinated or partially | 3 | 6.1% | 17 | 27.4% | Ref | |
Complete primary | 8 | 16.3% | 17 | 27.4% | 0.359 (0.079–1.626) | 0.184 |
Completely booster | 38 | 77.6% | 28 | 45.2% | 0.113 (0.03–0.434) | 0.001 |
Age | ||||||
<60 years | 49 | 100.0% | 56 | 90.3% | ||
≥60 years | 0 | 0.0% | 6 | 9.7% | No data | |
History of diabetes | ||||||
None | 47 | 95.9% | 55 | 88.7% | ||
Yes | 2 | 4.1% | 7 | 11.3% | 4.591 (0.849–24.832) | 0.077 |
History of hypertension | ||||||
None | 40 | 81.6% | 50 | 80.6% | ||
Yes | 9 | 18.4% | 12 | 19.4% | 0.787 (0.263–2.361) | 0.67 |
Omicron infected cases | ||||||
Vaccination status | ||||||
Unvaccinated or partially | 18 | 14.0% | 7 | 28.0% | Ref | |
Complete primary | 41 | 31.8% | 10 | 40.0% | 0.906 (0.256–3.203) | 0.878 |
Completely booster | 70 | 54.3% | 8 | 32.0% | 0.261 (0.069–0.986) | 0.048 |
Age | ||||||
<60 years | 117 | 90.7% | 15 | 60.0% | ||
≥60 years | 12 | 9.3% | 10 | 40.0% | 4.004 (1.052–15.232) | 0.042 |
History of diabetes | ||||||
None | 125 | 96.9% | 18 | 72.0% | ||
Yes | 4 | 3.1% | 7 | 28.0% | 6.187 (1.198–31.943) | 0.03 |
History of hypertension | ||||||
None | 119 | 92.2% | 18 | 72.0% | ||
Yes | 10 | 7.8% | 7 | 28.0% | 1.413 (0.323–6.191) | 0.646 |
Patients aged <60 years old | ||||||
Vaccination status | ||||||
Unvaccinated or partially | 20 | 12.0% | 17 | 23.9% | Ref | |
Complete primary | 48 | 28.9% | 23 | 32.4% | 0.643 (0.244–1.695) | 0.372 |
Completely booster | 98 | 59.0% | 31 | 43.7% | 0.215 (0.084–0.547) | 0.001 |
Genotype | ||||||
Omicron | 117 | 70.5% | 15 | 21.1% | ||
Delta | 49 | 29.5% | 56 | 78.9% | 11.578 (5.557–24.121) | <0.001 |
History of diabetes | ||||||
None | 162 | 97.6% | 66 | 93.0% | ||
Yes | 4 | 2.4% | 5 | 7.0% | 3.733 (0.799–17.433) | 0.094 |
History of hypertension | ||||||
None | 153 | 92.2% | 61 | 85.9% | ||
Yes | 13 | 7.8% | 10 | 14.1% | 0.996 (0.367–2.706) | 0.994 |
Patients aged ≥60 years old | ||||||
Vaccination status | ||||||
Unvaccinated or partially | 1 | 8.3% | 7 | 43.8% | ||
Complete primary | 1 | 8.3% | 4 | 25.0% | 0.591 (0.022–15.863) | 0.754 |
Completely booster | 10 | 83.3% | 5 | 31.3% | 0.059 (0.004–0.785) | 0.032 |
Genotype | ||||||
Omicron | 12 | 100.0% | 10 | 62.5% | ||
Delta | 0 | 0.0% | 6 | 37.5% | No data | |
History of diabetes | ||||||
None | 10 | 83.3% | 7 | 43.8% | ||
Yes | 2 | 16.7% | 9 | 56.3% | 8.861 (0.968–81.129) | 0.053 |
History of hypertension | ||||||
None | 6 | 50.0% | 7 | 43.8% | ||
Yes | 6 | 50.0% | 9 | 56.3% | 0.804 (0.099–6.522) | 0.838 |
Unvaccinated | Partially | Complete Primary | Completely Booster | p | |
---|---|---|---|---|---|
Pneumonia group | |||||
Duration of hospitalization | |||||
Mean (95% CI) | 21.7 (18.7, 24.7) | 16.3 (9.3, 23.2) | 17.7 (15.4, 20.1) | 16.1 (14.3, 18.0) | 0.009 |
Receiving Oxygen therapy | |||||
Yes | 5 (62.5%) | 0 (0%) | 3 (37.5%) | 0 (0%) | 0.012 |
No | 15 (19%) | 4 (5.1%) | 24 (30.4%) | 36 (45.6%) | |
Receiving intravenous drug use | |||||
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0.224 |
No | 18 (10.4%) | 3 (1.7%) | 49 (28.3%) | 103 (59.5%) | |
No-pneumonia group | |||||
Duration of hospitalization | |||||
Mean (95% CI) | 14.6 (12.5, 16.7) | 13.67 (9.9, 17.5) | 14.80 (13.6, 16.0) | 15.70 (14.8, 16.7) | 0.533 |
Receiving Oxygen therapy | |||||
Yes | 1 (50%) | 0 (0%) | 1 (50%) | 0 (0%) | 0.099 |
No | 17 (9.7%) | 3 (1.7%) | 48 (27.3%) | 108 (61.4%) | |
Receiving intravenous drug use | |||||
Yes | 10 (32.3%) | 2 (6.5%) | 10 (32.3%) | 9 (29%) | 0.428 |
No | 10 (17.9%) | 2 (3.6%) | 17 (30.4%) | 27 (48.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Song, R.; Yuan, Z.; Xu, Z.; Suo, L.; Wang, Q.; Li, Y.; Gao, Y.; Li, X.; Chen, X.; et al. Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022. Vaccines 2022, 10, 1215. https://doi.org/10.3390/vaccines10081215
Li J, Song R, Yuan Z, Xu Z, Suo L, Wang Q, Li Y, Gao Y, Li X, Chen X, et al. Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022. Vaccines. 2022; 10(8):1215. https://doi.org/10.3390/vaccines10081215
Chicago/Turabian StyleLi, Juan, Rui Song, Zheng Yuan, Zheng Xu, Luodan Suo, Qing Wang, Yuan Li, Yanlin Gao, Xiaomei Li, Xiaoyou Chen, and et al. 2022. "Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022" Vaccines 10, no. 8: 1215. https://doi.org/10.3390/vaccines10081215
APA StyleLi, J., Song, R., Yuan, Z., Xu, Z., Suo, L., Wang, Q., Li, Y., Gao, Y., Li, X., Chen, X., & Wu, J. (2022). Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022. Vaccines, 10(8), 1215. https://doi.org/10.3390/vaccines10081215