An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Coxiella burnetii Seed
2.2. Growth of C. burnetii in Embryonated Eggs and Preparation of OSP for Vaccine A
2.3. Growth of C. burnetii in Liquid Axenic Medium and Preparation of OSP for Vaccine B
2.4. Conjugation of OSP to TT
2.5. Chemical and Physical Analysis of Conjugates
2.6. Vaccination of Guinea Pigs and Challenge with Virulent C. burnetii
2.7. Microimmunfluoresence (IF) Serology of Guinea Pig Serum against C. burnetii
2.8. Quantitative PCR Assay for Detecting DNA of C. burnetii in Axenic Cultures and Guinea Pig Tissues
2.9. Statistical Analysis
3. Results
3.1. Analysis of Purified OSP and OSP-TT Conjugates
3.2. Egg Derived OSP–TT Conjugate (Vaccine A) Protects against Virulent C. burnetii Challenge
3.3. OSP from C. burnetii Grown in Axenic Media (Vaccine B) Equivalent to OSP Grown in Eggs (Vaccine A)
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Derrick, E.H. “Q” fever, a new fever entity: Clinical features, diagnosis and laboratory investigation. Med. J. Aust. 1937, 2, 281–299. [Google Scholar] [CrossRef]
- Davis, G.E.; Cox, H.R. A filter-passing infectious agent isolated from ticks. 1. Isolation from Dermacentor Andersoni; reactions in animals and filtration experiments. Public Health Rep. 1938, 53, 2259–2267. [Google Scholar] [CrossRef]
- Dyer, R.E. A filter-passing agent isolated from ticks. IV. Human infection. Public Health Rep. 1938, 53, 2277–2282. [Google Scholar]
- Maurin, M.; Raoult, D. Q-fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef]
- Clark, N.; Magalhaes, R.S. Airborne geopraphical dispersal of Q fever from livestock holdings to human communities: A systematic review and critical appraisal of evidence. BMC Infect. Dis. 2018, 18, 218. [Google Scholar] [CrossRef]
- Hooper, B.; Cameron, B.; Li, H.; Graves, S.; Stenos, J.; Hickie, I.; Wakefield, D.; Vollmer-Conna, U.; Lloyd, A.R. The natural history of acute Q fever: A prospective Australian cohort. QJM 2016, 109, 661–668. [Google Scholar] [CrossRef]
- Brezina, R.; Schramek, S.; Kazar, K.; Urvolgyi, J. Q-fever chemovaccine for human use. Acta. Virol. 1974, 18, 269. [Google Scholar]
- Kazar, J.; Schramek, S.; Lisak, V.; Brezina, R. Antigenicity of chloroform-methanol-treated Coxiella burnetii preparations. Acta Virol. 1987, 31, 158–167. [Google Scholar]
- Gajdosova, E.; Brezina, R. Cell-mediated immune responses to Coxiella burnetii antigens in Q fever convalescents and vacinees. Acta Virol. 1989, 33, 474–481. [Google Scholar]
- Smadel, J.E.; Snyder, M.J.; Robbins, F.C. Vaccination against Q Fever. Am. J. Hyg. 1948, 47, 71–81. [Google Scholar]
- Meikeljohn, G.; Lennette, E.H. Q fever in California. 1. Observations on vaccination of human beings. Am. J. Hyg. 1950, 52, 54–64. [Google Scholar]
- Benenson, A.S. Q fever vaccines: Efficacy and present status. In Symposium on Q Fever; Smadel, J.E., Ed.; Medical Science Publication No 6; Walter Reed Army Medical Center: Washington, DC, USA, 1959; pp. 47–60. [Google Scholar]
- Fries, L.F.; Waag, D.M.; Williams, J.C. Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever. Infect. Immun. 1993, 61, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Samuel, J. Vaccines against Coxiella infection. Exp. Rev. Vaccines 2004, 3, 577–584. [Google Scholar] [CrossRef]
- Waag, D.M.; England, M.J.; Bolt, C.R.; Williams, J.C. Low-dose priming before vaccination with the phase 1 chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii. Clin. Vaccine Immunol. 2008, 15, 1505–1512. [Google Scholar] [CrossRef]
- Long, C.M. Q fever vaccine development: Current strategies and future considerations. Pathogens 2021, 10, 1223. [Google Scholar] [CrossRef]
- Fratzke, A.P.; Jan, S.; Felgner, J.; Liang, L.; Nakajima, R.; Jasinskas, A.; Manna, S.; Nihesh, F.N.; Maiti, S.; Albin, T.J.; et al. Subunit vaccines using TLR triagonist combination adjuvants provide protection against Coxiella burnetii while minimizing reactogenic responses. Front. Immun. 2021, 12, 653092. [Google Scholar] [CrossRef] [PubMed]
- Marmion, B.P. Q fever: The long journey to control by vaccination. Med. J. Aust. 2007, 186, 164–165. [Google Scholar] [CrossRef]
- Ackland, J.R.; Worswick, D.A.; Marmion, B.P. Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-VAX (CSL) 1985–1990. Med. J. Aust. 1994, 160, 704–708. [Google Scholar] [CrossRef]
- Graves, S.R. A Concise Guide to Q Fever and Q Fever Vaccination; Seqirus, a CSL Company: Parkville, Australia, 2021. [Google Scholar]
- Gidding, H.F.; Faddy, H.M.; Durrheim, D.N.; Graves, S.R.; Nguyen, C.; Hutchinson, P.; Massey, P.; Wood, N. Seroprevalence of Q fever among metropolitan and non-metroploitan blood donors in New South Wales and Queensland, 2014–2015. Med. J. Aust. 2019, 210, 309–315. [Google Scholar] [CrossRef]
- Gidding, H.F.; Peng, C.Q.; Graves, S.; Massey, P.D.; Nguyen, C.; Stenos, J.; Quinn, H.E.; McIntyre, P.N.; Durrheim, D.H.; Wood, N. Q fever seroprevalence in Australia suggests one in twenty people have been exposed. Epidemiol. Infect. 2020, 148, e18. [Google Scholar] [CrossRef]
- Russell-Lodrigue, K.E.; Zhang, G.Q.; McMurray, D.N.; Samuel, J.E. Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect. Immun. 2006, 74, 6085–6091. [Google Scholar] [CrossRef] [PubMed]
- Bewley, K.R. Animal models of Q fever (Coxiella burnetii). Comp. Med. 2013, 63, 469–476. [Google Scholar]
- Tesfamariam, M.; Binette, P.; Long, C.M. Preclinical animal models for Q fever vaccine development. Front. Cell Infect Microbiol. 2022, 74, 828784. [Google Scholar] [CrossRef] [PubMed]
- Skultety, L.; Toman, R.; Patoprsty, V. A comparative study of lipopolysaccharides from two Coxiella burnetii strains considered to be associated with acute and chronic Q fever. Carbohyd. Polym. 1998, 35, 189–194. [Google Scholar] [CrossRef]
- Westphal, O.; Jann, K. Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. Meth. Carbohydr. Chem. 1965, 5, 83–91. [Google Scholar]
- Hartree, E.F. Determination of protein: Modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 1972, 48, 422–427. [Google Scholar] [CrossRef]
- Lowry, O.H.; Roberts, N.R.; Leiner, K.Y.; Wu, M.L.; Farr, A.L. The quantitative histochemistry of brain. 1. Chemical methods. J. Biol. Chem. 1954, 207, 1–17. [Google Scholar] [CrossRef]
- Brade, H.; Galanos, C.; Luderitz, O. Differential determination of the 3-deoxy-D-mannooctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur. J. Biochem. 1983, 131, 195–200. [Google Scholar] [CrossRef]
- Swann, D.A.; Balazs, E.A. Determination of the hexosamine content of macro-molecules with manual and automated techniques using the p-dimethylaminobenzaldehyde reaction. Biochim. Biophys. Acta 1966, 130, 112–129. [Google Scholar] [CrossRef]
- Lonngren, J.; Svensson, S. Mass spectroscopy in structural analysis of natural carbohydrates. Adv. Carbohydr. Chem. Biochem. 1974, 29, 41–106. [Google Scholar]
- Toman, R.; Skultety, L.; Ftacek, P.; Hricovini, M. NMR study of virenose and dihydrohydroxystreptose isolated from Coxiella burnetii phase 1 lipopolysaccharide. Carbohydr. Res. 1998, 306, 291–296. [Google Scholar] [CrossRef]
- Sanchez, S.E.; Vallejo-Esquerra, E.; Omsland, A. Use of axenic culture tools to study Coxiella burnetii. Curr. Protoc. Microbiol. 2018, 50, e52. [Google Scholar] [CrossRef] [PubMed]
- Kothari, S.; Kim, J.A.; Kothari, N.; Jones, C.; Choe, W.S.; Carbis, R. Purification of O-specific polysaccharide from lipopolysaccharide produced by Salmonella enterica serovar Paratyphi A. Vaccines 2014, 32, 2457–2462. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.A.; Melvin, E.H. Determination of dextran with anthrone. Anal. Chem. 1953, 25, 1656–1661. [Google Scholar] [CrossRef]
- Fields, R. The measurement of amino groups in proteins and peptides. Biochem. J. 1971, 124, 581–590. [Google Scholar] [CrossRef]
- WHO. Recommendations for the Production and Control of Meningococcal Group C Conjugate Vaccines; WHO Technical Report; Series No. 924; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Derrick, E.H. The course of infection with Coxiella burnetii. Med. J. Aust. 1973, 1, 1051–1057. [Google Scholar] [CrossRef]
- Marmion, B.P.; Shannon, M.; Maddocks, I.; Storm, P.; Pentilla, I. Protracted debility and fatigue after Q fever. Lancet 1996, 347, 977–978. [Google Scholar] [CrossRef]
- Kersh, G.J.; Bleeker-Rovers, C.P. Chapter 68, Coxiella. In Manual of Clinical Microbiology, 12th ed.; Carroll, K.C., Pfaller, M.A., Landry, M.L., McAdam, A.J., Eds.; ASM Press: Washington, DC, USA, 2019; p. 1180. [Google Scholar]
- Musso, D.; Raoult, D. Serological cross-reactions between Coxiella burnetii and Legionella micdadei. Clin. Diag. Lab. Immun. 1997, 4, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Scholzen, A.; Richard, G.; Moise, L.; Baeten, L.A.; Reeves, P.M.; Martin, W.D.; Brauns, T.A.; Boyle, C.M.; Paul, S.R.; Bucala, R.; et al. Promiscuous Coxiella burnetii CD4 epitope clusters associated with human recall responses are candidates for a novel T-cell targeted multi-epitope Q fever vaccine. Front. Immunol. 2019, 10, 207. [Google Scholar] [CrossRef]
- Fratzke, A.P.; Gregory, A.E.; van Schaik, E.J.; Samuel, J.E. Coxiella burnetii whole cell vaccine produces a Th1 delayed-type hypersensitivity response in a novel sensitized mouse model. Front. Immunol. 2021, 12, 754712. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.E.; van Schaik, E.J.; Fratzke, A.P.; Russell-Lodrigue, K.E.; Farris, C.M.; Samuel, J.E. Soluble antigens derived from Coxiella burnetii elicit protective immunity in three animal models without inducing hypersensitivity. Cell Rep. Med. 2021, 2, 100461. [Google Scholar] [CrossRef] [PubMed]
Source of OSP | Derived from | Protein % mg/g of OSP | Nucleic Acid % mg/g of OSP | Endotoxin EU/mL |
---|---|---|---|---|
Slovak Academy of Sciences | Embryonated eggs | 1.1 | 4.4 | 6.3 × 105 |
Deakin University | Axenic media | 0 | 1.9 | Not Done |
OSP Recovery % | TT Recovery % | Ratio of OSP: TT | ||
---|---|---|---|---|
w/w | Molar Ratio c | |||
Vaccine A a | 30.7 | 46.3 | 1.3 | 39 |
Vaccine B b | 83.4 | 109.0 | 1.5 | 45 |
Group | 1 | 2 | 3 |
---|---|---|---|
Dose of vaccine (µg) | Nil | Nil | 30 |
Challenge on day 57 | No | Yes | Yes |
Animals per group | 4 | 8 | 7 |
No. of febrile days b | 0 | 3.9 | 1.0 d |
Average weight (g) | 590 | 639 | 649 |
Weight change (%) c | +2.4 | −13.6 | −5.8 e |
Number of ANIMALS Tested a | GMT (Immunofluorescence Serology) | ||
---|---|---|---|
Phase I Cells | Phase II Cells | ||
Pre-challenge (Day 58) | 4 | <25 | <25 |
Post challenge (Day 80) | 7 | >800 | >1600 |
Vaccine Administered | None | None | Q-Vax | Vaccine B |
---|---|---|---|---|
Dose of vaccine (g) | Nil | Nil | 3 | 30 |
Challenge on day 30 | No | Yes | Yes | Yes |
Animals per group | 8 | 8 | 8 | 8 |
No. of febrile days | 0 | 3.9 | 0 | 0.4 |
Average weight (g) | 693 | 836 | 874 | 847 |
Weight change (%) | +6.4 | −11.2 | +3.2 | 0 |
DNA b detected in organs Number of animals positive (Geometric Mean of (positive only) samples) | ||||
Spleen | 0 | 6 (453) | 0 | 1 (178) |
Liver | 1 (854) c | 6 (2167) | 1 (1094) | 2 (578) |
Kidney | 3 (462) c | 8 (5976) | 2 (527) | 3 (3092) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graves, S.R.; Islam, A.; Webb, L.D.; Marsh, I.; Plain, K.; Westman, M.; Conlan, X.A.; Carbis, R.; Toman, R.; Stenos, J. An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii. Vaccines 2022, 10, 1393. https://doi.org/10.3390/vaccines10091393
Graves SR, Islam A, Webb LD, Marsh I, Plain K, Westman M, Conlan XA, Carbis R, Toman R, Stenos J. An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii. Vaccines. 2022; 10(9):1393. https://doi.org/10.3390/vaccines10091393
Chicago/Turabian StyleGraves, Stephen R., Aminul Islam, Lawrence D. Webb, Ian Marsh, Karren Plain, Mark Westman, Xavier A. Conlan, Rodney Carbis, Rudolf Toman, and John Stenos. 2022. "An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii" Vaccines 10, no. 9: 1393. https://doi.org/10.3390/vaccines10091393
APA StyleGraves, S. R., Islam, A., Webb, L. D., Marsh, I., Plain, K., Westman, M., Conlan, X. A., Carbis, R., Toman, R., & Stenos, J. (2022). An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii. Vaccines, 10(9), 1393. https://doi.org/10.3390/vaccines10091393