Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine—A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria and Outcomes
- MVA vs. comparator RCTs were included if they compared MVA vaccine versus no intervention, placebo, or another orthopox vaccine;
- Any particular MVA regimen vs. another MVA regimen-RCTs were included if they compared different dosages of MVA, formulations (liquid or lyophilized), routes of administration (subcutaneous [SC], intramuscular [IM], intradermal [ID]), and dilutions.
2.2. Search Strategy and Selection Criteria
2.3. Study Selection and Data Extraction
2.4. Statistical Analysis
3. Results
Study ID | Comparison | Study Population | MVA-Way of Administration | MVA-Dose | MVA-Formulation | Duration of Follow-Up (Longest) | No Randomized | Age | Previously Vaccinated | Primary Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Frey 2007 [20] | MVA (5 arms) vs. placebo | Healthy, vaccinia-naive | Arms 1-3: SC 2 MVA doses + Dryvax Arm 4: placebo Arm 5: SC 2 MVA doses + placebo Arm 6: IM 2 MVA doses + Dryvax | Arm 1: 2 × 107 TCID50 Arm 2: 5 × 107 TCID50Arm 3: 1 × 108 TCID50 Arm 5: 1 × 108 TCID50 Arm 6: 1 × 108 TCID50 | Lyophilized | 140 days | 90 | 18–32 | None | Adverse events, cellular and humoral immune responses, compare routes of administration (at days 14, 28, 42, 56, 112 and 140) |
Greenberg 2016 [15] | MVA vs. placebo * | Vaccinia-experienced | SC | Arm 1: 1 × 108 TCID50, second dose at 4 weeks Arm 2: placebo at day 0, MVA 1 × 108 TCID50 at 4 w | Liquid | Short 8–10 w; long 6 months | 120 | 56–80 | 100% | Safety in a vaccinia-experienced population after administration of either one or two doses of MVA |
Overton 2018 [21] | MVA (3 different lots) vs. placebo | Healthy, vaccinia-naive | SC | 1 × 108 TCID50 Second dose at 4 weeks | Liquid | 26 w after second dose | 4005 | 18–40 | None | Geometric Mean Titers (by PRNT) 2 w after second vaccination |
Parrino 2007 naïve [16] | MVA (1, 2, or 3 doses) vs. placeboDryvax at 12 w for all | Healthy, vaccinia-naive | IM | 1 × 108 TCID50 Either 1, 2 or 3 doses at week 0, 4, 12 | Liquid | 24 weeks after the last MVA/placebo dose | 76 | 18–32 | None | Safety and clinical protection against vaccinia (Dryvax®) challenge |
Parrino 2007 immune [16] | MVA (1 or 2 doses) vs. placebo Dryvax at 12 w for all | Healthy, vaccinia-immune | IM | 1 × 108 TCID50 Either 1 or 2 doses at week 0, 4 | Liquid | 24 weeks after the last MVA/placebo dose | 75 | 18–61 | 100% | Safety and clinical protection against vaccinia (Dryvax®) challenge |
Pittman 2019 [14] | MVA vs. ACAM2000 | Healthy persons | SC, over deltoid muscle | 1 × 108 TCID50 Second MVA dose at week 4; then ACAM2000 dose at week 8 | Liquid | 6 months after last vaccination | 440 | 18–42 | None | Geometric mean titers of neutralizing antibodies at 4 (ACAM) and 6 (MVA) weeks |
Walsh 2013 [17] | MVA (2 arms of different doses) vs. placebo | HSCT recipients (at least 2 years after transplant) | SC | Arm 1: 1 × 107 TCID50 Arm 2: 1 × 108 TCID50 Second MVA dose at week 4 for both arms | Liquid | Short: 56 days; long: 180 d | 24 | 18–60 | None | Safety and reactogenicity |
Zitzmann- Roth 2015 (and a following publication–Ilchmann 2023) [19,22] | MVA vs. placebo (3 arms–MVA 2 doses, MVA one dose, placebo) | Healthy, vaccinia-naive | SC | 1 × 108 TCID50 Arm 1: second MVA dose at week 4 Arm 2: second dose of placebo at week 4 Arm 3: 2 placebo doses, 0, 4 w | Liquid | Short—28–35 d after 2nd dose; long—6 m | 545 | 18–55 | None | Zitzmann-Roth: Safety–ECG changes and cardiac symptoms. Ilchmann: Geometric mean titers of neutralizing antibodies |
Study ID | Comparison | Study Population | Way of Administration | Dose | Formulation | Duration of Follow-Up (Longest) | No Randomized | Age | Previously Vaccinated | Primary Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Frey 2014 [23] | Dose–2 arms: high dose vs. standard dose | Healthy vaccinia- naïve individuals | SC, over deltoid muscle | High dose—5 × 108 TCID50 single dose vs. standard dose—1 × 108 TCID50 two doses (0, 28 d) | Liquid | Reactogenicity 14 days, adverse events 28 days | 90 | Median 26.5 (range 18–37) | None | Time-to-seroconversion after the first vaccination |
Frey 2015 [24] | Formulation, way of administration and dose–3 arms: 1. Lypophilized SC vs. 2. Liquid SC vs. 3. Liquid ID | Healthy vaccinia-naïve subjects | SC over deltoid/ID volar area of the forearm | Arm 1: 1 × 108 TCID50 Arm 2: 1 × 108 TCID50 Arm 3: 2 × 107 TCID50 All two doses (0, 28 d) | Lyophilized/liquid | Reactogenicity 28 days, adverse events 56 days | 524 | median 26.8 (range: 18–38) | None | Geometric mean peak |
von Krempelhuber 2010 [25] | Doses–3 arms: 1 × 108 TCID50 vs: 2 × 107 TCID50 vs: 5 × 107 TCID50 | Healthy vaccinia-naïve subjects | SC, over deltoid muscle | All two doses (0, 28 d) | Lyophilized | 84 days | 164 | 18–30 | None | Dose finding in terms of safety and immunogenicity |
Vollmar 2006 [26] | Dose, way of administration (5 groups) | Healthy male subjects Arms 1–4 vaccinia-naïve, arm 5 prior vaccinations | Arm 1: SC Arm 2: SC Arm 3: SC Arm 4: IM Arm 5: SC | Arm 1: 1 × 106 TCID50 Arm 2: 1 × 107 TCID50 Arm 3: 1 × 108 TCID50 Arm 4: 1 × 108 TCID50 Arm 5: 1 × 108 TCID50 Arms 1–4: two doses (0, 28 d); arm 5 one dose | Liquid | 106 days | 86 | 20–55 | 20% | safety and tolerability at different doses |
Jackson 2017 [27] | Way of administration, intervals | Healthy vaccinia-naïve subjects | SC over deltoid: Arms 1–3 by syringe and needle, arm 4 by jet injector | All: 1 × 108 TCID50 Arm 1: days 1, 29 Arm 2: days 1, 15 Arm 3: days 1, 22 Arm 4: days 1, 29 | Lyophilized | Reactogenicity 29 days after 2nd vaccine, adverse events 6 months | 435 | 18–40 | None | Non-inferiority of peak PRNT antibody levels |
Overton 2020 [18] | Dose, intervals | HIV positive, vaccinia-naïve adults | SC over deltoid | Arm 1: 0.5 × 108 TCID50 weeks 0, 4 Arm 2: 1 × 108 TCID50 weeks 0, 4 Arm 3: 0.5 × 108 TCID50 weeks 0, 4, 12 | Liquid | 12 month | 87 | 18–45 | None | Serious and/or unexpected adverse events |
Overton 2023 [28] | Lots (three consecutively manufactured lots of the freeze-dried MVA-BN vaccine) | Healthy adults | SC over deltoid | 1 × 108/0.5 mL dose; 2 doses, day 0, 28 | Lyophilized | 6 months | 1129 | 18–45 | None | Neutralizing antibody immune responses |
Frey 2013 [29] | MVA (2 arms) vs. placebo * | Healthy, vaccinia-naïve | SC | 1 × 108 TCID50 Arm 1: days 0, 7 Arm 2: days 0, 28 Arm 3: placebo | Liquid | Short: 14 days after last vaccination; long: 1 y | 208 | 18–35 | None | Geometric mean antibody titers (PRNT) at14 days post last vaccination |
3.1. Safety
3.1.1. Following Two MVA Doses (Combined Data)
3.1.2. Following a Single MVA Dose
3.1.3. Following Second MVA Dose Separately
3.2. Immunogenicity
3.3. Comparison of Different MVA Regimens
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Disease Outbreak News; Multi-Country Mpox Outbreak in Non-Endemic Countries; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385 (accessed on 15 July 2023).
- Kuehn, B.M. Newer Poxvirus Vaccine Is Recommended. JAMA 2022, 328, 123. [Google Scholar] [CrossRef]
- Cono, J.; Casey, C.G.; Bell, D.M.; Centers for Disease Control and Prevention. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2003, 52, 1–28. [Google Scholar]
- Casey, C.G.; Iskander, J.K.; Roper, M.H.; Mast, E.E.; Wen, X.J.; Török, T.J.; Chapman, L.E.; Swerdlow, D.L.; Morgan, J.; Heffelfinger, J.D.; et al. Adverse events associated with smallpox vaccination in the United States, January–October 2003. JAMA 2005, 294, 2734–2743. [Google Scholar] [CrossRef]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed]
- Mayr, A.; Hochstein-Mintzel, V.; Stickl, H. Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 1975, 3, 6–14. [Google Scholar] [CrossRef]
- Verheust, C.; Goossens, M.; Pauwels, K.; Breyer, D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 2012, 30, 2623–2632. [Google Scholar] [CrossRef]
- Suter, M.; Meisinger-Henschel, C.; Tzatzaris, M.; Hülsemann, V.; Lukassen, S.; Wulff, N.H.; Hausmann, J.; Howley, P.; Chaplin, P. Modified vaccinia Ankara strains with identical coding sequences actually represent complex mixtures of viruses that determine the biological properties of each strain. Vaccine 2009, 27, 7442–7450. [Google Scholar] [CrossRef] [PubMed]
- CDC (Centers for Disease Control and Prevention). Risk of Resurgent Mpox Outbreaks Warrants Increased Prevention Effort; CDC: Atlanta, GA, USA, 2023. Available online: https://www.cdc.gov/poxvirus/mpox/cases-data/risk-assessment/may-2023.html (accessed on 15 July 2023).
- World Health Organization (WHO). Vaccines and Immunization for Monkeypox; World Health Organization: Geneva, Switzerland, 2022; Available online: WHO-MPX-Immunization-2022.2-eng.pdf (accessed on 15 July 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T. Cochrane Handbook for Systematic Reviews of Interventions. Available online: www.handbook.cochrane.org (accessed on 15 July 2023).
- Troy, J.D.; Hill, H.R.; Ewell, M.G.; Frey, S.E. Sex difference in immune response to vaccination: A participant-level meta-analysis of randomized trials of IMVAMUNE smallpox vaccine. Vaccine 2015, 33, 5425–5431. [Google Scholar] [CrossRef]
- Pittman, P.R.; Hahn, M.; Lee, H.S.; Koca, C.; Samy, N.; Schmidt, D.; Hornung, J.; Weidenthaler, H.; Heery, C.R.; Meyer, T.P.; et al. Phase 3 Efficacy Trial of Modified Vaccinia Ankara as a Vaccine against Smallpox. N. Engl. J. Med. 2019, 381, 1897–1908. [Google Scholar] [CrossRef]
- Greenberg, R.N.; Hay, C.M.; Stapleton, J.T.; Marbury, T.C.; Wagner, E.; Kreitmeir, E.; Röesch, S.; von Krempelhuber, A.; Young, P.; Nichols, R.; et al. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects. PLoS ONE 2016, 11, e0157335. [Google Scholar] [CrossRef]
- Parrino, J.; McCurdy, L.H.; Larkin, B.D.; Gordon, I.J.; Rucker, S.E.; Enama, M.E.; Koup, R.A.; Roederer, M.; Bailer, R.T.; Moodie, Z.; et al. Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naïve and vaccinia-immune individuals. Vaccine 2007, 25, 1513–1525. [Google Scholar] [CrossRef]
- Walsh, S.R.; Wilck, M.B.; Dominguez, D.J.; Zablowsky, E.; Bajimaya, S.; Gagne, L.S.; Verrill, K.A.; Kleinjan, J.A.; Patel, A.; Zhang, Y.; et al. Safety and immunogenicity of modified vaccinia Ankara in hematopoietic stem cell transplant recipients: A randomized, controlled trial. J. Infect. Dis. 2013, 207, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Overton, E.T.; Lawrence, S.J.; Stapleton, J.T.; Weidenthaler, H.; Schmidt, D.; Koenen, B.; Silbernagl, G.; Nopora, K.; Chaplin, P. A randomized phase II trial to compare safety and immunogenicity of the MVA-BN smallpox vaccine at various doses in adults with a history of AIDS. Vaccine 2020, 38, 2600–2607. [Google Scholar] [CrossRef]
- Zitzmann-Roth, E.M.; von Sonnenburg, F.; de la Motte, S.; Arndtz-Wiedemann, N.; von Krempelhuber, A.; Uebler, N.; Vollmar, J.; Virgin, G.; Chaplin, P. Cardiac safety of Modified Vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS ONE 2015, 10, e0122653. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.E.; Newman, F.K.; Kennedy, J.S.; Sobek, V.; Ennis, F.A.; Hill, H.; Yan, L.K.; Chaplin, P.; Vollmar, J.; Chaitman, B.R.; et al. Clinical and immunologic responses to multiple doses of IMVAMUNE (Modified Vaccinia Ankara) followed by Dryvax challenge. Vaccine 2007, 25, 8562–8573. [Google Scholar] [CrossRef]
- Overton, E.T.; Lawrence, S.J.; Wagner, E.; Nopora, K.; Rösch, S.; Young, P.; Schmidt, D.; Kreusel, C.; De Carli, S.; Meyer, T.P.; et al. Immunogenicity and safety of three consecutive production lots of the non replicating smallpox vaccine MVA: A randomised, double blind, placebo controlled phase III trial. PLoS ONE 2018, 13, e0195897. [Google Scholar] [CrossRef]
- Ilchmann, H.; Samy, N.; Reichhardt, D.; Schmidt, D.; Powell, J.D.; Meyer, T.P.H.; Silbernagl, G.; Nichols, R.; Weidenthaler, H.; De Moerlooze, L.; et al. One- and Two-Dose Vaccinations with Modified Vaccinia Ankara-Bavarian Nordic Induce Durable B-Cell Memory Responses Comparable to Replicating Smallpox Vaccines. J. Infect. Dis. 2023, 227, 1203–1213. [Google Scholar] [CrossRef]
- Frey, S.E.; Winokur, P.L.; Hill, H.; Goll, J.B.; Chaplin, P.; Belshe, R.B. Phase II randomized, double-blinded comparison of a single high dose (5 × 108 TCID50) of modified vaccinia Ankara compared to a standard dose (1 × 108 TCID50) in healthy vaccinia-naïve individuals. Vaccine 2014, 32, 2732–2739. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.E.; Wald, A.; Edupuganti, S.; Jackson, L.A.; Stapleton, J.T.; El Sahly, H.; El-Kamary, S.S.; Edwards, K.; Keyserling, H.; Winokur, P.; et al. Comparison of lyophilized versus liquid modified vaccinia Ankara (MVA) formulations and subcutaneous versus intradermal routes of administration in healthy vaccinia-naïve subjects. Vaccine 2015, 33, 5225–5234. [Google Scholar] [CrossRef]
- von Krempelhuber, A.; Vollmar, J.; Pokorny, R.; Rapp, P.; Wulff, N.; Petzold, B.; Handley, A.; Mateo, L.; Siersbol, H.; Kollaritsch, H.; et al. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE. Vaccine 2010, 28, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Vollmar, J.; Arndtz, N.; Eckl, K.M.; Thomsen, T.; Petzold, B.; Mateo, L.; Schlereth, B.; Handley, A.; King, L.; Hülsemann, V.; et al. Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine 2006, 24, 2065–2070. [Google Scholar] [CrossRef]
- Jackson, L.A.; Frey, S.E.; El Sahly, H.M.; Mulligan, M.J.; Winokur, P.L.; Kotloff, K.L.; Campbell, J.D.; Atmar, R.L.; Graham, I.; Anderson, E.J.; et al. Safety and immunogenicity of a modified vaccinia Ankara vaccine using three immunization schedules and two modes of delivery: A randomized clinical non-inferiority trial. Vaccine 2017, 35, 1675–1682. [Google Scholar] [CrossRef]
- Overton, E.T.; Schmidt, D.; Vidojkovic, S.; Menius, E.; Nopora, K.; Maclennan, J.; Weidenthaler, H. A randomized phase 3 trial to assess the immunogenicity and safety of 3 consecutively produced lots of freeze-dried MVA-BN® vaccine in healthy adults. Vaccine 2023, 41, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.E.; Winokur, P.L.; Salata, R.A.; El-Kamary, S.S.; Turley, C.B.; Walter, E.B.; Hay, C.M.; Newman, F.K.; Hill, H.R.; Zhang, Y.; et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine 2013, 31, 3025–3033. [Google Scholar] [CrossRef]
- Rao, A.K.; Petersen, B.W.; Whitehill, F.; Razeq, J.H.; Isaacs, S.N.; Merchlinsky, M.J.; Campos-Outcalt, D.; Morgan, R.L.; Damon, I.; Sánchez, P.J.; et al. Use of JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 734–742. [Google Scholar] [CrossRef]
- Deputy, N.P.; Deckert, J.; Chard, A.N.; Sandberg, N.; Moulia, D.L.; Barkley, E.; Dalton, A.F.; Sweet, C.; Cohn, A.C.; Little, D.R.; et al. Vaccine Effectiveness of JYNNEOS against Mpox Disease in the United States. N. Engl. J. Med. 2023, 388, 2434–2443. [Google Scholar] [CrossRef]
- Dalton, A.F. Estimated Effectiveness of JYNNEOS Vaccine in Preventing Mpox: A Multijurisdictional Case-Control Study—United States, 19 August 2022–31 March 2023. Morb. Mortal. Wkly. Rep. 2023, 72, 553–558. Available online: https://www.cdc.gov/mmwr/volumes/72/wr/mm7220a3.htm (accessed on 30 June 2023). [CrossRef] [PubMed]
- Rosenberg, E.S. Effectiveness of JYNNEOS Vaccine against Diagnosed Mpox Infection—New York, 2022. Morb. Mortal. Wkly. Rep. 2023, 72, 559. Available online: https://www.cdc.gov/mmwr/volumes/72/wr/mm7220a4.htm (accessed on 30 June 2023). [CrossRef] [PubMed]
- Payne, A.B. Reduced Risk for Mpox after Receipt of 1 or 2 Doses of JYNNEOS Vaccine Compared with Risk among Unvaccinated Persons—43 U.S. Jurisdictions, 31 July–1 October 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 1560. Available online: https://www.cdc.gov/mmwr/volumes/71/wr/mm7149a5.htm (accessed on 23 June 2023). [CrossRef]
- Sagy, Y.W.; Zucker, R.; Hammerman, A.; Markovits, H.; Arieh, N.G.; Abu Ahmad, W.; Battat, E.; Ramot, N.; Carmeli, G.; Mark-Amir, A.; et al. Real-world effectiveness of a single dose of mpox vaccine in males. Nat. Med. 2023, 29, 748–752. [Google Scholar] [CrossRef]
- Bertran, M.; Andrews, N.; Davison, C.; Dugbazah, B.; Boateng, J.; Lunt, R.; Hardstaff, J.; Green, M.; Blomquist, P.; Turner, C.; et al. Effectiveness of one dose of MVA-BN smallpox vaccine against mpox in England using the case-coverage method: An observational study. Lancet Infect. Dis. 2023, 23, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.M.; Mitra, A.K.; Onumah, N.A.; Brown, A.; Jones, L.M.; Tresvant, D.; Brown, C.S.; Onyia, A.U.; Iseguede, F.O. Safety and Efficacy of Post-Eradication Smallpox Vaccine as an Mpox Vaccine: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2963. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) Suspension for Subcutaneous Injection Initial U.S. Approval: 2019; Food and Drug Administration: White Oak, MA, USA, 2023. Available online: https://www.fda.gov/media/131078/download (accessed on 15 July 2023).
- Gessain, A.; Nakoune, E.; Yazdanpanah, Y. Monkeypox. N. Engl. J. Med. 2022, 387, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.N.; Overton, E.T.; Haas, D.W.; Frank, I.; Goldman, M.; von Krempelhuber, A.; Virgin, G.; Bädeker, N.; Vollmar, J.; Chaplin, P. Safety, immunogenicity, and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J. Infect. Dis. 2013, 207, 749–758. [Google Scholar] [CrossRef]
- Overton, E.T.; Stapleton, J.; Frank, I.; Hassler, S.; Goepfert, P.A.; Barker, D.; Wagner, E.; von Krempelhuber, A.; Virgin, G.; Weigl, J.; et al. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2015; Volume 2, p. ofv040. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nave, L.; Margalit, I.; Tau, N.; Cohen, I.; Yelin, D.; Lienert, F.; Yahav, D. Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines 2023, 11, 1410. https://doi.org/10.3390/vaccines11091410
Nave L, Margalit I, Tau N, Cohen I, Yelin D, Lienert F, Yahav D. Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines. 2023; 11(9):1410. https://doi.org/10.3390/vaccines11091410
Chicago/Turabian StyleNave, Lior, Ili Margalit, Noam Tau, Ido Cohen, Dana Yelin, Florian Lienert, and Dafna Yahav. 2023. "Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine—A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Vaccines 11, no. 9: 1410. https://doi.org/10.3390/vaccines11091410
APA StyleNave, L., Margalit, I., Tau, N., Cohen, I., Yelin, D., Lienert, F., & Yahav, D. (2023). Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines, 11(9), 1410. https://doi.org/10.3390/vaccines11091410