Efficacy and Safety of Vaccinations in Geriatric Patients: A Literature Review
Abstract
:1. Introduction
2. Methods
3. Efficacy of Vaccines in the Elderly
4. Safety of Vaccines in the Elderly
5. Mortality and Vaccines in the Elderly
6. Vaccination and Antibiotics Resistance
7. Vaccination in the Immunocompromised Elderly
8. Vaccination Coverage: A Public Health Problem
- Burden of disease: The impact of a disease on morbidity, mortality, and healthcare costs influences the potential benefits of vaccination;
- Vaccine effectiveness: The effectiveness of a vaccine in preventing disease transmission and reducing its severity directly affects its cost-effectiveness;
- Immunization coverage: Higher vaccination rates within a population lead to greater overall protection and more cost-effective outcomes;
- Vaccine price: The cost of the vaccine itself can have a significant impact on the cost-effectiveness of a vaccination program.
- Healthcare costs: Vaccinations reduce the need for medical care, hospital stays, and related costs associated with treating vaccine-preventable diseases;
- Lost productivity: Vaccination prevents lost working days and productivity losses due to illness which has economic implications;
- Herd immunity: When a sufficient percentage of a population is immunized, herd immunity can develop, providing indirect protection to those who are not immunized;
- Vaccine safety: Addressing vaccine safety concerns is critical to maintaining public trust and encouraging participation.
- The resurgence of vaccine-preventable diseases: Low vaccination coverage can result in the resurgence of vaccine-preventable diseases (VPDs) such as measles, mumps, pertussis, and polio. These diseases can spread rapidly in communities with low immunity levels [125];
- Increased Disease Transmission: When vaccination rates are low, the overall level of community immunity (herd immunity) decreases. This allows diseases to spread more easily, including to vulnerable populations such as infants, elderly individuals, and those with compromised immune systems [126];
- Outbreak-Related Healthcare Costs: Disease outbreaks can strain healthcare systems, leading to increased hospitalizations and medical costs. Low vaccination coverage can exacerbate these costs, burdening both individuals and healthcare facilities [127];
- Impact on Vulnerable Populations: Low vaccination coverage disproportionately affects vulnerable populations, including infants who are too young to be vaccinated and those with medical contraindications to vaccination. These individuals are at higher risk of severe disease and complications [128];
- Loss of Public Trust: Ongoing vaccine hesitancy and low vaccination rates erode public trust in vaccines and public health systems. This can further reduce vaccine uptake, creating a vicious cycle of declining coverage and increased disease risk [129];
- International Disease Spread: Low vaccination coverage in one region or country can lead to international disease spread. Travelers can carry diseases across borders, resulting in outbreaks in areas with higher vaccination coverage [130];
- Impact on Eradication Efforts: For diseases targeted for eradication, such as polio and measles, low vaccination coverage hinders progress. It can make it difficult to achieve and sustain disease elimination goals [131].
9. Take Home Messages
- Vaccination is an important preventive measure to protect the health and well-being of older adults. It not only reduces the risk of severe infections but also decreases mortality rates associated with vaccine-preventable diseases;
- Many vaccine-preventable infections, such as pneumonia, meningitis, and certain respiratory and bloodstream infections, are commonly associated with antibiotic use. By vaccinating older adults against these diseases, the incidence of infections can be reduced, thereby potentially decreasing the need for antibiotics and reducing the selection pressure for antibiotic-resistant bacteria;
- The safety of vaccines in the elderly has been extensively studied and vaccines are generally considered safe for older adults. Vaccination plays a crucial role in protecting older individuals from vaccine-preventable diseases and their associated complications;
- Vaccines can significantly reduce the risk of infections and related complications. The efficacy of vaccines can be influenced by factors such as age, underlying health conditions, immune status, and the specific vaccine’s characteristics;
- Promoting the integration of various institutions and professionals in the field of health care should be considered to maintain successful national immunization programs;
- Promote a massive information campaign on the part of the scientific world, state health authorities, and various health operators which makes vaccination perceived as a healthy element of life, using high-quality forms of vaccination advice and thus further contributing to the increase in immunization rates in the elderly population and their caregivers.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McElhaney, J.E. Influenza vaccine responses in older adults. Ageing Res. Rev. 2011, 10, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013, 14, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.S.; Anandasabapathy, N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin. Immunopathol. 2017, 39, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Della Bella, S.; Bierti, L.; Presicce, P.; Arienti, R.; Valenti, M.; Saresella, M.; Vergani, C.; Villa, M.L. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin. Immunol. 2007, 122, 220–228. [Google Scholar] [CrossRef]
- Aiello, A.; Ligotti, M.E.; Garnica, M.; Accardi, G.; Calabrò, A.; Pojero, P.; Arasanz, H.; Bocanegra, A.; Blanco, E.; Chocarro, L.; et al. How Can We Improve Vaccination Response in Old People? Part I: Targeting Immunosenescence of Innate Immunity Cells. Int. J. Mol. Sci. 2022, 23, 9880. [Google Scholar] [CrossRef]
- Orsini, G.; Legitimo, A.; Failli, A.; Massei, F.; Biver, P.; Consolini, R. Enumeration of human peripheral blood dendritic cells throughout the life. Int. Immunol. 2012, 24, 347–356. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wagner, W.M.; Wikby, A.; Remarque, E.; Pawelec, G. Compromised interferon gamma (IFN-gamma) production in the elderly to both acute and latent viral antigen stimulation: Contribution to the immune risk phenotype? Eur. Cytokine Netw. 2002, 13, 392–394. [Google Scholar]
- Caruso, C.; Ligotti, M.E.; Accardi, G.; Aiello, A.; Candore, G. An immunologist’s guide to immunosenescence and its treatment. Expert. Rev. Clin. Immunol. 2022, 18, 961–981. [Google Scholar] [CrossRef]
- Aiello, A.; Farzaneh, F.; Candore, G.; Caruso, C.; Davinelli, S.; Gambino, C.M.; Ligotti, M.E.; Zareian, N.; Accardi, G. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019, 10, 2247. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Lee, W.W.; Weyand, C.M. Aging and T-cell diversity. Exp. Gerontol. 2007, 42, 400–406. [Google Scholar] [CrossRef]
- Torrance, B.L.; Haynes, L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front. Immunol. 2022, 13, 1006710. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Vismara, L.; Lucchi, L.; Viviani, B.; Govoni, S.; Galli, C.L.; Marinovich, M.; Racchi, M. High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly. J. Leukoc. Biol. 2006, 80, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Larbi, A.; Fülöp, T.; Pawelec, G. Immune receptor signaling, aging, and autoimmunity. Adv. Exp. Med. Biol. 2008, 640, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Phillips, M.; Lechner, S.C.; Ryan, J.G.; Blomberg, B.B. Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans. Vaccine 2010, 28, 8077–8084. [Google Scholar] [CrossRef]
- Rees-Spear, C.; McCoy, L.E. Vaccine responses in ageing and chronic viral infection. Oxf. Open Immunol. 2021, 2, iqab007. [Google Scholar] [CrossRef]
- Buffa, S.; Bulati, M.; Pellicanò, M.; Dunn-Walters, D.K.; Wu, Y.-C.; Candore, G.; Vitello, S.; Caruso, C.; Colonna-Romano, G. B cell immunosenescence: Different features of naive and memory B cells in elderly. Biogerontology 2011, 12, 473–483. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500. [Google Scholar] [CrossRef]
- Di Caro, V.; D’Anneo, A.; Phillips, B.; Engman, C.; Harnaha, J.; Lakomy, R.; Styche, A.; Trucco, M.; Giannoukakis, N. Interleukin-7 matures suppressive CD127+ forkhead box P3 (FoxP3)+ T cells into CD127- CD25high FoxP3+ regulatory T cells. Clin. Exp. Immunol. 2011, 165, 60–76. [Google Scholar] [CrossRef]
- Lages, C.S.; Suffia, I.; Velilla, P.A.; Huang, B.; Warshaw, G.; Hildeman, D.A.; Belkaid, Y.; Chougnet, C. Functional Regulatory T Cells Accumulate in Aged Hosts and Promote Chronic Infectious Disease Reactivation. J. Immunol. 2008, 181, 1835–1848. [Google Scholar] [CrossRef]
- Hwang, K.A.; Kim, H.R.; Kang, I. Aging and human CD4(+) regulatory T cells. Mech. Ageing Dev. 2009, 130, 509–517. [Google Scholar] [CrossRef]
- de Candia, P.; Procaccini, C.; Russo, C.; Lepore, M.T.; Matarese, G. Regulatory T cells as metabolic sensors. Immunity 2022, 55, 1981–1992. [Google Scholar] [CrossRef] [PubMed]
- McElhaney, J.E. Prevention of infectious diseases in older adults through immunization: The challenge of the senescent immune response. Expert Rev. Vaccines 2009, 8, 593–606. [Google Scholar]
- Andrew, M.K.; Bowles, S.K.; Pawelec, G.; Haynes, L.; Kuchel, G.A.; McNeil, S.A.; McElhaney, J.E. Influenza Vaccination in Older Adults: Recent Innovations and Practical Applications. Drugs Aging 2018, 36, 29–37. [Google Scholar] [CrossRef]
- Wen, S.; Wu, Z.; Zhong, S.; Li, M.; Shu, Y. Factors influencing the immunogenicity of influenza vaccines. Hum. Vaccin. Immunother. 2021, 17, 2706–2718. [Google Scholar] [CrossRef]
- Potluri, T.; Fink, A.L.; Sylvia, K.E.; Dhakal, S.; Vermillion, M.S.; Steeg, L.V.; Deshpande, S.; Narasimhan, H.; Klein, S.L. Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 2019, 4, 1–12. [Google Scholar] [CrossRef]
- Pinti, M.; De Biasi, S.; Gibellini, L.; Lo Tartaro, D.; De Gaetano, A.; Mattioli, M.; Fidanza, L.; Nasi, M.; Cossarizza, M. Aging of Immune System. In Human Aging; Caruso, C., Candore, G., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 113–128. [Google Scholar]
- Derhovanessian, E.; Pawelec, G. Vaccination in the elderly. Microb. Biotechnol. 2012, 5, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.Q.; Kennedy, R.B. Enhancing Immunogenicity of Influenza Vaccine in the Elderly through Intradermal Vaccination: A Literature Analysis. Viruses 2022, 14, 2438. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, H.; Wen, S.; Chen, J.; Lei, Y.; Cheng, Y.; Huang, W.; Wang, D.; Shu, Y. Factors affecting the immunogenicity of influenza vaccines in human. BMC Infect. Dis. 2023, 23, 1–11. [Google Scholar] [CrossRef]
- Buondonno, I.; Sassi, F.; Cattaneo, F.; D’Amelio, P. Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults. Cells 2022, 12, 44. [Google Scholar] [CrossRef]
- Garnica, M.; Aiello, A.; Ligotti, M.E.; Accardi, G.; Arasanz, H.; Bocanegra, A.; Blanco, E.; Calabrò, A.; Chocarro, L.; Echaide, M.; et al. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int. J. Mol. Sci. 2022, 23, 9797. [Google Scholar] [CrossRef]
- Rondy, M.; El Omeiri, N.; Thompson, M.G.; Levêque, A.; Moren, A.; Sullivan, S.G. Effectiveness of Influenza Vaccines in Preventing Severe Influenza Illness among Adults: A Systematic Review and Meta-Analysis of Test-Negative Design Case-Control Studies. J. Infect. 2017, 75, 381–394. [Google Scholar] [CrossRef]
- Van Werkhoven, C.H.; Huijts, S.M.; Bolkenbaas, M.; Grobbee, D.E.; Bonten, M.J.M. The Impact of Age on the Efficacy of 13-Valent Pneumococcal Conjugate Vaccine in Elderly. Clin. Infect. Dis. 2015, 61, 1835–1838. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.J.; Gross, J.; Bogaert, D.; Finn, A.; Bagrade, L.; Zhang, Q.; Kolls, J.K.; Srivastava, A.; Lundgren, A.; Forte, S.; et al. Interleukin-17A Mediates Acquired Immunity to Pneumococcal Colonization. PLoS Pathog. 2008, 4, e1000159. [Google Scholar] [CrossRef]
- Jackson, L.A.; Gurtman, A.; van Cleeff, M.; Jansen, K.U.; Jayawardene, D.; Devlin, C.; Scott, D.A.; Emini, E.A.; Gruber, W.C.; Schmoele-Thoma, B. Immunogenicity and safety of a 13-valent pneumococcal conjugate vaccine compared to a 23-valent pneumococcal polysaccharide vaccine in pneumococcal vaccine-naive adults. Vaccine 2013, 31, 3577–3584. [Google Scholar] [CrossRef] [PubMed]
- Lexau, C.A.; Lynfield, R.; Danila, R.; Pilishvili, T.; Facklam, R.; Farley, M.M.; Harrison, L.H.; Schaffner, W.; Reingold, A.; Bennett, N.M.; et al. Changing Epidemiology of Invasive Pneumococcal Disease Among Older Adults in the Era of Pediatric Pneumococcal Conjugate Vaccine. JAMA 2005, 294, 2043–2051. [Google Scholar] [CrossRef]
- Shapiro, E.D.; Berg, A.T.; Austrian, R.; Schroeder, D.; Parcells, V.; Margolis, A.; Adair, R.K.; Clemens, J.D. The Protective Efficacy of Polyvalent Pneumococcal Polysaccharide Vaccine. N. Engl. J. Med. 1991, 325, 1453–1460. [Google Scholar] [CrossRef]
- Zhou, F.; Kyaw, M.H.; Shefer, A.; Winston, C.A.; Nuorti, J.P. Health care utilization for pneumonia in young children after routine pneumococcal conjugate vaccine use in the United States. Arch. Pediatr. Adolesc. Med. 2007, 161, 1162–1168. [Google Scholar] [CrossRef]
- Grijalva, C.G.; Nuorti, J.P.; Arbogast, P.G.; Martin, S.W.; Edwards, K.M.; Griffin, M.R. Decline in pneumonia admissions after routine childhood immunisation with pneumococcal conjugate vaccine in the USA: A time-series analysis. Lancet 2007, 369, 1179–1186. [Google Scholar] [CrossRef]
- Weinberg, A.; Lazar, A.A.; Zerbe, G.O.; Hayward, A.R.; Chan, I.S.F.; Vessey, R.; Silber, J.L.; MacGregor, R.R.; Chan, K.; Gershon, A.A.; et al. Influence of Age Nature of Primary Infection on Varicella-Zoster Virus—Specific Cell-Mediated Immune Responses. J. Infect. Dis. 2010, 201, 1024. [Google Scholar] [CrossRef]
- Liu, X.; Chang, S.; Wang, R.; Xiao, Y.; Li, F.; Xu, Q.; Zhang, S.; Chen, X.; Zhang, S.; Zhang, M.; et al. Immunogenicity and Safety of an Inactivated Enterovirus 71 Vaccine Administered Simultaneously with Hepatitis B Virus Vaccine, Group A Meningococcal Polysaccharide Vaccine, Measles-Rubella Combined Vaccine and Japanese Encephalitis Vaccine: A Multi-Center, Randomized, Controlled Clinical Trial in China. Vaccines 2022, 10, 895. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Tenforde, M.W.; Rhoads, J.P.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Olson, S.M.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; et al. Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) Vaccines in Preventing COVID-19 Hospitalizations Among Adults Without Immunocompromising Conditions—United States, March–August 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1337–1343. [Google Scholar] [CrossRef]
- Forstner, C.; Kwetkat, A.; Schleenvoigt, B.; Pletz, M.W. Risikoimpfungen im Alter [Vaccinations in the elderly-who, when and which vaccine to use]. MMW Fortschr. Med. 2018, 160, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.T.; Boni, E.; Taborda-Barata, L.; Blain, H.; Bousquet, J. Anaphylaxis in elderly people. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 435–440. [Google Scholar]
- Oviedo-Orta, E.; Li, C.K.; Rappuoli, R. Perspectives on vaccine development for the elderly. Curr. Opin. Immunol. 2013, 25, 529–534. [Google Scholar] [CrossRef]
- Lu, P.-J.; Hung, M.-C.; Srivastav, A.; Grohskopf, L.A.; Kobayashi, M.; Harris, A.M.; Dooling, K.L.; Markowitz, L.E.; Rodriguez-Lainz, A.; Williams, W.W. Surveillance of Vaccination Coverage Among Adult Populations—United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–26. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N.; Rezza, G.; Bonanni, P.; Gavazzi, G.; Beyer, I.; Sulzner, M.; Celentano, L.P.; Prymula, R.; Rappagliosi, A.; et al. Vaccination of 50+ adults to promote healthy ageing in Europe: The way forward. Vaccine 2018, 36, 5819–5824. [Google Scholar] [CrossRef]
- Esposito, S.; Bonanni, P.; Maggi, S.; Tan, L.; Ansaldi, F.; Lopalco, P.L.; Dagan, R.; Michel, J.-P.; Van Damme, P.; Gaillat, J.; et al. Recommended immunization schedules for adults: Clinical practice guidelines by the Escmid Vaccine Study Group (EVASG), European Geriatric Medicine Society (EUGMS) and the World Association for Infectious Diseases and Immunological Disorders (WAidid). Hum. Vaccines Immunother. 2016, 12, 1777–1794. [Google Scholar] [CrossRef]
- Conklin, L.; Hviid, A.; Orenstein, W.A.; Pollard, A.J.; Wharton, M.; Zuber, P. Vaccine safety issues at the turn of the 21st century. BMJ Glob. Health 2021, 6 (Suppl. S2), e004898. [Google Scholar] [CrossRef]
- Zuber, P.L.F.; Gruber, M.; Kaslow, D.C.; Chen, R.T.; Giersing, B.K.; Friede, M.H. Evolving pharmacovigilance requirements with novel vaccines and vaccine components. BMJ Glob. Health 2021, 6 (Suppl. S2), e003403. [Google Scholar] [CrossRef]
- Gherardi, R.K.; Crépeaux, G.; Authier, F.J. Myalgia and chronic fatigue syndrome following immunization: Macrophagic myofasciitis and animal studies support linkage to aluminum adjuvant persistency and diffusion in the immune system. Autoimmun. Rev. 2019, 18, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T. Causal relationship between immunological responses and adverse reactions following vaccination. Vaccine 2019, 37, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.R.; Wansaula, Z.; Herrick, K.; Oren, E.; Ernst, K.; Olsen, S.J.; Casal, M.G. Mortality estimates among adult patients with severe acute respiratory infections from two sentinel hospitals in southern Arizona, United States, 2010–2014. BMC Infect. Dis. 2018, 18, 1–8. [Google Scholar] [CrossRef]
- Pumarola, T.; Díez-Domingo, J.; Martinón-Torres, F.; Margüello, E.R.; Leonardo, R.O.d.L.; Carmo, M.; Bizouard, G.; Drago, G.; López-Belmonte, J.L.; Bricout, H.; et al. Excess hospitalizations and mortality associated with seasonal influenza in Spain, 2008–2018. BMC Infect. Dis. 2023, 23, 1–16. [Google Scholar] [CrossRef]
- Bloom, A.S.; Suchindran, S.; Steinbrink, J.; McClain, M.T. Utility of predictive tools for risk stratification of elderly individuals with all-cause acute respiratory infection. Infection 2019, 47, 617–627. [Google Scholar] [CrossRef]
- Schoevaerdts, D.; Sibille, F.X.; Gavazzi, G. Infections in the older population: What do we know? Aging Clin. Exp. Res. 2021, 33, 689–701. [Google Scholar] [CrossRef]
- Park, C.M.; Kim, W.; Rhim, H.C.; Lee, E.S.; Kim, J.H.; Cho, K.H.; Kim, D.H. Frailty and hospitalization-associated disability after pneumonia: A prospective cohort study. BMC Geriatr. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Diks, A.M.; Overduin, L.A.; van Leenen, L.D.; Slobbe, L.; Jolink, H.; Visser, L.G.; van Dongen, J.J.M.; Berkowska, M.A. B-Cell Immunophenotyping to Predict Vaccination Outcome in the Immunocompromised—A Systematic Review. Front. Immunol. 2021, 12, 690328. [Google Scholar] [CrossRef]
- McElhaney, J.E.; Kuchel, G.A.; Zhou, X.; Swain, S.L.; Haynes, L. T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Front. Immunol. 2016, 7, 41. [Google Scholar] [CrossRef]
- Park, C.M.; Dhawan, R.; Lie, J.J.; Sison, S.M.; Kim, W.; Lee, E.S.; Kim, J.H.; Kim, D.H. Functional status recovery trajectories in hospitalised older adults with pneumonia. BMJ Open Respir. Res. 2022, 9, e001233. [Google Scholar] [CrossRef]
- Zhao, H.; Tu, J.; She, Q.; Li, M.; Wang, K.; Zhao, W.; Huang, P.; Chen, B.; Wu, J. Prognostic significance of frailty in hospitalized elderly patients with community-acquired pneumonia: A retrospective cohort study. BMC Geriatr. 2023, 23, 1–8. [Google Scholar] [CrossRef]
- Weinberger, B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun. Ageing 2021, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Oxman, M.; Levin, M.; Johnson, G.; Schmader, K.; Straus, S.; Gelb, L.; Arbeit, R.; Simberkoff, M.; Gershon, A.; Davis, L.; et al. A Vaccine to Prevent Herpes Zoster and Postherpetic Neuralgia in Older Adults. N. Engl. J. Med. 2005, 352, 2271–2284. [Google Scholar] [CrossRef] [PubMed]
- Curran, D.; Kim, J.H.; Msc, S.M.; Msc, C.D.; Levin, M.J.; Oostvogels, L.; Riley, M.E.; Schmader, K.E.; Cunningham, A.L.; McNeil, S.A.; et al. Recombinant Zoster Vaccine Is Efficacious and Safe in Frail Individuals. J. Am. Geriatr. Soc. 2020, 69, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Popmihajlov, Z.; Schmader, K.E.; Johnson, M.J.; Caldas, Y.; Salazar, A.T.; Canniff, J.; McCarson, B.J.; Martin, J.; Pang, L.; et al. Persistence of Varicella-Zoster Virus Cell-Mediated Immunity After the Administration of a Second Dose of Live Herpes Zoster Vaccine. J. Infect. Dis. 2018, 219, 335–338. [Google Scholar] [CrossRef]
- Flook, M.; Jackson, C.; Vasileiou, E.; Simpson, C.R.; Muckian, M.D.; Agrawal, U.; McCowan, C.; Jia, Y.; Murray, J.L.K.; Ritchie, L.D.; et al. Informing the public health response to COVID-19: A systematic review of risk factors for disease, severity, and mortality. BMC Infect. Dis. 2021, 21, 1–23. [Google Scholar] [CrossRef]
- Korompoki, E.; Gavriatopoulou, M.; Hicklen, R.S.; Ntanasis-Stathopoulos, I.; Kastritis, E.; Fotiou, D.; Stamatelopoulos, K.; Terpos, E.; Kotanidou, A.; Hagberg, C.A.; et al. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J. Infect. 2021, 83, 1–16. [Google Scholar] [CrossRef]
- Müller, L.; Di Benedetto, S. How Immunosenescence and Inflammaging May Contribute to Hyperinflammatory Syndrome in COVID-19. Int. J. Mol. Sci. 2021, 22, 12539. [Google Scholar] [CrossRef]
- Rivera-Torres, J.; Girón, N.; José, E.S. COVID-19: A Comprehensive Review on Cardiovascular Alterations, Immunity, and Therapeutics in Older Adults. J. Clin. Med. 2023, 12, 488. [Google Scholar] [CrossRef]
- Ciarambino, T.; Crispino, P.; Minervini, G.; Giordano, M. COVID-19 and Frailty. Vaccines 2023, 11, 606. [Google Scholar] [CrossRef]
- Zippi, M.; Fiorino, S.; Hong, W.; de Biase, D.; Gallo, C.G.; Grottesi, A.; Centorame, A.; Crispino, P. Post-COVID-19 cholangiopathy: A systematic review. World J. Meta-Anal. 2023, 11, 29–37. [Google Scholar] [CrossRef]
- Collier, D.A.; Ferreira, I.A.T.M.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; CITIID-NIHR BioResource COVID-19 Collaboration; Elmer, A.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Oyebanji, O.A.; Mylonakis, E.; Canaday, D.H. Vaccines for the Prevention of Coronavirus Disease 2019 in Older Adults. Infect Dis. Clin. North Am. 2023, 37, 27–45. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Hall, V.J.; Foulkes, S.; Saei, A.; Andrews, N.; Oguti, B.; Charlett, A.; Wellington, E.; Stowe, J.; Gillson, N.; Atti, A.; et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): A prospective, multicentre, cohort study. Lancet 2021, 397, 1725–1735. [Google Scholar] [CrossRef]
- Mazagatos, C.; Monge, S.; Olmedo, C.; Vega, L.; Gallego, P.; Martín-Merino, E.; Sierra, M.J.; Limia, A.; Larrauri, A. Working Group for the surveillance and control of COVID-19 in Spain Effectiveness of mRNA COVID-19 vaccines in preventing SARS-CoV-2 infections and COVID-19 hospitalisations and deaths in elderly long-term care facility residents, Spain, weeks 53 2020 to 13 2021. Wkly. Releases (1997–2007) 2021, 26, 2100452. [Google Scholar] [CrossRef]
- Harder, T.; Koch, J.; Vygen-Bonnet, S.; Külper-Schiek, W.; Pilic, A.; Reda, S.; Scholz, S.; Wichmann, O. Efficacy and effectiveness of COVID-19 vaccines against SARS-CoV-2 infection: Interim results of a living systematic review, 1 January to 14 May 2021. Wkly. Releases (1997–2007) 2021, 26, 2100563. [Google Scholar] [CrossRef]
- Klugman, K.P.; Black, S. Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects. Proc. Natl. Acad. Sci. USA 2018, 115, 12896–12901. [Google Scholar] [CrossRef]
- Yemeke, T.; Chen, H.H.; Ozawa, S. Economic and cost-effectiveness aspects of vaccines in combating antibiotic resistance. Hum. Vaccin. Immunother. 2023, 19, 2215149. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Poolman, J.T.; Anderson, A.S. Escherichia coli and Staphylococcus aureus: Leading bacterial pathogens of healthcare-associated infections and bacteremia in older-age populations. Expert. Rev. Vaccines 2018, 17, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Jasovský, D.; Littmann, J.; Zorzet, A.; Cars, O. Antimicrobial resistance-a threat to the world’s sustainable development. Ups. J. Med. Sci. 2016, 121, 159–164. [Google Scholar] [CrossRef]
- Bronzwaer, S.L.; Cars, O.; Buchholz, U.; Mölstad, S.; Goettsch, W.; Veldhuijzen, I.K.; Kool, J.L.; Sprenger, M.J.; Degener, J.E.; System, P.I.T.E.A.R.S. The Relationship between Antimicrobial Use and Antimicrobial Resistance in Europe. Emerg. Infect. Dis. 2002, 8, 278–282. [Google Scholar] [CrossRef]
- Naylor, N.R.; Zhu, N.; Hulscher, M.; Holmes, A.; Ahmad, R.; Robotham, J.V. Is antimicrobial stewardship cost-effective? A narrative review of the evidence. Clin. Microbiol. Infect. 2017, 23, 806–811. [Google Scholar] [CrossRef]
- Davey, P.; Marwick, C.A.; Scott, C.L.; Charani, E.; McNeil, K.; Brown, E.; Gould, I.M.; Ramsay, C.R.; Michie, S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 2017, CD003543. [Google Scholar] [CrossRef]
- Carter, D.; Duthie, M.S.; Reed, S.G. Adjuvants. Curr. Top. Microbiol. Immunol. 2020, 428, 103–127. [Google Scholar] [CrossRef]
- Meyer, C.U.; Zepp, F. Principles in Immunology for the Design and Development of Vaccines. Methods Mol. Biol. 2022, 2410, 27–56. [Google Scholar] [CrossRef] [PubMed]
- van de Garde, M.D.B.; Knol, M.J.; Rots, N.Y.; van Baarle, D.; van Els, C.A.C.M. Vaccines to Protect Older Adults against Pneumococcal Disease. Interdiscip. Top. Gerontol. Geriatr. 2020, 43, 113–130. [Google Scholar] [CrossRef] [PubMed]
- van der Slikke, E.C.; An, A.Y.; Hancock, R.E.W.; Bouma, H.R. Exploring the pathophysiology of post-sepsis syndrome to identify therapeutic opportunities. EBioMedicine 2020, 61, 103044. [Google Scholar] [CrossRef] [PubMed]
- Vila-Corcoles, A.; Ochoa-Gondar, O. Preventing pneumococcal disease in the elderly: Recent advances in vaccines and implications for clinical practice. Drugs Aging 2013, 30, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Cravo Oliveira Hashiguchi, T.; Cecchini, M. Impact of vaccination on carriage of and infection by antibiotic-resistant bacteria: A systematic review and meta-analysis. Clin. Exp. Vaccine Res. 2021, 10, 81–92. [Google Scholar] [CrossRef]
- Mullins, L.P.; Mason, E.; Winter, K.; Sadarangani, M. Vaccination is an integral strategy to combat antimicrobial resistance. PLoS Pathog. 2023, 19, e1011379. [Google Scholar] [CrossRef]
- van Heuvel, L.; Paget, J.; Dückers, M.; Caini, S. The impact of influenza and pneumococcal vaccination on antibiotic use: An updated systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023, 12, 70. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Rolfe, R.; Kwobah, C.; Muro, F.; Ruwanpathirana, A.; Lyamuya, F.; Bodinayake, C.; Nagahawatte, A.; Piyasiri, B.; Sheng, T.; Bollinger, J.; et al. Barriers to implementing antimicrobial stewardship programs in three low- and middle-income country tertiary care settings: Findings from a multi-site qualitative study. Antimicrob. Resist. Infect. Control. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Galmiche, S.; Nguyen, L.B.L.; Tartour, E.; de Lamballerie, X.; Wittkop, L.; Loubet, P.; Launay, O. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: A systematic review. Clin. Microbiol. Infect. 2022, 28, 163–177. [Google Scholar] [CrossRef]
- McKay, S.L.; Guo, A.; Pergam, S.A.; Dooling, K. Herpes Zoster Risk in Immunocompromised Adults in the United States: A Systematic Review. Clin. Infect. Dis. 2020, 71, e125–e134. [Google Scholar] [CrossRef]
- Kalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 258. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, R.; Häckl, D.; Kossack, N.; Schiffner-Rohe, J.; Wohlleben, J.; von Eiff, C. Pneumococcal vaccination rates in immunocompromised patients in Germany: A retrospective cohort study to assess sequential vaccination rates and changes over time. PLoS ONE 2022, 17, e0265433. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.E.; SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Karafillakis, E.; Dinca, I.; Apfel, F.; Cecconi, S.; Wűrz, A.; Takacs, J.; Suk, J.; Celentano, L.P.; Kramarz, P.; Larson, H.J. Vaccine hesitancy among healthcare workers in Europe: A qualitative study. Vaccine 2016, 34, 5013–5020. [Google Scholar] [CrossRef]
- Lin, C.Y.; Fan, C.W.; Ahorsu, D.K.; Lin, Y.C.; Weng, H.C.; Griffiths, M.D. Associations between vaccination and quality of life among Taiwan general population: A comparison between COVID-19 vaccines and flu vaccines. Hum. Vaccin. Immunother. 2022, 18, 2079344. [Google Scholar] [CrossRef]
- Janjusevic, A.; Cirkovic, I.; Lukic, I.; Janjusevic, V.; Jevtic, K.; Grgurevic, A. Predictors of health related-quality of life among elderly with disabilities. Psychogeriatrics 2019, 19, 141–149. [Google Scholar] [CrossRef]
- Williams, W.W.; Lu, P.-J.; O’halloran, A.; Kim, D.K.; Grohskopf, L.A.; Pilishvili, T.; Skoff, T.H.; Nelson, N.P.; Harpaz, R.; Markowitz, L.E.; et al. Surveillance of Vaccination Coverage among Adult Populations—United States, 2015. MMWR Surveill. Summ. 2017, 66, 1–28. [Google Scholar] [CrossRef]
- Soegiarto, G.; Purnomosari, D. Challenges in the Vaccination of the Elderly and Strategies for Improvement. Pathophysiology 2023, 30, 155–173. [Google Scholar] [CrossRef]
- Ravetto Enri, L.; Baratta, F.; Pignata, I.; Brusa, P. How to promote vaccinations: A pilot study in the North-West of Italy. Hum. Vaccin. Immunother. 2019, 15, 1075–1079. [Google Scholar]
- International Pharmaceutical Federation (FIP). An Overview of Current Pharmacy Impact on Immunization A Global Report; International Pharmaceutical Federation: The Hague, The Netherlands, 2016. [Google Scholar]
- Sheikh, S.; Biundo, E.; Courcier, S.; Damm, O.; Launay, O.; Maes, E.; Marcos, C.; Matthews, S.; Meijer, C.; Poscia, A.; et al. Corrigendum to ‘A report on the status of vaccination in Europe’ [Vaccine 36 (2018) 4979–4992]. Vaccine 2019, 37, 1374–1376. [Google Scholar] [CrossRef] [PubMed]
- Tarr, P.E.; Deml, M.J.; Huber, B.M. Measles in Switzerland-progress made, but communication challenges lie ahead. Swiss Med. Wkly. 2019, 149, w20105. [Google Scholar] [CrossRef] [PubMed]
- Claire Anderson, T. Who uses pharmacy for flu vaccinations? Population profiling through a UK pharmacy chain. Int. J. Clin. Pharm. 2016, 38, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Löffler, C.; Koudmani, C.; Böhmer, F.; Paschka, S.D.; Höck, J.; Drewelow, E.; Stremme, M.; Stahlhacke, B.; Altiner, A. Perceptions of interprofessional collaboration of general practitioners and community pharmacists—A qualitative study. BMC Health Serv. Res. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Jusufoska, M.; Abreu de Azevedo, M.; Tolic, J.; Deml, M.J.; Tarr, P.E. “Vaccination needs to be easy for the people, right?”: A qualitative study of the roles of physicians and pharmacists regarding vaccination in Switzerland. BMJ Open 2021, 11, e053163. [Google Scholar] [CrossRef]
- Goad, J.A.; Taitel, M.S.; Fensterheim, L.E.; Cannon, A.E. Vaccinations administered during off-clinic hours at a national community pharmacy: Implications for increasing patient access and convenience. Ann. Fam. Med. 2013, 11, 429–436. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guide to Cost-Effectiveness Analysis of Immunization Programs. 2021. Available online: https://www.who.int/immunization/documents/Elsevier_Vaccine_Cost_effectiveness.pdf (accessed on 31 July 2023).
- Meltzer, M.I.; Graham, J.D. Economic analysis of vaccination programs. In Vaccines, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1095–1115. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Economic Evaluation of Vaccination Programs: An Introduction. 2020. Available online: https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/economic-impact.html (accessed on 31 July 2023).
- Laxminarayan, R.; Shrank, W. Vaccine economics: What can it teach us? Health Aff. 2017, 36, 2006–2012. [Google Scholar]
- Bilcke, J.; Beutels, P.; Brisson, M. Economic evaluations of varicella vaccination programs: A review of the literature. Expert Rev. Vaccines 2011, 10, 1877–1895. [Google Scholar]
- Omer, S.B.; Salmon, D.A.; Orenstein, W.A.; deHart, M.P.; Halsey, N. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. N. Engl. J. Med. 2009, 360, 1981–1988. [Google Scholar] [CrossRef]
- Fine, P.; Eames, K.; Heymann, D.L. Herd immunity”: A rough guide. Clin. Infect. Dis. 2011, 52, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Shefer, A.; Wenger, J.; Messonnier, M.; Wang, L.Y.; Lopez, A.; Moore, M.; Murphy, T.V.; Cortese, M.; Rodewald, L. Economic Evaluation of the Routine Childhood Immunization Program in the United States, 2009. Pediatrics 2014, 133, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Phadke, V.K.; Bednarczyk, R.A.; Omer, S.B. Vaccine Refusal and Measles Outbreaks in the US. JAMA 2020, 324, 1344–1345. [Google Scholar] [CrossRef] [PubMed]
- Dubé, E.; Vivion, M.; MacDonald, N.E. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert. Rev. Vaccines 2015, 14, 99–117. [Google Scholar] [CrossRef]
- Gastañaduy, P.A. Travel-associated measles following a domestically acquired case, Oregon, 2016. Emerg. Infect. Dis. 2016, 23, 1691–1693. [Google Scholar]
- Patel, M.K.; Orenstein, W.A. Achieving and sustaining measles elimination. Lancet Infect. Dis. 2019, 19, e275–e282. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciarambino, T.; Crispino, P.; Buono, P.; Giordano, V.; Trama, U.; Iodice, V.; Leoncini, L.; Giordano, M. Efficacy and Safety of Vaccinations in Geriatric Patients: A Literature Review. Vaccines 2023, 11, 1412. https://doi.org/10.3390/vaccines11091412
Ciarambino T, Crispino P, Buono P, Giordano V, Trama U, Iodice V, Leoncini L, Giordano M. Efficacy and Safety of Vaccinations in Geriatric Patients: A Literature Review. Vaccines. 2023; 11(9):1412. https://doi.org/10.3390/vaccines11091412
Chicago/Turabian StyleCiarambino, Tiziana, Pietro Crispino, Pietro Buono, Vincenzo Giordano, Ugo Trama, Vincenzo Iodice, Laura Leoncini, and Mauro Giordano. 2023. "Efficacy and Safety of Vaccinations in Geriatric Patients: A Literature Review" Vaccines 11, no. 9: 1412. https://doi.org/10.3390/vaccines11091412
APA StyleCiarambino, T., Crispino, P., Buono, P., Giordano, V., Trama, U., Iodice, V., Leoncini, L., & Giordano, M. (2023). Efficacy and Safety of Vaccinations in Geriatric Patients: A Literature Review. Vaccines, 11(9), 1412. https://doi.org/10.3390/vaccines11091412