Safety and Immunogenicity of the Convacell® Recombinant N Protein COVID-19 Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Formulation
2.2. Study Design
2.3. Eligibility Criteria
- Age 18 to 60, or no upper age limit for study IIb;
- Willing to sign an informed consent statement to participate in a clinical trial;
- 18.5 ≤ BMI ≤ 30 kg/m2, with body mass between 55 and 100 kg for men and between 45 and 100 kg for women;
- Verified healthy status: no deviation from reference intervals in the results of standard clinical and laboratory tests;
- Negative for: human immunodeficiency virus (HIV), rapid plasma reagin (RPR), hepatitis B surface antigen (HBsAg), hepatitis C virus RNA (HCVRNA);
- Hemodynamic and vital parameters within following reference intervals: heart rate 60–90 bpm, respiratory rate under 22 breaths per minute, systolic arterial pressure 100–139 mmHg, diastolic arterial pressure 60–89 mmHg;
- Willing to keep a self-observation diary and attend control visits;
- Willing to abstain from alcohol for 14 days before the beginning of the study and until its completion;
- Willing to abstain from smoking for 48 h before the beginning of the study and while hospitalized;
- For fertile women: negative pregnancy test and willing to use adequate contraception methods until the completion of the study and for at least two months after vaccination;
- For fertile men: willing to use adequate contraception methods until the completion of the study or past vasectomy with confirmed azoospermia, partner willing to use at least 90% effective contraception methods or past tubal ligation or menopausal for at least 2 years.
2.4. Sample Size Determination
2.5. Ethical Committee
2.6. Outcomes and Assessment
2.7. Statistical Analysis
3. Results
3.1. Patients
3.2. Safety
3.3. Humoral Immune Response
3.4. Cellular Immune Response
3.5. Single vs. Double Vaccination
3.6. Infections and Virus Encounters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, G.; Chen, Z.; Cao, H.; Wu, W.; Chu, X.; Liu, H.; Zhang, L.; Zhu, H.; Cai, H.; Lu, X.; et al. From Immunogen to COVID-19 vaccines: Prospects for the post-pandemic era. Biomed. Pharmacother. 2023, 158, 114208. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr. 2021, 15, 869–875. [Google Scholar] [CrossRef]
- Bloom, N.; Bunn, P.; Mizen, P.; Smietanka, P.; Thwaites, G. The Impact of COVID-19 on Productivity. Rev. Econ. Stat. 2023, 1–45. [Google Scholar] [CrossRef]
- Rabdano, S.O.; Ruzanova, E.A.; Pletyukhina, I.V.; Saveliev, N.S.; Kryshen, K.L.; Katelnikova, A.E.; Beltyukov, P.P.; Fakhretdinova, L.N.; Safi, A.S.; Rudakov, G.O.; et al. Immunogenicity and In Vivo Protective Effects of Recombinant Nucleocapsid-Based SARS-CoV-2 Vaccine Convacell®. Vaccines 2023, 11, 874. [Google Scholar] [CrossRef]
- Pagliusi, S.; Jarrett, S.; Hayman, B.; Kreysa, U.; Prasad, S.D.; Reers, M.; Thai, P.H.; Wu, K.; Zhang, Y.T.; Baek, Y.O.; et al. Emerging manufacturers engagements in the COVID −19 vaccine research, development and supply. Vaccine 2020, 38, 5418–5423. [Google Scholar] [CrossRef]
- Pomfret, T.C.; Gagnon, J.M.; Gilchrist, A.T. Quadrivalent human papillomavirus (HPV) vaccine: A review of safety, efficacy, and pharmacoeconomics. J. Clin. Pharm. Ther. 2011, 36, 1–9. [Google Scholar] [CrossRef]
- Al Mahtab, M.; Akbar, S.M.F.; Aguilar, J.C.; Yoshida, O.; Khan, S.; Gerardo, G.N.; Hiasa, Y. Safety profile, antiviral capacity, and liver protection of a nasal therapeutic vaccine in patients with chronic hepatitis B: Five-year-follow-up outcomes after the end of treatment. Front. Med. 2023, 10, 1032531. [Google Scholar] [CrossRef]
- Dutta, N.K.; Mazumdar, K.; Gordy, J.T. The Nucleocapsid Protein of SARS–CoV-2: A Target for Vaccine Development. Dutch RE, editor. J. Virol. 2020, 94, e00647-20. [Google Scholar] [CrossRef]
- Thura, M.; Sng, J.X.E.; Ang, K.H.; Li, J.; Gupta, A.; Hong, J.M.; Hong, C.W.; Zeng, Q. Targeting intra-viral conserved nucleocapsid (N) proteins as novel vaccines against SARS-CoVs. Biosci. Rep. 2021, 41, BSR20211491. [Google Scholar] [CrossRef]
- Yang, H.; Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 2021, 19, 685–700. [Google Scholar] [CrossRef]
- Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [Google Scholar] [CrossRef]
- Pack, S.M.; Peters, P.J. SARS-CoV-2-Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines 2022, 10, 236. [Google Scholar] [CrossRef]
- Yewdell, J.W. Antigenic drift: Understanding COVID-19. Immunity 2021, 54, 2681–2687. [Google Scholar] [CrossRef]
- Rabdano, S.; Mukhin, V.; Makarov, V.; Rudakov, G.; Ruzanova, E.; Arakelov, S.; Khaitov, M.R.; Yudin, S.M.; Kryuchko, D.S.; Berzin, I.A.; et al. N protein based vaccine against SARS-CoV-2 produces a strong T cell immune response to N Protein of novel strains. MES [Internet]. 2022. Available online: https://mes.fmba.press/archive/2022/3/11/abstract?lang=en (accessed on 27 March 2023).
- Zhang, X.Y.; Guo, J.; Wan, X.; Zhou, J.G.; Jin, W.P.; Lu, J.; Wang, W.; Yang, A.; Liu, D.; Shi, Z.; et al. Biochemical and antigenic characterization of the structural proteins and their post-translational modifications in purified SARS-CoV-2 virions of an inactivated vaccine candidate. Emerg. Microbes Infect. 2020, 9, 2653–2662. [Google Scholar] [CrossRef]
- Yu, S.; Wei, Y.; Liang, H.; Ji, W.; Chang, Z.; Xie, S.; Wang, Y.; Li, W.; Liu, Y.; Wu, H.; et al. Comparison of Physical and Biochemical Characterizations of SARS-CoV-2 Inactivated by Different Treatments. Viruses 2022, 14, 1938. [Google Scholar] [CrossRef]
- López-Muñoz, A.D.; Kosik, I.; Holly, J.; Yewdell, J.W. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity. Sci. Adv. 2022, 8, eabp9770. [Google Scholar] [CrossRef]
- Fielding, C.A.; Sabberwal, P.; Williamson, J.C.; Greenwood, E.J.; Crozier, T.W.; Zelek, W.; Seow, J.; Graham, C.; Huettner, I.; Edgeworth, J.D.; et al. SARS-CoV-2 host-shutoff impacts innate NK cell functions, but antibody-dependent NK activity is strongly activated through non-spike antibodies. eLife 2022, 11, e74489. [Google Scholar] [CrossRef]
- Peng, Y.; Felce, S.L.; Dong, D.; Penkava, F.; Mentzer, A.J.; Yao, X.; Liu, G.; Yin, Z.; Chen, J.L.; Lu, Y.; et al. An immunodominant NP105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nat. Immunol. 2022, 23, 50–61. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
- Peng, H.; Yang, L.T.; Wang, L.Y.; Li, J.; Huang, J.; Lu, Z.Q.; Koup, R.A.; Bailer, R.T.; Wu, C.Y. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 2006, 351, 466–475. [Google Scholar] [CrossRef]
- Tso, F.Y.; Lidenge, S.J.; Poppe, L.K.; Peña, P.B.; Privatt, S.R.; Bennett, S.J.; Ngowi, J.M.; Belshan, M.; Siedlik, J.A.; Raine, M.A.; et al. Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma. PLoS ONE 2021, 16, e0247640. [Google Scholar] [CrossRef]
- Hagemann, K.; Riecken, K.; Jung, J.M.; Hildebrandt, H.; Menzel, S.; Bunders, M.J.; Fehse, B.; Koch-Nolte, F.; Heinrich, F.; Peine, S.; et al. Natural killer cell-mediated ADCC in SARS-CoV-2-infected individuals and vaccine recipients. Eur. J. Immunol. 2022, 52, 1297–1307. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, M.; Zhang, X.; Li, S.; Lu, Q.; Zeng, H.; Hou, H.; Li, H.; Zhang, M.; Jiang, F.; et al. Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal Transduct. Target. Ther. 2021, 6, 346. [Google Scholar] [CrossRef]
- Bai, Z.; Cao, Y.; Liu, W.; Li, J. The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses 2021, 13, 1115. [Google Scholar] [CrossRef]
- Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Musella, V.; Britti, D.; Bonizzi, L.; Urbani, A.; Roncada, P. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect. 2020, 22, 188–194. [Google Scholar] [CrossRef]
- Sieling, P.; King, T.; Wong, R.; Nguyen, A.; Wnuk, K.; Gabitzsch, E.; Rice, A.; Adisetiyo, H.; Hermreck, M.; Verma, M.; et al. Prime hAd5 Spike + Nucleocapsid Vaccination Induces Ten-Fold Increases in Mean T-Cell Responses in Phase 1 Subjects that are Sustained Against Spike Variants. medRxiv 2021. [Google Scholar] [CrossRef]
- Matchett, W.E.; Joag, V.; Stolley, J.M.; Shepherd, F.K.; Quarnstrom, C.F.; Mickelson, C.K.; Wijeyesinghe, S.; Soerens, A.G.; Becker, S.; Thiede, J.M.; et al. Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. J. Immunol. 2021, 207, 376–379. [Google Scholar] [CrossRef]
- Van Elslande, J.; Oyaert, M.; Ailliet, S.; Van Ranst, M.; Lorent, N.; Vande Weygaerde, Y.; Andre, E.; Lagrou, K.; Vandendriessche, S.; Vermeersch, P. Longitudinal follow-up of IgG anti-nucleocapsid antibodies in SARS-CoV-2 infected patients up to eight months after infection. J. Clin. Virol. 2021, 136, 104765. [Google Scholar] [CrossRef]
- Grau-Expósito, J.; Sánchez-Gaona, N.; Massana, N.; Suppi, M.; Astorga-Gamaza, A.; Perea, D.; Rosado, J.; Falco, A.; Kirkegaard, C.; Torrella, A.; et al. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun. 2021, 12, 3010. [Google Scholar] [CrossRef]
- Jia, Q.; Bielefeldt-Ohmann, H.; Maison, R.M.; Masleša-Galić, S.; Cooper, S.K.; Bowen, R.A.; Horwitz, M.A. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 Membrane and Nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. npj Vaccines 2021, 6, 47. [Google Scholar] [CrossRef]
- Le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chen, M.I.; Wang, L.F.; Ooi, E.E.; Kalimuddin, S.; et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020, 584, 457–462. [Google Scholar] [CrossRef]
- Gil, L.; López, C.; Lazo, L.; Valdés, I.; Marcos, E.; Alonso, R.; Gambe, A.; Martin, J.; Romero, Y.; Guzman, M.G.; et al. Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice. Int. Immunol. 2009, 21, 1175–1183. [Google Scholar] [CrossRef]
- Wraith, D.C.; Vessey, A.E.; Askonas, B.A. Purified Influenza Virus Nucleoprotein Protects Mice from Lethal Infection. J. Gen. Virol. 1987, 68, 433–440. [Google Scholar] [CrossRef]
- Huang, B.; Wang, W.; Li, R.; Wang, X.; Jiang, T.; Qi, X.; Gao, Y.; Tan, W.; Ruan, L. Influenza A virus nucleoprotein derived from Escherichia coli or recombinant vaccinia (Tiantan) virus elicits robust cross-protection in mice. Virol. J. 2012, 9, 322. [Google Scholar] [CrossRef]
- Gattinger, P.; Kratzer, B.; Tulaeva, I.; Niespodziana, K.; Ohradanova-Repic, A.; Gebetsberger, L.; Borochova, K.; Garner-Spitzer, E.; Trapin, D.; Hofer, G.; et al. Vaccine based on folded receptor binding domain-PreS fusion protein with potential to induce sterilizing immunity to SARS-CoV-2 variants. Allergy 2022, 77, 2431–2445. [Google Scholar] [CrossRef]
- Wagner, A.; Garner-Spitzer, E.; Schötta, A.M.; Orola, M.; Wessely, A.; Zwazl, I.; Ohradanova-Repic, A.; Weseslindtner, L.; Tajti, G.; Gebetsberger, L.; et al. SARS-CoV-2-mRNA Booster Vaccination Reverses Non-Responsiveness and Early Antibody Waning in Immunocompromised Patients—A Phase Four Study Comparing Immune Responses in Patients With Solid Cancers, Multiple Myeloma and Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 889138. [Google Scholar] [CrossRef]
- Mair, M.J.; Mitterer, M.; Gattinger, P.; Berger, J.M.; Trutschnig, W.; Bathke, A.C.; Gansterer, M.; Berghoff, A.S.; Laengle, S.; Gottmann, L.; et al. Enhanced SARS-CoV-2 breakthrough infections in patients with hematologic and solid cancers due to Omicron. Cancer Cell. 2022, 40, 444–446. [Google Scholar] [CrossRef]
- Francis, A.I.; Ghany, S.; Gilkes, T.; Umakanthan, S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. 2022, 98, 389–394. [Google Scholar] [CrossRef]
- Garcia, P.; Anand, S.; Han, J.; Montez-Rath, M.; Sun, S.; Shang, T.; Parsonnet, J.; Chertow, G.M.; Schiller, B.; Abra, G. COVID19 vaccine type and humoral immune response in patients receiving dialysis. medRxiv 2021. [Google Scholar] [CrossRef]
- Ferri, C.; Ursini, F.; Gragnani, L.; Raimondo, V.; Giuggioli, D.; Foti, R.; Caminiti, M.; Olivo, D.; Cuomo, G.; Visentini, M.; et al. Impaired immunogenicity to COVID-19 vaccines in autoimmune systemic diseases. High prevalence of non-response in different patients’ subgroups. J. Autoimmun. 2021, 125, 102744. [Google Scholar] [CrossRef]
- O’Hagan, A.; Stevens, J.W.; Campbell, M.J. Assurance in clinical trial design. Pharm. Stat. 2005, 4, 187–201. [Google Scholar] [CrossRef]
- Vanderven, H.A.; Ana-Sosa-Batiz, F.; Jegaskanda, S.; Rockman, S.; Laurie, K.; Barr, I.; Chen, W.; Wines, B.; Hogarth, P.M.; Lambe, T.; et al. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine 2016, 8, 277–290. [Google Scholar] [CrossRef]
- Vanderven, H.A.; Jegaskanda, S.; Wheatley, A.K.; Kent, S.J. Antibody-dependent cellular cytotoxicity and influenza virus. Curr. Opin. Virol. 2017, 22, 89–96. [Google Scholar] [CrossRef]
- Von Holle, T.A.; Moody, M.A. Influenza and Antibody-Dependent Cellular Cytotoxicity. Front. Immunol. 2019, 10, 1457. [Google Scholar] [CrossRef]
- Poteryaev, D.A.; Abbasova, S.G.; Ignatyeva, P.E.; Strizhakova, O.M.; Kolesnik, S.V.; Khamitov, R.A. Assessment of T-cell immunity to SARS-CoV-2 in COVID-19 convalescents and vaccinated subjects, using TigraTest® SARS-CoV-2 ELISPOT kit. Biol. Products. Prev. Diagn. Treat. 2021, 21, 178–192. [Google Scholar] [CrossRef]
- Peng, Y.; Mentzer, A.J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020, 21, 1336–1345. [Google Scholar] [CrossRef]
- R Project [Internet]. 2020. Available online: https://www.r-project.org/doc/R-FDA.pdf (accessed on 15 September 2021).
- Shang, W.; Kang, L.; Cao, G.; Wang, Y.; Gao, P.; Liu, J.; Liu, M. Percentage of Asymptomatic Infections among SARS-CoV-2 Omicron Variant-Positive Individuals: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1049. [Google Scholar] [CrossRef]
- Buitrago-Garcia, D.; Ipekci, A.M.; Heron, L.; Imeri, H.; Araujo-Chaveron, L.; Arevalo-Rodriguez, I.; Ciapponi, A.; Cevik, A.; Hauser, A.; Alam, M.I.; et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: Update of a living systematic review and meta-analysis. PLoS Med. 2022, 19, e1003987. [Google Scholar] [CrossRef]
- Oran, D.P.; Topol, E.J. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic: A Systematic Review. Ann. Intern. Med. 2021, 174, 655–662. [Google Scholar] [CrossRef]
- Wu, X.; Fu, B.; Chen, L.; Feng, Y. Serological tests facilitate identification of asymptomatic SARS-CoV-2 infection in Wuhan, China. J. Med. Virol. 2020, 92, 1795–1796. [Google Scholar] [CrossRef] [PubMed]
- Kučan Brlić, P.; Brizić, I. Taking on SARS-CoV-2. eLife 2022, 11, e80552. [Google Scholar] [CrossRef] [PubMed]
Center # | Location | Volunteers Screened (%) | Volunteers Randomized (%) |
---|---|---|---|
1 | Saint-Petersburg | 31 (18.2%) | 25 (18.7%) |
2 | Saint-Petersburg | 102 (60%) | 91 (68%) |
3 | Moscow | 16 (9.4%) | 12 (9%) |
4 | Krasnogorsk | 21 (12.4%) | 6 (4.5%) |
3—Double Vaccination | 4—Single Vaccination | 5—Placebo | |
---|---|---|---|
Volunteers included into study (%) | 44 (100%) | 45 (100%) | 45 (%) |
Dropped out due to consent withdrawal (%) | 0 (0%) | 1 (2.2%) | 3 (6.7%) |
Dropped out due to refusal to cooperate (%) | 0 (0%) | 1 (2.2%) | 1 (2.2%) |
Dropped out for other reason (%) | 1 (2.3%) | 1 (2.2%) | 1 (2.2%) |
Volunteers included in safety and immunogenicity assessment (%) | 44 (100%) | 45 (100%) | 45 (100%) |
Volunteers included in specific post-vaccination immunity investigation cohort—cohort A (%) | 15 (34%) | 15 (33.3%) | 15 (33.3%) |
Volunteers included in long-term immunogenicity assessment cohort—cohort B (%) | 16 (36%) | 15 (33.3%) | 15 (33.3%) |
1—Single Vaccination | 2—Double Vaccination | |
---|---|---|
Screened | 470 (100%) | |
Screened and not included | 37 (7.9%) | |
Randomized | 215 (45.7%) | 218 (46.4%) |
Dropped out, total | 3 (0.7%) | 6 (2.8%) |
Dropped out due to requiring medical intervention or treatment not allowed by the protocol | 1 (0.2%) | 0 (0%) |
Dropped out due to volunteer violating the protocol of the study | 2 (0.5%) | 2 (0.9%) |
Dropped out due to consent withdrawal | 0 (0%) | 4 (1.8%) |
Included in the immunogenicity assessment study | 215 (45.7%) | 218 (46.4%) |
Groups 1 + 2 (n = 20) | |||
---|---|---|---|
MedDRA SOC | MedDRA PT | Mild AEs | Moderate AEs |
10018065 General disorders and administration site conditions | 10022086 Injection site pain | 10 (50%) | 0 |
10022061 Injection site erythema | 1 (5%) | 0 | |
10022075 Injection site induration | 1 (5%) | 0 | |
10022093 Injection site pruritus | 1 (5%) | 0 | |
10022891 Investigations | 10049187 Red blood cell sedimentation rate increased | 1 (5%) | 0 |
10025258 Lymphocyte count increased | 2 (10%) | 0 | |
10047943 Leukocyte count increased | 1 (5%) | 0 | |
10003481 Aspartate aminotransferase increased | 1 (5%) | 0 | |
10019301 Heart rate decreased | 2 (10%) | 0 | |
10029366 Neutrophil count decreased | 0 | 1 (5%) | |
10047942 Leukocyte count decreased | 1 (5%) | 0 | |
10005758 Blood pressure systolic decreased | 1 (5%) | 0 | |
10019303 Heart rate increased | 1 (5%) | 0 | |
10005750 Blood pressure increased | 1 (5%) | 0 | |
10005760 Blood pressure systolic increased | 1 (5%) | 0 |
Group 3, Double Vaccination (n = 44) | Group 4, Single Vaccination (n = 45) | Group 5, Placebo (n = 45) | |||||
---|---|---|---|---|---|---|---|
MedDRA SOC | MedDRA PT | Mild AEs | Moderate AEs | Mild AEs | Moderate AEs | Mild AEs | Moderate AEs |
10013993 Ear and labyrinth disorders | 10014020 Ear pain | 1 (2.27%) | 0 | 0 | 0 | 0 | 0 |
10015919 Eye disorders | 10013774 Dry eye | 1 (2.27%) | 0 | 0 | 0 | 0 | 0 |
10017947 Gastrointestinal disorders | 10047700 Vomiting | 0 | 1 (2.27%) | 0 | 0 | 0 | 0 |
10018065 General disorders and administration site conditions | 10020843 Hyperthermia | 2 (4.55%) | 0 | 1 (2.22%) | 0 | 0 | 0 |
10022086 Injection site pain | 32 (72.73%) | 5 (11.36%) | 29 (64.44%) | 6 (13.33%) | 8 (17.78%) | 4 (8.89%) | |
10022093 Injection site pruritus | 7 (15.91%) | 0 | 4 (8.89%) | 1 (2.22%) | 0 | 0 | |
10022075 Injection site induration | 9 (20.45%) | 2 (4.55%) | 12 (26.67%) | 2 (4.44%) | 5 (11.11%) | 0 | |
10022004 Influenza-like illness | 3 (6.82%) | 0 | 4 (8.89%) | 1 (2.22%) | 3 (6.67%) | 1 (2.22%) | |
10022085 Injection site oedema | 2 (4.55%) | 2 (4.55%) | 5 (11.11%) | 2 (4.44%) | 0 | 0 | |
10008531 Chills | 1 (2.27%) | 1 (2.27%) | 1 (2.22%) | 0 | 0 | 0 | |
10022061 Injection site erythema | 3 (6.82%) | 1 (2.27%) | 7 (15.56%) | 4 (8.89%) | 1 (2.22%) | 0 | |
10037660 Pyrexia | 4 (9.09%) | 0 | 1 (2.22%) | 0 | 2 (4.44%) | 0 | |
10025482 Malaise | 2 (4.55%) | 1 (2.27%) | 1 (2.22%) | 1 (2.22%) | 0 | ||
10016256 Fatigue | 1 (2.27%) | 0 | 2 (4.44%) | 0 | 1 (2.22%) | 0 | |
10075107 Haemodynamic oedema | 0 | 0 | 1 (2.22%) | 0 | 0 | 0 | |
10003549 Asthenia | 0 | 0 | 1 (2.22%) | 0 | 1 (2.22%) | 0 | |
10061458 Feeling of body temperature change | 0 | 0 | 1 (2.22%) | 0 | 0 | 0 | |
10028395 Musculoskeletal and connective tissue disorders | 10028411 Myalgia | 2 (4.55%) | 1 (2.27%) | 1 (2.22%) | 1 (2.22%) | 0 | 0 |
10003239 Arthralgia | 2 (4.55%) | 0 | 0 | 0 | 0 | 0 | |
10029205 Nervous system disorders | 10019211 Headache | 2 (4.55%) | 2 (4.55%) | 2 (4.55%) | 0 | 3 (6.67%) | 1 (2.22%) |
10037175 Psychiatric disorders | 10010305 Confusion state | 0 | 0 | 1 (2.22%) | 0 | 0 | 0 |
10038738 Respiratory, thoracic and mediastinal disorders | 10043521 Throat irritation | 1 (2.27%) | 0 | 0 | 0 | 0 | 0 |
10040785 Skin and subcutaneous tissue disorders | 10020642 Hyperhidrosis | 1 (2.27%) | 1 (2.27%) | 1 (2.22%) | 0 | 0 | 0 |
10037844 Rash | 0 | 0 | 1 (2.22%) | 0 | 0 | 0 |
Group 1, Single Vaccination (n = 215) | Group 2, Double Vaccination (n = 218) | ||||
---|---|---|---|---|---|
MedDRA SOC | MedDRA PT | Mild AEs | Moderate AEs | Mild AEs | Moderate AEs |
10005329 Blood and lymphatic system disorders | 10025197 Lymphadenopathy | 0 | 0 | 3 (1.38%) | 0 |
10015919 Eye disorders | 10034960 Photophobia | 0 | 0 | 1 (0.45%) | 0 |
10003552 Asthenopia | 0 | 0 | 1 (0.45%) | 0 | |
10017947 Gastrointestinal disorders | 10012735 Diarrhoea | 3 (1.39%) | 0 | 0 | 0 |
10028813 Nausea | 1 (0.47%) | 0 | 2 (0.92%) | 0 | |
10000081 Abdominal pain | 0 | 0 | 2 (0.92%) | 1 (0.45%) | |
10018065 General disorders and administration site conditions | 10022075 Injection site induration | 15 (6.98%) | 2 (0.93%) | 21 (9.63%) | 5 (2.29%) |
10022086 Injection site pain | 68 (31.63%) | 5 (2.33%) | 74 (33.94%) | 13 (5.96%) | |
10008531 Chills | 9 (4.19%) | 2 (0.93%) | 7 (3.21%) | 9 (4.13%) | |
10022093 Injection site pruritus | 15 (6.98%) | 0 | 14 (6.42%) | 0 | |
10025482 Malaise | 0 | 10 (4.59%) | 4 (1.83%) | ||
10022061 Injection site erythema | 23 (10.7%) | 1 (0.47%) | 24 (11.01%) | 0 | |
10003549 Asthenia | 2 (0.93%) | 0 | 5 (2.29%) | 0 | |
10022085 Injection site oedema | 8 (3.72%) | 2 (0.93%) | 13 (5.96%) | 2 (0.92%) | |
10037660 Pyrexia | 5 (2.33%) | 2 (0.93%) | 5 (2.29%) | 1 (0.45%) | |
10022066 Injection site hematoma | 1 (0.47%) | 0 | 0 | 0 | |
10049438 General physical health deterioration | 0 | 0 | 0 | 0 | |
10025482 Malaise | 9 (4.19%) | 4 (1.86%) | 10 (4.59%) | 4 (1.83%) | |
10054266 Injection site discomfort | 0 | 0 | 1 (0.45%) | 0 | |
10021881 Infections and infestations | 10062106 Respiratory tract viral infection | 0 | 1 (0.47%) | 1 (0.45%) | 0 |
10027433 Metabolism and nutrition disorders | 10061428 Decreased appetite | 1 (0.47%) | 1 (0.47%) | 3 (1.38%) | 0 |
10028395 Musculoskeletal and connective tissue disorders | 10028372 Muscular weakness | 4 (1.86%) | 2 (0.93%) | 7 (3.21%) | 2 (0.92%) |
10003239 Arthralgia | 2 (0.93%) | 6 (2.75%) | 1 (0.45%) | ||
10028411 Myalgia | 3 (1.39%) | 1 (0.47%) | 3 (1.38%) | 4 (1.83%) | |
10028334 Muscle spasms | 0 | 0 | 2 (0.92%) | 0 | |
10029205 Nervous system disorders | 10013573 Dizziness | 2 (0.93%) | 0 | 5 (2.29%) | 2 (0.92%) |
10019211 Headache | 7 (3.26%) | 6 (2.79%) | 20 (9.17%) | 6 (2.75%) | |
10037175 Psychiatric disorders | 10022437 Insomnia | 6 (2.79%) | 0 | 5 (2.29%) | 1 (0.45%) |
10024642 Listlessness | 0 | 0 | 1 (0.45%) | 0 | |
10028735 Nasal congestion | 0 | 0 | 1 (0.45%) | 0 | |
10039101 Rhinorrhoea | 0 | 0 | 2 (0.92%) | 1 (0.45%) | |
10038738 Respiratory, thoracic and mediastinal disorders | 10068319 Oropharyngeal pain | 1 (0.47%) | 0 | 0 | 2 (0.92%) |
10011224 Cough | 0 | 0 | 0 | 2 (0.92%) | |
10040785 Skin and subcutaneous tissue disorders | 10020642 Hyperhidrosis | 5 (2.33%) | 2 (0.93%) | 5 (2.29%) | 2 (0.92%) |
10047065 Vascular disorders | 10020772 Hypertension | 0 | 1 (0.47%) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabdano, S.; Ruzanova, E.; Makarov, D.; Vertyachikh, A.; Teplykh, V.; Rudakov, G.; Pletyukhina, I.; Saveliev, N.; Zakharov, K.; Alpenidze, D.; et al. Safety and Immunogenicity of the Convacell® Recombinant N Protein COVID-19 Vaccine. Vaccines 2024, 12, 100. https://doi.org/10.3390/vaccines12010100
Rabdano S, Ruzanova E, Makarov D, Vertyachikh A, Teplykh V, Rudakov G, Pletyukhina I, Saveliev N, Zakharov K, Alpenidze D, et al. Safety and Immunogenicity of the Convacell® Recombinant N Protein COVID-19 Vaccine. Vaccines. 2024; 12(1):100. https://doi.org/10.3390/vaccines12010100
Chicago/Turabian StyleRabdano, Sevastyan, Ellina Ruzanova, Denis Makarov, Anastasiya Vertyachikh, Valeriya Teplykh, German Rudakov, Iuliia Pletyukhina, Nikita Saveliev, Konstantin Zakharov, Diana Alpenidze, and et al. 2024. "Safety and Immunogenicity of the Convacell® Recombinant N Protein COVID-19 Vaccine" Vaccines 12, no. 1: 100. https://doi.org/10.3390/vaccines12010100
APA StyleRabdano, S., Ruzanova, E., Makarov, D., Vertyachikh, A., Teplykh, V., Rudakov, G., Pletyukhina, I., Saveliev, N., Zakharov, K., Alpenidze, D., Vasilyuk, V., Arakelov, S., & Skvortsova, V. (2024). Safety and Immunogenicity of the Convacell® Recombinant N Protein COVID-19 Vaccine. Vaccines, 12(1), 100. https://doi.org/10.3390/vaccines12010100