T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases
Abstract
:1. Introduction
2. T-Cell Epitope Mapping for Vaccine Development
2.1. In Silico Prediction of T-Cell Epitopes
2.2. Approaches to the Validation of T-Cell Epitopes
3. Novel Approaches to the Development of T-Cell Epitope-Based Vaccines
Types | Pathogens | Cell-Mediated Immune Responses | Efficacy | Clinical Issues | Phases | References |
---|---|---|---|---|---|---|
Subunit vaccine | RSV | / | Protective | It may cause neurological disorders | Licensed | [67,68] |
Influenza virus | CD4+ T cells | Persistent cell-mediated immune response | Failed to improve antibody responses | Phase II | [21] | |
SARS-CoV-2 | IFN-γ, IL-2, CD4+/CD8+ T cells | Strong, long-term, and broad-spectrum immune responses | Mild and transient injection site pain and fatigue | Phase I/II | [69] | |
Mycobacterium tuberculosis | T helper 1 (Th1) cells, CD4+ T cells | Highly immunogenic | The duration of the immune responses was not evaluated | Preclinical (in mice) | [70] | |
Zika virus | CD4+/CD8+ T cells | Highly immunogenic | The neutralizing antibodies were not elevated significantly | Preclinical (in mice) | [71] | |
HIV | / | Broad neutralizing antibodies | The duration of the immune responses was not assessed | Preclinical (in guinea pigs and rhesus macaques) | [72] | |
EBV | CD4+/CD8+ T cells | Protective | Further clinical trials are needed | Preclinical (in mice) | [73] | |
mRNA | Human metapneumovirus | / | Potential candidates | Further in vivo models are needed | Preclinical (without animal experiment) | [43] |
SARS-CoV-2 | / | Potential candidates | Further model validation is warranted | Preclinical (without animal experiment) | [74] | |
Pseudomonas aeruginosa | / | Potential candidates | Further laboratory and clinical trials are required | Preclinical (without animal experiment) | [75] | |
Influenza virus | / | Potential candidates | Further laboratory and clinical trials are required | Preclinical (without animal experiment) | [76] | |
Rotavirus | IFN-γ/TNF double-positive CD8+ and CD4+ T cell responses | Highly immunogenic | Humanized animal models are needed | Preclinical (in rodents) | [77] | |
Vector vaccine | SARS-CoV-2 | / | Protective | Humanized animal models are needed | Preclinical (in hamster) | [78] |
SARS-CoV-2 | Memory T cells | Protective | The duration of the immune responses was not evaluated | Preclinical (in mice) | [79] | |
Infectious bronchitis virus (IBV) | IFN-γ | Protective | Further clinical trials are required | Preclinical (in chickens) | [80] | |
Cocktail | Cancer | CD4+/CD8+ T cells | Strong T-cell responses | More clinical trials are required | Phase I | [81] |
Biopolymer particles | Influenza virus | CD8+ T cells | Protective | Further clinical trials are required | Preclinical (in mice) | [82] |
Virus-like particles (VLPs) | SARS-CoV-2 | Memory CD8+ T cells, IFN-γ | Humoral and cell-mediated immune responses | Non-protective against SARS-CoV-2 | Preclinical (in mice) | [83] |
DNA vaccine | Human leishmaniasis | CD4+/CD8+ T cells | Protective | Further clinical trials are required | Preclinical (in rodents) | [84] |
DC vaccine | SARS-CoV-2 | CD8+ T cells | Effective against SARS-CoV-2 | Further clinical trials are required | Preclinical (in mice) | [85] |
Exosomal Vaccine | SARS-CoV-2 | CD8+ T cells | Robust cell immune responses | Further clinical trials are required | Preclinical (in mice) | [86] |
Reverse vaccinology | Ebola virus | / | Potential candidates | Further model clinical trials are required | Preclinical (without animal experiment) | [87] |
Ghost vaccine | Avian influenza virus and Newcastle disease virus (NDV) | / | Potential candidates | Further model clinical trials are required | Preclinical (without animal experiment) | [88] |
Nanoparticle | Influenza virus | CD4+/CD8+ T cells | Protective | Further model clinical trials are required | Preclinical (in mice) | [89] |
Influenza virus | / | Less clinical signs | The generalizability of the human challenge model | Phase IIb | [90] | |
SARS-CoV-2 | IL-4 and IFN-γ, CD4+/CD8+ T cells | Protective | Further model clinical trials are required | Preclinical (in mice) | [91] |
3.1. T-Cell Epitope-Based Subunit Vaccines
3.2. T-Cell Epitope-Based mRNA Vaccines
3.3. T-Cell Epitope-Based Vector Vaccines
3.4. Other Delivery Platforms and Adjuvants to Enhance the Immunogenicity of T-Cell Epitope-Based Vaccines
4. Challenges and Perspective for T-Cell Epitope-Based Vaccines
4.1. Challenges for Developing T-Cell Epitope-Based Vaccines
4.2. Perspectives for T-Cell Epitope-Based Vaccines
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Correia, B.E.; Bates, J.T.; Loomis, R.J.; Baneyx, G.; Carrico, C.; Jardine, J.G.; Rupert, P.; Correnti, C.; Kalyuzhniy, O.; Vittal, V.; et al. Proof of principle for epitope-focused vaccine design. Nature 2014, 507, 201–206. [Google Scholar] [CrossRef]
- Mosmann, T.R.; McMichael, A.J.; LeVert, A.; McCauley, J.W.; Almond, J.W. Opportunities and challenges for T cell-based influenza vaccines. Nat. Rev. Immunol. 2024, 24, 736–752. [Google Scholar] [CrossRef]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef]
- Muik, A.; Lui, B.G.; Quandt, J.; Diao, H.; Fu, Y.; Bacher, M.; Gordon, J.; Toker, A.; Grosser, J.; Ozhelvaci, O.; et al. Progressive loss of conserved spike protein neutralizing antibody sites in Omicron sublineages is balanced by preserved T cell immunity. Cell Rep. 2023, 42, 112888. [Google Scholar] [CrossRef]
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 2022, 185, 847–859. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Berzofsky, J.A.; Bensussan, A.; Cease, K.B.; Bourge, J.F.; Cheynier, R.; Lurhuma, Z.; Salaün, J.J.; Gallo, R.C.; Shearer, G.M.; Zagury, D. Antigenic peptides recognized by T lymphocytes from AIDS viral envelope-immune humans. Nature 1988, 334, 706–708. [Google Scholar] [CrossRef]
- Celis, E.; Larson, J.; Otvos, L., Jr.; Wunner, W.H. Identification of a rabies virus T cell epitope on the basis of its similarity with a hepatitis B surface antigen peptide presented to T cells by the same MHC molecule (HLA-DPw4). J. Immunol. 1990, 145, 305–310. [Google Scholar] [CrossRef]
- Schmidt, C.; Burrows, S.R.; Sculley, T.B.; Moss, D.J.; Misko, I.S. Nonresponsiveness to an immunodominant Epstein-Barr virus-encoded cytotoxic T-lymphocyte epitope in nuclear antigen 3A: Implications for vaccine strategies. Proc. Natl. Acad. Sci. USA 1991, 88, 9478–9482. [Google Scholar] [CrossRef]
- He, Y.; Rappuoli, R.; De Groot, A.S.; Chen, R.T. Emerging vaccine informatics. J. Biomed. Biotechnol. 2010, 2010, 218590. [Google Scholar] [CrossRef]
- Moise, L.; McMurry, J.A.; Buus, S.; Frey, S.; Martin, W.D.; De Groot, A.S. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine 2009, 27, 6471–6479. [Google Scholar] [CrossRef]
- Schanen, B.C.; De Groot, A.S.; Moise, L.; Ardito, M.; McClaine, E.; Martin, W.; Wittman, V.; Warren, W.L.; Drake, D.R., 3rd. Coupling sensitive in vitro and in silico techniques to assess cross-reactive CD4+ T cells against the swine-origin H1N1 influenza virus. Vaccine 2011, 29, 3299–3309. [Google Scholar] [CrossRef]
- Tai, W.; Feng, S.; Chai, B.; Lu, S.; Zhao, G.; Chen, D.; Yu, W.; Ren, L.; Shi, H.; Lu, J.; et al. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat. Commun. 2023, 14, 2962. [Google Scholar] [CrossRef]
- Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, 31, 443–473. [Google Scholar] [CrossRef]
- Weingarten-Gabbay, S.; Klaeger, S.; Sarkizova, S.; Pearlman, L.R.; Chen, D.Y.; Gallagher, K.M.E.; Bauer, M.R.; Taylor, H.B.; Dunn, W.A.; Tarr, C.; et al. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs. Cell 2021, 184, 3962–3980. [Google Scholar] [CrossRef]
- Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discovery. 2007, 6, 404–414. [Google Scholar] [CrossRef]
- Peters, B.; Nielsen, M.; Sette, A. T cell epitope predictions. Annu. Rev. Immunol. 2020, 38, 123–145. [Google Scholar] [CrossRef]
- Su, M.; Zheng, G.; Xu, X.; Song, H. Antigen epitopes of animal coronaviruses: A mini-review. Anim. Dis. 2023, 3, 14. [Google Scholar] [CrossRef]
- Arieta, C.M.; Xie, Y.J.; Rothenberg, D.A.; Diao, H.; Harjanto, D.; Meda, S.; Marquart, K.; Koenitzer, B.; Sciuto, T.E.; Lobo, A.; et al. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023, 186, 2392–2409. [Google Scholar] [CrossRef]
- Shin, H.; Kim, Y.; Jon, S. Nanovaccine displaying immunodominant T cell epitopes of fibroblast activation protein is effective against desmoplastic tumors. ACS Nano 2023, 17, 10337–10352. [Google Scholar] [CrossRef]
- Atmar, R.L.; Bernstein, D.I.; Winokur, P.; Frey, S.E.; Angelo, L.S.; Bryant, C.; Ben-Yedidia, T.; Roberts, P.C.; El Sahly, H.M.; Keitel, W.A. Safety and immunogenicity of Multimeric-001 (M-001) followed by seasonal quadrivalent inactivated influenza vaccine in young adults-A randomized clinical trial. Vaccine 2023, 41, 2716–2722. [Google Scholar] [CrossRef]
- Shabani, S.H.; Kardani, K.; Milani, A.; Bolhassani, A. In silico and in vivo analysis of HIV-1 rev regulatory protein for evaluation of a multiepitope-based vaccine candidate. Immunol. Invest. 2022, 51, 1–28. [Google Scholar] [CrossRef]
- He, Y.; Cao, Z.; De Groot, A.S.; Brusic, V.; Schönbach, C.; Petrovsky, N. Computational vaccinology and the ICoVax 2012 workshop. BMC Bioinf. 2013, 14, I1. [Google Scholar] [CrossRef]
- Andongma, B.T.; Huang, Y.; Chen, F.; Tang, Q.; Yang, M.; Chou, S.H.; Li, X.; He, J. In silico design of a promiscuous chimeric multi-epitope vaccine against Mycobacterium tuberculosis. Comput. Struct. Biotechnol. J. 2023, 21, 991–1004. [Google Scholar] [CrossRef]
- De Groot, A.S.; Moise, L.; Terry, F.; Gutierrez, A.H.; Hindocha, P.; Richard, G.; Hoft, D.F.; Ross, T.M.; Noe, A.R.; Takahashi, Y.; et al. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools. Front. Immunol. 2020, 11, 442. [Google Scholar] [CrossRef]
- Lang-Meli, J.; Luxenburger, H.; Wild, K.; Karl, V.; Oberhardt, V.; Salimi Alizei, E.; Graeser, A.; Reinscheid, M.; Roehlen, N.; Reeg, D.B.; et al. SARS-CoV-2-specific T-cell epitope repertoire in convalescent and mRNA-vaccinated individuals. Nat. Microbiol. 2022, 7, 675–679. [Google Scholar] [CrossRef]
- Rahman, M.M.; Puspo, J.A.; Adib, A.A.; Hossain, M.E.; Alam, M.M.; Sultana, S.; Islam, A.; Klena, J.D.; Montgomery, J.M.; Satter, S.M.; et al. An immunoinformatics prediction of novel multi-epitope vaccines candidate against surface antigens of Nipah virus. Int. J. Pept. Res. Ther. 2022, 28, 123. [Google Scholar] [CrossRef]
- Jin, Y.; Fayyaz, A.; Liaqat, A.; Khan, A.; Alshammari, A.; Wang, Y.; Gu, R.X.; Wei, D.Q. Proteomics-based vaccine targets annotation and design of subunit and mRNA-based vaccines for monkeypox virus (MPXV) against the recent outbreak. Comput. Biol. Med. 2023, 159, 106893. [Google Scholar] [CrossRef]
- Khan, A.M.; Miotto, O.; Nascimento, E.J.; Srinivasan, K.N.; Heiny, A.T.; Zhang, G.L.; Marques, E.T.; Tan, T.W.; Brusic, V.; Salmon, J.; et al. Conservation and variability of dengue virus proteins: Implications for vaccine design. PLoS Negl. Trop. Dis. 2008, 2, e272. [Google Scholar] [CrossRef]
- Bosch-Camós, L.; López, E.; Navas, M.J.; Pina-Pedrero, S.; Accensi, F.; Correa-Fiz, F.; Park, C.; Carrascal, M.; Domínguez, J.; Salas, M.L.; et al. Identification of promiscuous African swine fever virus T-cell determinants using a multiple technical approach. Vaccines 2021, 9, 29. [Google Scholar] [CrossRef]
- Damilano, G.; Sued, O.; Satorres, S.; Ruiz, M.J.; Ghiglione, Y.; Guzman, F.; Turk, G.; Quiroga, F.; Cahn, P.; Salomón, H.; et al. Bioinformatic analysis of post-transmission viral readaptation in Argentine patients with acute HIV-1 infection. Infect. Genet. Evol. 2020, 81, 104207. [Google Scholar] [CrossRef]
- Kalkal, M.; Kalkal, A.; Dhanda, S.K.; Das, E.; Pande, V.; Das, J. A comprehensive study of epitopes and immune reactivity among Plasmodium species. BMC Microbiol. 2022, 22, 74. [Google Scholar] [CrossRef]
- Vijver, S.V.; Danklmaier, S.; Pipperger, L.; Gronauer, R.; Floriani, G.; Hackl, H.; Das, K.; Wollmann, G. Prediction and validation of murine MHC class I epitopes of the recombinant virus VSV-GP. Front. Immunol. 2022, 13, 1100730. [Google Scholar] [CrossRef]
- Nieto-Gómez, R.; Angulo, C.; Monreal-Escalante, E.; Govea-Alonso, D.O.; De Groot, A.S.; Rosales-Mendoza, S. Design of a multiepitopic Zaire Ebola virus protein and its expression in plant cells. J. Biotechnol. 2019, 295, 41–48. [Google Scholar] [CrossRef]
- Larijani, A.; Kia-Karimi, A.; Roostaei, D. Design of a multi-epitopic vaccine against Epstein-Barr virus via computer-based methods. Front. Immunol. 2023, 14, 1115345. [Google Scholar] [CrossRef]
- Sayeed, U.; Wadhwa, G.; Sajid Jamal, Q.M.; Kamal, M.A.; Akhtar, S.; Siddiqui, M.H.; Khan, M.S. MHC binding peptides for designing of vaccines against Japanese encephalitis virus: A computational approach. Saudi J. Biol. Sci. 2018, 25, 1546–1551. [Google Scholar] [CrossRef]
- Appanna, R.; Huat, T.L.; See, L.L.; Tan, P.L.; Vadivelu, J.; Devi, S. Cross-reactive T-cell responses to the nonstructural regions of dengue viruses among dengue fever and dengue hemorrhagic fever patients in Malaysia. Clin. Vaccine Immunol. 2007, 14, 969–977. [Google Scholar] [CrossRef]
- Dolton, G.; Rius, C.; Wall, A.; Szomolay, B.; Bianchi, V.; Galloway, S.A.E.; Hasan, M.S.; Morin, T.; Caillaud, M.E.; Thomas, H.L.; et al. Targeting of multiple tumor-associated antigens by individual T cell receptors during successful cancer immunotherapy. Cell 2023, 186, 3333–3349. [Google Scholar] [CrossRef]
- Enayatkhani, M.; Hasaniazad, M.; Faezi, S.; Gouklani, H.; Davoodian, P.; Ahmadi, N.; Einakian, M.A.; Karmostaji, A.; Ahmadi, K. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. J. Biomol. Struct. Dyn. 2021, 39, 2857–2872. [Google Scholar] [CrossRef]
- Mukherjee, S.; Tworowski, D.; Detroja, R.; Mukherjee, S.B.; Frenkel-Morgenstern, M. Immunoinformatics and structural analysis for identification of immunodominant epitopes in SARS-CoV-2 as potential vaccine targets. Vaccines 2020, 89, 290. [Google Scholar] [CrossRef]
- Ahmad, S.; Navid, A.; Farid, R.; Abbas, G.; Ahmad, F.; Zaman, N.; Parvaiz, N.; Azam, S.S. Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics. Eur. J. Pharm. Sci. 2020, 151, 105387. [Google Scholar] [CrossRef]
- Ortega-Tirado, D.; Niño-Padilla, E.I.; Arvizu-Flores, A.A.; Velazquez, C.; Espitia, C.; Serrano, C.J.; Enciso-Moreno, J.A.; Sumoza-Toledo, A.; Garibay-Escobar, A. Identification of immunogenic T-cell peptides of Mycobacterium tuberculosis PE_PGRS33 protein. Mol. Immunol. 2020, 125, 123–130. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, F.; Xu, Y.; Wen, H.; Rao, M.; Zhang, P.; Peng, W.; Cui, Y.; Yang, H.; Tan, C.; et al. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum. Vaccin. Immunother. 2023, 19, 2293300. [Google Scholar] [CrossRef]
- Mendes, M.; Mahita, J.; Blazeska, N.; Greenbaum, J.; Ha, B.; Wheeler, K.; Wang, J.; Shackelford, D.; Sette, A.; Peters, B. IEDB-3D 2.0: Structural data analysis within the Immune Epitope Database. Protein Sci. 2023, 32, e4605. [Google Scholar] [CrossRef]
- Sidney, J.; Peters, B.; Sette, A. Epitope prediction and identification-adaptive T cell responses in humans. Semin. Immunol. 2020, 50, 101418. [Google Scholar] [CrossRef]
- Schuler, M.M.; Nastke, M.D.; Stevanovikć, S. SYFPEITHI: Database for searching and T-cell epitope prediction. Methods Mol. Biol. 2007, 409, 75–93. [Google Scholar]
- Falk, K.; Rötzschke, O.; Stevanović, S.; Jung, G.; Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351, 290–296. [Google Scholar] [CrossRef]
- Chowell, D.; Krishna, S.; Becker, P.D.; Cocita, C.; Shu, J.; Tan, X.; Greenberg, P.D.; Klavinskis, L.S.; Blattman, J.N.; Anderson, K.S. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. Proc. Natl. Acad. Sci. USA 2015, 112, E1754–E1762. [Google Scholar] [CrossRef]
- Sharma, N.; Patiyal, S.; Dhall, A.; Pande, A.; Arora, C.; Raghava, G.P.S. AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief. Bioinform. 2021, 22, bbaa294. [Google Scholar] [CrossRef]
- Rathore, A.S.; Choudhury, S.; Arora, A.; Tijare, P.; Raghava, G.P.S. ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Comput. Biol. Med. 2024, 179, 108926. [Google Scholar] [CrossRef]
- Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef]
- Bliss, C.M.; Freyn, A.W.; Caniels, T.G.; Leyva-Grado, V.H.; Nachbagauer, R.; Sun, W.; Tan, G.S.; Gillespie, V.L.; McMahon, M.; Krammer, F.; et al. A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Mol. Ther. 2022, 30, 2024–2047. [Google Scholar] [CrossRef]
- Yu, J.; Mu, J.; Wei, T.; Chen, H.F. Multi-indicator comparative evaluation for deep learning-based protein sequence design methods. Bioinformatics 2024, 40, btae037. [Google Scholar] [CrossRef]
- Shahab, M.; Iqbal, M.W.; Ahmad, A.; Alshabrmi, F.M.; Wei, D.Q.; Khan, A.; Zheng, G. Immunoinformatics-driven in silico vaccine design for Nipah virus (NPV): Integrating machine learning and computational epitope prediction. Comput. Biol. Med. 2024, 170, 108056. [Google Scholar] [CrossRef]
- Smith, C.C.; Olsen, K.S.; Gentry, K.M.; Sambade, M.; Beck, W.; Garness, J.; Entwistle, S.; Willis, C.; Vensko, S.; Woods, A.; et al. Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Med. 2021, 13, 101. [Google Scholar] [CrossRef]
- Evangelista, F.M.D.; van Vliet, A.H.M.; Lawton, S.P.; Betson, M. In silico design of a polypeptide as a vaccine candidate against ascariasis. Sci. Rep. 2023, 13, 3504. [Google Scholar] [CrossRef]
- Haq, A.U.; Khan, A.; Khan, J.; Irum, S.; Waheed, Y.; Ahmad, S.; Nizam-Uddin, N.; Albutti, A.; Zaman, N.; Hussain, Z.; et al. Annotation of potential vaccine targets and design of a multi-epitope subunit vaccine against Yersinia pestis through reverse vaccinology and validation through an agent-based modeling approach. Vaccines 2021, 9, 1327. [Google Scholar] [CrossRef]
- Grifoni, A.; Sidney, J.; Vita, R.; Peters, B.; Crotty, S.; Weiskopf, D.; Sette, A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021, 29, 1076–1092. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Andreu-Sánchez, S.; Vogl, T.; Hu, S.; Vich Vila, A.; Gacesa, R.; Leviatan, S.; Kurilshikov, A.; Klompus, S.; Kalka, I.N.; et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures. Immunity 2023, 56, 1393–1409. [Google Scholar] [CrossRef]
- Jahn-Schmid, B.; Radakovics, A.; Lüttkopf, D.; Scheurer, S.; Vieths, S.; Ebner, C.; Bohle, B. Bet v 1142-156 is the dominant T-cell epitope of the major birch pollen allergen and important for cross-reactivity with Bet v 1-related food allergens. J. Allergy Clin. Immunol. 2005, 116, 213–219. [Google Scholar] [CrossRef]
- Hoffmeister, B.; Kiecker, F.; Tesfa, L.; Volk, H.D.; Picker, L.J.; Kern, F. Mapping T cell epitopes by flow cytometry. Methods 2003, 29, 270–281. [Google Scholar] [CrossRef]
- Burmakina, G.; Malogolovkin, A.; Tulman, E.R.; Xu, W.; Delhon, G.; Kolbasov, D.; Rock, D.L. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. J. Gen. Virol. 2019, 100, 259–265. [Google Scholar] [CrossRef]
- Sengupta, S.; Zhang, J.; Reed, M.C.; Yu, J.; Kim, A.; Boronina, T.N.; Board, N.L.; Wrabl, J.O.; Shenderov, K.; Welsh, R.A.; et al. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. J. Exp. Med. 2023, 220, e20221654. [Google Scholar] [CrossRef]
- Kristensen, N.P.; Dionisio, E.; Bentzen, A.K.; Tamhane, T.; Kemming, J.S.; Nos, G.; Voss, L.F.; Hansen, U.K.; Lauer, G.M.; Hadrup, S.R. Simultaneous analysis of pMHC binding and reactivity unveils virus-specific CD8 T cell immunity to a concise epitope set. Sci. Adv. 2024, 10, eadm8951. [Google Scholar] [CrossRef]
- Malherbe, L. T-cell epitope mapping. Ann. Allergy Asthma Immunol. 2009, 103, 76–79. [Google Scholar] [CrossRef]
- Tang, W.K.; Coelho, C.H.; Miura, K.; Nguemwo Tentokam, B.C.; Salinas, N.D.; Narum, D.L.; Healy, S.A.; Sagara, I.; Long, C.A.; Duffy, P.E.; et al. A human antibody epitope map of Pfs230D1 derived from analysis of individuals vaccinated with a malaria transmission-blocking vaccine. Immunity 2023, 56, 433–443. [Google Scholar] [CrossRef]
- Che, Y.; Gribenko, A.V.; Song, X.; Handke, L.D.; Efferen, K.S.; Tompkins, K.; Kodali, S.; Nunez, L.; Prasad, A.K.; Phelan, L.M.; et al. Rational design of a highly immunogenic prefusion-stabilized F glycoprotein antigen for a respiratory syncytial virus vaccine. Sci. Transl. Med. 2023, 15, eade6422. [Google Scholar] [CrossRef]
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hwang, K.P.; Kuo, H.K.; Peng, W.J.; Shen, Y.H.; Kuo, B.S.; Huang, J.H.; Liu, H.; Ho, Y.H.; Lin, F.; et al. A multitope SARS-CoV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants. J. Clin. Invest. 2022, 132, e157707. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Wan, K.; Zhao, X.; Deng, Y.; Chen, Z.; Luan, X.; Lu, S.; Liu, H. Construction and immunogenicity of a T cell epitope-based subunit vaccine candidate against Mycobacterium tuberculosis. Vaccine 2021, 39, 6860–6865. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, Z.; Li, M.; Liu, Z.; Su, X.; Jin, X. Development of a novel ZIKV vaccine comprised of immunodominant CD4+ and CD8+ T cell epitopes identified through comprehensive epitope mapping in Zika virus infected mice. Vaccine 2021, 39, 5173–5186. [Google Scholar] [CrossRef]
- Xu, K.; Acharya, P.; Kong, R.; Cheng, C.; Chuang, G.Y.; Liu, K.; Louder, M.K.; O’Dell, S.; Rawi, R.; Sastry, M.; et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat. Med. 2018, 24, 857–867. [Google Scholar] [CrossRef]
- Dasari, V.; McNeil, L.K.; Beckett, K.; Solomon, M.; Ambalathingal, G.; Thuy, T.L.; Panikkar, A.; Smith, C.; Steinbuck, M.P.; Jakubowski, A.; et al. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat. Commun. 2023, 14, 4371. [Google Scholar] [CrossRef]
- Dong, R.; Chu, Z.; Yu, F.; Zha, Y. Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Front. Immunol. 2020, 11, 1784. [Google Scholar] [CrossRef]
- Asadinezhad, M.; Khoshnood, S.; Asadollahi, P.; Ghafourian, S.; Sadeghifard, N.; Pakzad, I.; Zeinivand, Y.; Omidi, N.; Hematian, A.; Kalani, B.S. Development of innovative multi-epitope mRNA vaccine against Pseudomonas aeruginosa using in silico approaches. Brief. Bioinform. 2023, 25, bbad502. [Google Scholar] [CrossRef]
- Rcheulishvili, N.; Mao, J.; Papukashvili, D.; Liu, C.; Wang, Z.; Zhao, J.; Xie, F.; Pan, X.; Ji, Y.; He, Y.; et al. Designing multi-epitope mRNA construct as a universal influenza vaccine candidate for future epidemic/pandemic preparedness. Int. J. Biol. Macromol. 2023, 226, 885–899. [Google Scholar] [CrossRef]
- Roier, S.; Mangala Prasad, V.; McNeal, M.M.; Lee, K.K.; Petsch, B.; Rauch, S. mRNA-based VP8* nanoparticle vaccines against rotavirus are highly immunogenic in rodents. NPJ Vaccines 2023, 8, 190. [Google Scholar] [CrossRef]
- Abdelaziz, M.O.; Raftery, M.J.; Weihs, J.; Bielawski, O.; Edel, R.; Köppke, J.; Vladimirova, D.; Adler, J.M.; Firsching, T.; Voß, A.; et al. Early protective effect of a (“pan”) coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front. Immunol. 2023, 14, 1166765. [Google Scholar] [CrossRef]
- Xing, M.; Wang, Y.; Wang, X.; Liu, J.; Dai, W.; Hu, G.; He, F.; Zhao, Q.; Li, Y.; Sun, L.; et al. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J. Virol. 2023, 97, e0072423. [Google Scholar] [CrossRef]
- Qin, Y.; Tu, K.; Teng, Q.; Feng, D.; Zhao, Y.; Zhang, G. Identification of novel T-cell epitopes on infectious bronchitis virus N protein and development of a multi-epitope vaccine. J. Virol. 2021, 95, e0066721. [Google Scholar] [CrossRef]
- Gross, S.; Lennerz, V.; Gallerani, E.; Mach, N.; Böhm, S.; Hess, D.; von Boehmer, L.; Knuth, A.; Ochsenbein, A.; Gnad-Vogt, U.; et al. Short peptide vaccine induces CD4+ T helper cells in patients with different solid cancers. Cancer Immunol. Res. 2016, 4, 18–25. [Google Scholar] [CrossRef]
- Liu, Z.; Kabir, M.T.; Chen, S.; Zhang, H.; Wakim, L.M.; Rehm, B.H.A. Intranasal epitope-polymer vaccine lodges resident memory T cells protecting against influenza virus. Adv. Healthc. Mater. 2024, 13, e2304188. [Google Scholar] [CrossRef]
- Hassebroek, A.M.; Sooryanarain, H.; Heffron, C.L.; Hawks, S.A.; LeRoith, T.; Cecere, T.E.; Stone, W.B.; Walter, D.; Mahsoub, H.M.; Wang, B.; et al. A hepatitis B virus core antigen-based virus-like particle vaccine expressing SARS-CoV-2 B and T cell epitopes induces epitope-specific humoral and cell-mediated immune responses but confers limited protection against SARS-CoV-2 infection. J. Med. Virol. 2023, 95, e28503. [Google Scholar] [CrossRef]
- Das, S.; Freier, A.; Boussoffara, T.; Das, S.; Oswald, D.; Losch, F.O.; Selka, M.; Sacerdoti-Sierra, N.; Schönian, G.; Wiesmüller, K.H.; et al. Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci. Transl. Med. 2014, 6, 234ra256. [Google Scholar] [CrossRef]
- Tada, T.; Peng, J.Y.; Dcosta, B.M.; Landau, N.R. Single-epitope T cell-based vaccine protects against SARS-CoV-2 infection in a preclinical animal model. JCI Insight 2023, 8, e167306. [Google Scholar] [CrossRef]
- Shen, A.R.; Jin, X.X.; Tang, T.T.; Ding, Y.; Liu, X.T.; Zhong, X.; Wu, Y.D.; Han, X.L.; Zhao, G.Y.; Shen, C.L.; et al. Exosomal vaccine loading T cell epitope peptides of SARS-CoV-2 induces robust CD8+ T cell response in HLA-A transgenic mice. Int. J. Nanomed. 2022, 17, 3325–3341. [Google Scholar] [CrossRef]
- Alizadeh, M.; Amini-Khoei, H.; Tahmasebian, S.; Ghatrehsamani, M.; Ghatreh Samani, K.; Edalatpanah, Y.; Rostampur, S.; Salehi, M.; Ghasemi-Dehnoo, M.; Azadegan-Dehkordi, F.; et al. Designing a novel multi-epitope vaccine against Ebola virus using reverse vaccinology approach. Sci. Rep. 2022, 12, 7757. [Google Scholar] [CrossRef]
- Lagzian, M.; Bassami, M.R.; Dehghani, H. In vitro responses of chicken macrophage-like monocytes following exposure to pathogenic and non-pathogenic E. coli ghosts loaded with a rational design of conserved genetic materials of influenza and Newcastle disease viruses. Vet. Immunol. Immunopathol. 2016, 176, 5–17. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Q.; Qi, M.; Chen, J.; Wu, X.; Zhang, X.; Li, W.; Zhang, X.E.; Cui, Z. An intranasal multivalent epitope-based nanoparticle vaccine confers broad protection against divergent influenza viruses. ACS Nano 2023, 17, 13474–13487. [Google Scholar] [CrossRef]
- Pleguezuelos, O.; James, E.; Fernandez, A.; Lopes, V.; Rosas, L.A.; Cervantes-Medina, A.; Cleath, J.; Edwards, K.; Neitzey, D.; Gu, W.; et al. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. NPJ Vaccines 2020, 5, 22. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Rong, H.; Pan, J.; Zhang, X.; Hu, Q.; Shi, Z.L.; Zhang, X.E.; Cui, Z. A nanoparticle vaccine displaying conserved epitopes of the preexisting neutralizing antibody confers broad protection against SARS-CoV-2 variants. ACS Nano 2024, 18, 17749–17763. [Google Scholar] [CrossRef]
- Li, Q.; Wubshet, A.K.; Wang, Y.; Heath, L.; Zhang, J. B and T cell epitopes of the incursionary foot-and-mouth disease virus serotype SAT2 for vaccine development. Viruses 2023, 15, 797. [Google Scholar] [CrossRef]
- Pastor, Y.; Ghazzaui, N.; Hammoudi, A.; Centlivre, M.; Cardinaud, S.; Levy, Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front. Immunol. 2022, 13, 949779. [Google Scholar] [CrossRef]
- Listov, D.; Goverde, C.A.; Correia, B.E.; Fleishman, S.J. Opportunities and challenges in design and optimization of protein function. Nat. Rev. Mol. Cell Biol. 2024, 25, 639–653. [Google Scholar] [CrossRef]
- Schueler-Furman, O.; Wang, C.; Bradley, P.; Misura, K.; Baker, D. Progress in modeling of protein structures and interactions. Science 2005, 310, 638–642. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Zhou, Y.; Litfin, T.; Zhan, J. 3 = 1 + 2: How the divide conquered de novo protein structure prediction and what is next? Natl. Sci. Rev. 2023, 10, nwad259. [Google Scholar] [CrossRef]
- Goldenzweig, A.; Fleishman, S.J. Principles of protein stability and their application in computational design. Annu. Rev. Biochem. 2018, 87, 105–129. [Google Scholar] [CrossRef]
- Williams, J.A.; Biancucci, M.; Lessen, L.; Tian, S.; Balsaraf, A.; Chen, L.; Chesterman, C.; Maruggi, G.; Vandepaer, S.; Huang, Y.; et al. Structural and computational design of a SARS-CoV-2 spike antigen with improved expression and immunogenicity. Sci. Adv. 2023, 9, eadg0330. [Google Scholar] [CrossRef]
- Schubert, B.; Kohlbacher, O. Designing string-of-beads vaccines with optimal spacers. Genome Med. 2016, 8, 9. [Google Scholar] [CrossRef]
- Livingston, B.; Crimi, C.; Newman, M.; Higashimoto, Y.; Appella, E.; Sidney, J.; Sette, A. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immunol. 2002, 168, 5499–5506. [Google Scholar] [CrossRef]
- Tan, L.; Wen, G.; Yuan, Y.; Huang, M.; Sun, Y.; Liao, Y.; Song, C.; Liu, W.; Shi, Y.; Shao, H.; et al. Development of a recombinant thermostable Newcastle disease virus (NDV) vaccine express infectious bronchitis virus (IBV) multiple epitopes for protecting against IBV and NDV challenges. Vaccines 2020, 8, 564. [Google Scholar] [CrossRef]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine adjuvants: Mechanisms and platforms. Signal Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef]
- Decker, W.K.; Safdar, A. Cytokine adjuvants for vaccine therapy of neoplastic and infectious disease. Cytokine Growth Factor Rev. 2011, 22, 177–187. [Google Scholar] [CrossRef]
- Zhou, H.; Leng, P.; Wang, Y.; Yang, K.; Li, C.; Ojcius, D.M.; Wang, P.; Jiang, S. Development of T cell antigen-based human coronavirus vaccines against nAb-escaping SARS-CoV-2 variants. Sci. Bull. 2024, 69, 2456–2470. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages | Applications |
---|---|---|---|
IEDB | Multiple methods, large-scale datasets, and immunogenicity analysis | Accuracy limitations | SARS-CoV-2 [26] |
SYFPEITHI | Easy to use, suitable for many MHC molecules | Lack of updated and expanded training data | Human immunodeficiency virus (HIV) [22] |
VaxiJen | Immunogenicity and physicochemical properties analysis | Software algorithm is relatively simple | Nipah virus [27] |
VirVACPRED | Efficient prediction and processing of multiple sequences | Limited to the prediction of viral proteins | Monkeypox virus [28] |
NetCTL | CTL epitopes optimization | Only applicable to MHC-I molecules | Dengue virus (DENV) [29] |
NetMHCpan | Highly accurate and suitable for a variety of MHC molecules | Highly computational complexity | ASFV [30], SARS-CoV-2 [26] |
NetMHC | Widely used and accuracy | Affected by training data and method selection | HIV [31] |
IFNepitope | Predict epitopes that induce IFN-γ | Limited datasets | Malaria [32] |
MHCflurry | Accurate and applied to a variety of MHC molecules | Requires a lot of training data and computing resources | Oncolytic viruses [33] |
EpiMatrix | Optimized | Paid licensing and higher costs | Zaire Ebola virus [34] |
MHC2Pred | Accurate, broad-spectrum, and fast | Relying on known data | Epstein-Barr virus [35] |
ProPred | Combining multiple methods | Only applicable to MHC-I molecules | Japanese encephalitis virus [36] |
RANK-PEP | Multiple species, diverse information | Only applicable to MHC-I molecules | DENV [37] |
PS-CPL | High-throughput screening, flexibility, and accuracy | Complexity, high cost, and laboratory limitations | Tumor [38] |
CANTiGEN | Integrated database, user-friendly, predictive power | Relying on existing data | Tumor [38] |
RANKPEP | Use of experimental data | Lack of comprehensive training data | SARS-CoV-2 [39] |
Tepitool | Applicable to both B and T-cell epitopes | Potential gaps in predictive accuracy | SARS-CoV-2 [40] |
MHCPred | Predict MHC-I- and -II-binding peptides | Depends on training data quality and algorithms’ ability | SARS-CoV-2 [41] |
AlgPred v2.0 | Wide range of data and methods | Unknown allergens cannot be predicted | Mycobacterium tuberculosis [42] |
ToxinPred | Toxicity analysis | Inherent predictive limitations | Human metapneumovirus [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Li, Y.; Wu, H.; Qiu, H.; Sun, Y. T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases. Vaccines 2024, 12, 1181. https://doi.org/10.3390/vaccines12101181
Song X, Li Y, Wu H, Qiu H, Sun Y. T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases. Vaccines. 2024; 12(10):1181. https://doi.org/10.3390/vaccines12101181
Chicago/Turabian StyleSong, Xin, Yongfeng Li, Hongxia Wu, Huaji Qiu, and Yuan Sun. 2024. "T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases" Vaccines 12, no. 10: 1181. https://doi.org/10.3390/vaccines12101181
APA StyleSong, X., Li, Y., Wu, H., Qiu, H., & Sun, Y. (2024). T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases. Vaccines, 12(10), 1181. https://doi.org/10.3390/vaccines12101181