ASIA Syndrome: State-of-the-Art and Future Perspectives
Abstract
:1. Introduction
2. Epidemiology
3. Clinical Presentation
4. Pathophysiology
5. ASIA and Adjuvants
5.1. Vaccines
Adjuvant | Vaccine | Mechanism of Action | References |
---|---|---|---|
Aluminum | Tetanus, influenza, pneumococcus, and hepatitis A and B | Triggering of NLRP3 inflammasome, enhancer of Th1 and Th2 immunity | [32,77] |
Polyoxyethylene sorbitan monooleate and sorbitan trioleate (MF59) | Trivalent (TIV) and quadrivalent (QIV) influenza vaccines | Activation of neutrophils, monocytes and dendritic cells. Secretion of chemokines such as CCL4, CCL5, CCL25, and CXCL8 | [32,84] |
HPV vaccination | Sensory neurons in the dorsal root ganglion were able to capture and retain antigen-specific antibodies released from antibody-secreting plasma cells. Endocrine diseases. | [89,90] | |
COVID-19 vaccination | Induce age-related B cells (ABC cells) and trigger autoimmunity; stimulate TLR-7 and TLR-9 | [98,99] |
5.2. Miscellanea
6. Treatments and Future Target
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shoenfeld, Y.; Agmon-Levin, N. “ASIA”—Autoimmune/Inflammatory Syndrome Induced by Adjuvants. J. Autoimmun. 2011, 36, 4–8. [Google Scholar] [CrossRef]
- Torres-Saavedra, F.A.; León-Sierra, L.P.; Rondón-Carvajal, J. ASIA Syndrome (Autoimmune/Inflammatory Syndrome Induced by Adjuvants): Narrative Literature Review. Rev. Colomb. Reumatol. Engl. Ed. 2024, 31, 380–389. [Google Scholar] [CrossRef]
- Bindoli, S.; Giollo, A.; Galozzi, P.; Doria, A.; Sfriso, P. Hyperinflammation after Anti-SARS-CoV-2 mRNA/DNA Vaccines Successfully Treated with Anakinra: Case Series and Literature Review. Exp. Biol. Med. 2022, 247, 338–344. [Google Scholar] [CrossRef]
- Wu, H.; Yan, S.; Chen, J.; Luo, X.; Li, P.; Jia, X.; Dai, X.; Wang, C.; Huang, Q.; Liu, L.; et al. JAK1-STAT3 Blockade by JAK Inhibitor SHR0302 Attenuates Inflammatory Responses of Adjuvant-Induced Arthritis Rats and Decreases Th17 and Total B Cells. Joint Bone Spine 2016, 83, 525–532. [Google Scholar] [CrossRef]
- Colafrancesco, S.; Agmon-Levin, N.; Perricone, C.; Shoenfeld, Y. Unraveling the Soul of Autoimmune Diseases: Pathogenesis, Diagnosis and Treatment Adding Dowels to the Puzzle. Immunol. Res. 2013, 56, 200–205. [Google Scholar] [CrossRef]
- Israeli, E. Gulf War Syndrome as a Part of the Autoimmune (Autoinflammatory) Syndrome Induced by Adjuvant (ASIA). Lupus 2012, 21, 190–194. [Google Scholar] [CrossRef]
- Masson, J.-D.; Badran, G.; Gherardi, R.K.; Authier, F.-J.; Crépeaux, G. Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses. Toxics 2024, 12, 491. [Google Scholar] [CrossRef]
- Masson, J.-D.; Badran, G.; Domdom, M.A.; Gherardi, R.K.; Mograbi, B.; Authier, F.J.; Crépeaux, G. Advances on the Early Cellular Events Occurring upon Exposure of Human Macrophages to Aluminum Oxyhydroxide Adjuvant. Sci. Rep. 2023, 13, 3198. [Google Scholar] [CrossRef]
- Yussuf, S.M.; Dahir, G.; Salad, A.M.; Hayir, M.T.M.; Hassan, S.A.; Gele, A. Sick Building Syndrome and Its Associated Factors among Adult People Living in Hodan District Moqadishu Somalia. Front. Built Environ. 2023, 9, 1218659. [Google Scholar] [CrossRef]
- Meroni, P.L. Autoimmune or Auto-Inflammatory Syndrome Induced by Adjuvants (ASIA): Old Truths and a New Syndrome? J. Autoimmun. 2011, 36, 1–3. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine 2019, 37, 3167–3178. [Google Scholar] [CrossRef]
- Watad, A.; Quaresma, M.; Brown, S.; Cohen Tervaert, J.W.; Rodríguez-Pint, I.; Cervera, R.; Perricone, C.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (Shoenfeld’s Syndrome)—An Update. Lupus 2017, 26, 675–681. [Google Scholar] [CrossRef]
- Mahroum, N.; Lavine, N.; Ohayon, A.; Seida, R.; Alwani, A.; Alrais, M.; Zoubi, M.; Bragazzi, N.L. COVID-19 Vaccination and the Rate of Immune and Autoimmune Adverse Events Following Immunization: Insights From a Narrative Literature Review. Front. Immunol. 2022, 13, 872683. [Google Scholar] [CrossRef]
- Seida, I.; Seida, R.; Elsalti, A.; Mahroum, N. Vaccines and Autoimmunity-From Side Effects to ASIA Syndrome. Med. Kaunas Lith. 2023, 59, 364. [Google Scholar] [CrossRef]
- Jara, L.J.; García-Collinot, G.; Medina, G.; del Pilar Cruz-Dominguez, M.; Vera-Lastra, O.; Carranza-Muleiro, R.A.; Saavedra, M.A. Severe Manifestations of Autoimmune Syndrome Induced by Adjuvants (Shoenfeld’s Syndrome). Immunol. Res. 2017, 65, 8–16. [Google Scholar] [CrossRef]
- Hennekens, C.H.; Lee, I.-M.; Cook, N.R.; Hebert, P.R.; Karlson, E.W.; LaMotte, F.; Manson, J.E.; Buring, J.E. Self-Reported Breast Implants and Connective-Tissue Diseases in Female Health Professionals: A Retrospective Cohort Study. JAMA 1996, 275, 616–621. [Google Scholar] [CrossRef]
- Goren, I.; Segal, G.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvant (ASIA) Evolution after Silicone Implants. Who Is at Risk? Clin. Rheumatol. 2015, 34, 1661–1666. [Google Scholar] [CrossRef]
- Ameratunga, R.; Gillis, D.; Gold, M.; Linneberg, A.; Elwood, J.M. Evidence Refuting the Existence of Autoimmune/Autoinflammatory Syndrome Induced by Adjuvants (ASIA). J. Allergy Clin. Immunol. Pract. 2017, 5, 1551–1555.e1. [Google Scholar] [CrossRef]
- Hawkes, D.; Benhamu, J.; Sidwell, T.; Miles, R.; Dunlop, R.A. Revisiting Adverse Reactions to Vaccines: A Critical Appraisal of Autoimmune Syndrome Induced by Adjuvants (ASIA). J. Autoimmun. 2015, 59, 77–84. [Google Scholar] [CrossRef]
- Watad, A.; Bragazzi, N.L.; McGonagle, D.; Adawi, M.; Bridgewood, C.; Damiani, G.; Alijotas-Reig, J.; Esteve-Valverde, E.; Quaresma, M.; Amital, H.; et al. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA) Demonstrates Distinct Autoimmune and Autoinflammatory Disease Associations According to the Adjuvant Subtype: Insights from an Analysis of 500 Cases. Clin. Immunol. Orlando Fla 2019, 203, 1–8. [Google Scholar] [CrossRef]
- Borba, V.; Malkova, A.; Basantsova, N.; Halpert, G.; Andreoli, L.; Tincani, A.; Amital, H.; Shoenfeld, Y. Classical Examples of the Concept of the ASIA Syndrome. Biomolecules 2020, 10, 1436. [Google Scholar] [CrossRef]
- Schaefer, C.J.; Wooley, P.H. The Influence of Silicone Implantation on Murine Lupus in MRL Lpr/Lpr Mice. J. Rheumatol. 1999, 26, 2215–2221. [Google Scholar]
- Zandman-Goddard, G.; Blank, M.; Ehrenfeld, M.; Gilburd, B.; Peter, J.; Shoenfeld, Y. A Comparison of Autoantibody Production in Asymptomatic and Symptomatic Women with Silicone Breast Implants. J. Rheumatol. 1999, 26, 73–77. [Google Scholar]
- Mosca, M.; Tani, C.; Talarico, R.; Bombardieri, S. Undifferentiated Connective Tissue Diseases (UCTD): Simplified Systemic Autoimmune Diseases. Autoimmun. Rev. 2011, 10, 256–258. [Google Scholar] [CrossRef]
- Scanzi, F.; Andreoli, L.; Martinelli, M.; Taraborelli, M.; Cavazzana, I.; Carabellese, N.; Ottaviani, R.; Allegri, F.; Franceschini, F.; Agmon-Levin, N.; et al. Are the Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA) and the Undifferentiated Connective Tissue Disease (UCTD) Related to Each Other? A Case-Control Study of Environmental Exposures. Immunol. Res. 2017, 65, 150–156. [Google Scholar] [CrossRef]
- Mazzarella, L.; Duso, B.A.; Trapani, D.; Belli, C.; D’Amico, P.; Ferraro, E.; Viale, G.; Curigliano, G. The Evolving Landscape of “next-Generation” Immune Checkpoint Inhibitors: A Review. Eur. J. Cancer Oxf. Engl. 1990 2019, 117, 14–31. [Google Scholar] [CrossRef]
- Darnell, E.P.; Mooradian, M.J.; Baruch, E.N.; Yilmaz, M.; Reynolds, K.L. Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Curr. Oncol. Rep. 2020, 22, 39. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Hejly, A.; Watad, A.; Adawi, M.; Amital, H.; Shoenfeld, Y. ASIA Syndrome and Endocrine Autoimmune Disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101412. [Google Scholar] [CrossRef]
- Vayssairat, M.; Mimoun, M.; Houot, B.; Abuaf, N.; Rouquette, A.M.; Chaouat, M. Hashimoto’s thyroiditis and silicone breast implants: 2 cases. J. Mal. Vasc. 1997, 22, 198–199. [Google Scholar]
- Mochizuki, S.; Miura, J.; Ucida, K.; Kubota, R.; Fujikawa, H.; Takagi, S.; Yoshida, N.; Ootake, S.; Fujimori, C.; Shinohara, A.; et al. Type 1 Diabetes Mellitus Following COVID-19 Vaccination: A Report of Two Cases and Review of Literature. Diabetol. Int. 2024, 15, 577–582. [Google Scholar] [CrossRef]
- Aydoğan, B.İ.; Ünlütürk, U.; Cesur, M. Type 1 Diabetes Mellitus Following SARS-CoV-2 mRNA Vaccination. Endocrine 2022, 78, 42–46. [Google Scholar] [CrossRef]
- Seida, I.; Alrais, M.; Seida, R.; Alwani, A.; Kiyak, Z.; Elsalti, A.; Nil Esirgun, S.; Abali, T.; Mahroum, N. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA): Past, Present, and Future Implications. Clin. Exp. Immunol. 2023, 213, 87–101. [Google Scholar] [CrossRef]
- Perricone, C.; Colafrancesco, S.; Mazor, R.D.; Soriano, A.; Agmon-Levin, N.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA) 2013: Unveiling the Pathogenic, Clinical and Diagnostic Aspects. J. Autoimmun. 2013, 47, 1–16. [Google Scholar] [CrossRef]
- Trowsdale, J.; Knight, J.C. Major Histocompatibility Complex Genomics and Human Disease. Annu. Rev. Genomics Hum. Genet. 2013, 14, 301–323. [Google Scholar] [CrossRef]
- Tizaoui, K.; Shin, J.I.; Jeong, G.H.; Yang, J.W.; Park, S.; Kim, J.H.; Hwang, S.Y.; Park, S.J.; Koyanagi, A.; Smith, L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina 2022, 58, 1034. [Google Scholar] [CrossRef]
- Ruiz, J.T.; Luján, L.; Blank, M.; Shoenfeld, Y. Adjuvants- and Vaccines-Induced Autoimmunity: Animal Models. Immunol. Res. 2017, 65, 55–65. [Google Scholar] [CrossRef]
- HogenEsch, H. Mechanisms of Stimulation of the Immune Response by Aluminum Adjuvants. Vaccine 2002, 20, S34–S39. [Google Scholar] [CrossRef]
- Demento, S.L.; Eisenbarth, S.C.; Foellmer, H.G.; Platt, C.; Caplan, M.J.; Mark Saltzman, W.; Mellman, I.; Ledizet, M.; Fikrig, E.; Flavell, R.A.; et al. Inflammasome-Activating Nanoparticles as Modular Systems for Optimizing Vaccine Efficacy. Vaccine 2009, 27, 3013–3021. [Google Scholar] [CrossRef]
- Sutterwala, F.S.; Ogura, Y.; Flavell, R.A. The Inflammasome in Pathogen Recognition and Inflammation. J. Leukoc. Biol. 2007, 82, 259–264. [Google Scholar] [CrossRef]
- Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica Crystals and Aluminum Salts Activate the NALP3 Inflammasome through Phagosomal Destabilization. Nat. Immunol. 2008, 9, 847–856. [Google Scholar] [CrossRef]
- Flach, T.L.; Ng, G.; Hari, A.; Desrosiers, M.D.; Zhang, P.; Ward, S.M.; Seamone, M.E.; Vilaysane, A.; Mucsi, A.D.; Fong, Y.; et al. Alum Interaction with Dendritic Cell Membrane Lipids Is Essential for Its Adjuvanticity. Nat. Med. 2011, 17, 479–487. [Google Scholar] [CrossRef]
- Danielsson, R.; Eriksson, H. Aluminium Adjuvants in Vaccines—A Way to Modulate the Immune Response. Semin. Cell Dev. Biol. 2021, 115, 3–9. [Google Scholar] [CrossRef]
- Cohen Tervaert, J.W. Autoinflammatory/Autoimmunity Syndrome Induced by Adjuvants (ASIA; Shoenfeld’s Syndrome): A New Flame. Autoimmun. Rev. 2018, 17, 1259–1264. [Google Scholar] [CrossRef]
- Al-Akl, N.S.; Chakhtoura, M.; Kazzi, N.F.; Usta, J.; Chamoun, C.A.; Abdelnoor, A.M. Uric Acid; a Possible Mediator of the Adjuvant Effect of Alum in Mice Immunized with Ovalbumin. World J. Vaccines 2011, 01, 148–155. [Google Scholar] [CrossRef]
- Marichal, T.; Ohata, K.; Bedoret, D.; Mesnil, C.; Sabatel, C.; Kobiyama, K.; Lekeux, P.; Coban, C.; Akira, S.; Ishii, K.J.; et al. DNA Released from Dying Host Cells Mediates Aluminum Adjuvant Activity. Nat. Med. 2011, 17, 996–1002. [Google Scholar] [CrossRef]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef]
- Maisonneuve, C.; Bertholet, S.; Philpott, D.J.; De Gregorio, E. Unleashing the Potential of NOD- and Toll-like Agonists as Vaccine Adjuvants. Proc. Natl. Acad. Sci. USA 2014, 111, 12294–12299. [Google Scholar] [CrossRef]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.P.; Campbell, B.J.; Jewell, D.; Simmons, A. NOD2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nat. Med. 2010, 16, 90–97. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine Adjuvants: Mechanisms and Platforms. Signal Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Kasumba, D.M.; Grandvaux, N. Therapeutic Targeting of RIG-I and MDA5 Might Not Lead to the Same Rome. Trends Pharmacol. Sci. 2019, 40, 116–127. [Google Scholar] [CrossRef]
- Reikine, S.; Nguyen, J.B.; Modis, Y. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Front. Immunol. 2014, 5, 342. [Google Scholar] [CrossRef]
- Goretzki, A.; Lin, Y.-J.; Schülke, S. Immune Metabolism in Allergies, Does It Matter?-A Review of Immune Metabolic Basics and Adaptations Associated with the Activation of Innate Immune Cells in Allergy. Allergy 2021, 76, 3314–3331. [Google Scholar] [CrossRef]
- Obeso, D.; Mera-Berriatua, L.; Rodríguez-Coira, J.; Rosace, D.; Fernández, P.; Martín-Antoniano, I.A.; Santaolalla, M.; Marco Martín, G.; Chivato, T.; Fernández-Rivas, M.; et al. Multi-omics Analysis Points to Altered Platelet Functions in Severe Food-associated Respiratory Allergy. Allergy 2018, 73, 2137–2149. [Google Scholar] [CrossRef]
- Daniel, B.; Nagy, G.; Czimmerer, Z.; Horvath, A.; Hammers, D.W.; Cuaranta-Monroy, I.; Poliska, S.; Tzerpos, P.; Kolostyak, Z.; Hays, T.T.; et al. The Nuclear Receptor PPARγ Controls Progressive Macrophage Polarization as a Ligand-Insensitive Epigenomic Ratchet of Transcriptional Memory. Immunity 2018, 49, 615–626.e6. [Google Scholar] [CrossRef]
- Chen, T.; Tibbitt, C.A.; Feng, X.; Stark, J.M.; Rohrbeck, L.; Rausch, L.; Sedimbi, S.K.; Karlsson, M.C.I.; Lambrecht, B.N.; Karlsson Hedestam, G.B.; et al. PPAR-γ Promotes Type 2 Immune Responses in Allergy and Nematode Infection. Sci. Immunol. 2017, 2, eaal5196. [Google Scholar] [CrossRef]
- León, B.; Ballesteros-Tato, A.; Lund, F.E. Dendritic Cells and B Cells: Unexpected Partners in Th2 Development. J. Immunol. Baltim. Md 1950 2014, 193, 1531–1537. [Google Scholar] [CrossRef]
- Cho, S.H.; Raybuck, A.L.; Stengel, K.; Wei, M.; Beck, T.C.; Volanakis, E.; Thomas, J.W.; Hiebert, S.; Haase, V.H.; Boothby, M.R. Germinal Centre Hypoxia and Regulation of Antibody Qualities by a Hypoxia Response System. Nature 2016, 537, 234–238. [Google Scholar] [CrossRef]
- Dong, L.; He, Y.; Zhou, S.; Cao, Y.; Li, Y.; Bi, Y.; Liu, G. HIF1α-Dependent Metabolic Signals Control the Differentiation of Follicular Helper T Cells. Cells 2019, 8, 1450. [Google Scholar] [CrossRef]
- Cho, S.H.; Raybuck, A.L.; Blagih, J.; Kemboi, E.; Haase, V.H.; Jones, R.G.; Boothby, M.R. Hypoxia-Inducible Factors in CD4+ T Cells Promote Metabolism, Switch Cytokine Secretion, and T Cell Help in Humoral Immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 8975–8984. [Google Scholar] [CrossRef]
- Son, Y.M.; Cheon, I.S.; Goplen, N.P.; Dent, A.L.; Sun, J. Inhibition of Stearoyl-CoA Desaturases Suppresses Follicular Help T- and Germinal Center B- Cell Responses. Eur. J. Immunol. 2020, 50, 1067–1077. [Google Scholar] [CrossRef]
- Israeli, E.; Agmon-Levin, N.; Blank, M.; Shoenfeld, Y. Adjuvants and Autoimmunity. Lupus 2009, 18, 1217–1225. [Google Scholar] [CrossRef]
- McAnally, J.L.; Xu, L.; Villain, M.; Blalock, J.E. The Role of Adjuvants in the Efficacy of a Peptide Vaccine for Myasthenia Gravis. Exp. Biol. Med. Maywood NJ 2001, 226, 307–311. [Google Scholar] [CrossRef]
- Ott, N.; Faletti, L.; Heeg, M.; Andreani, V.; Grimbacher, B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J. Clin. Immunol. 2023, 43, 1326–1359. [Google Scholar] [CrossRef]
- Lim, W.A.; Pawson, T. Phosphotyrosine Signaling: Evolving a New Cellular Communication System. Cell 2010, 142, 661–667. [Google Scholar] [CrossRef]
- Minegishi, Y.; Saito, M.; Tsuchiya, S.; Tsuge, I.; Takada, H.; Hara, T.; Kawamura, N.; Ariga, T.; Pasic, S.; Stojkovic, O.; et al. Dominant-Negative Mutations in the DNA-Binding Domain of STAT3 Cause Hyper-IgE Syndrome. Nature 2007, 448, 1058–1062. [Google Scholar] [CrossRef]
- Gruber, C.N.; Calis, J.J.A.; Buta, S.; Evrony, G.; Martin, J.C.; Uhl, S.A.; Caron, R.; Jarchin, L.; Dunkin, D.; Phelps, R.; et al. Complex Autoinflammatory Syndrome Unveils Fundamental Principles of JAK1 Kinase Transcriptional and Biochemical Function. Immunity 2020, 53, 672–684.e11. [Google Scholar] [CrossRef]
- Flanagan, S.E.; Haapaniemi, E.; Russell, M.A.; Caswell, R.; Allen, H.L.; De Franco, E.; McDonald, T.J.; Rajala, H.; Ramelius, A.; Barton, J.; et al. Activating Germline Mutations in STAT3 Cause Early-Onset Multi-Organ Autoimmune Disease. Nat. Genet. 2014, 46, 812–814. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II Cytokines, JAKs, and New Strategies for Treating Autoimmune Diseases. Nat. Rev. Rheumatol. 2016, 12, 25–36. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef]
- Santoni, M.; Massari, F.; Del Re, M.; Ciccarese, C.; Piva, F.; Principato, G.; Montironi, R.; Santini, D.; Danesi, R.; Tortora, G.; et al. Investigational Therapies Targeting Signal Transducer and Activator of Transcription 3 for the Treatment of Cancer. Expert Opin. Investig. Drugs 2015, 24, 809–824. [Google Scholar] [CrossRef]
- Esposito, S.; Prada, E.; Mastrolia, M.V.; Tarantino, G.; Codecà, C.; Rigante, D. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA): Clues and Pitfalls in the Pediatric Background. Immunol. Res. 2014, 60, 366–375. [Google Scholar] [CrossRef]
- Facciolà, A.; Visalli, G.; Laganà, A.; Di Pietro, A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines 2022, 10, 819. [Google Scholar] [CrossRef]
- Shah, R.R.; Hassett, K.J.; Brito, L.A. Overview of Vaccine Adjuvants: Introduction, History, and Current Status. In Vaccine Adjuvants; Fox, C.B., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1494, pp. 1–13. ISBN 978-1-4939-6443-7. [Google Scholar]
- Song, Y.; Mehl, F.; Zeichner, S.L. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines 2024, 12, 191. [Google Scholar] [CrossRef]
- Laera, D.; HogenEsch, H.; O’Hagan, D.T. Aluminum Adjuvants—‘Back to the Future’. Pharmaceutics 2023, 15, 1884. [Google Scholar] [CrossRef]
- Fan, J.; Jin, S.; Gilmartin, L.; Toth, I.; Hussein, W.M.; Stephenson, R.J. Advances in Infectious Disease Vaccine Adjuvants. Vaccines 2022, 10, 1120. [Google Scholar] [CrossRef]
- Kanuri, S.H.; Sirrkay, P.J. Adjuvants in COVID-19 Vaccines: Innocent Bystanders or Culpable Abettors for Stirring up COVID-Heart Syndrome. Ther. Adv. Vaccines Immunother. 2024, 12, 25151355241228439. [Google Scholar] [CrossRef]
- Honda-Okubo, Y.; Barnard, D.; Ong, C.H.; Peng, B.-H.; Tseng, C.-T.K.; Petrovsky, N. Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection While Ameliorating Lung Eosinophilic Immunopathology. J. Virol. 2015, 89, 2995–3007. [Google Scholar] [CrossRef]
- Tseng, C.-T.; Sbrana, E.; Iwata-Yoshikawa, N.; Newman, P.C.; Garron, T.; Atmar, R.L.; Peters, C.J.; Couch, R.B. Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus. PLoS ONE 2012, 7, e35421. [Google Scholar] [CrossRef]
- Power, U.F.; Huss, T.; Michaud, V.; Plotnicky-Gilquin, H.; Bonnefoy, J.Y.; Nguyen, T.N. Differential Histopathology and Chemokine Gene Expression in Lung Tissues Following Respiratory Syncytial Virus (RSV) Challenge of Formalin-Inactivated RSV- or BBG2Na-Immunized Mice. J. Virol. 2001, 75, 12421–12430. [Google Scholar] [CrossRef]
- Gherardi, R.K.; Coquet, M.; Cherin, P.; Belec, L.; Moretto, P.; Dreyfus, P.A.; Pellissier, J.F.; Chariot, P.; Authier, F.J. Macrophagic Myofasciitis Lesions Assess Long-Term Persistence of Vaccine-Derived Aluminium Hydroxide in Muscle. Brain J. Neurol. 2001, 124, 1821–1831. [Google Scholar] [CrossRef]
- Gherardi, R.K.; Crépeaux, G.; Authier, F.-J. Myalgia and Chronic Fatigue Syndrome Following Immunization: Macrophagic Myofasciitis and Animal Studies Support Linkage to Aluminum Adjuvant Persistency and Diffusion in the Immune System. Autoimmun. Rev. 2019, 18, 691–705. [Google Scholar] [CrossRef]
- Calabro, S.; Tortoli, M.; Baudner, B.C.; Pacitto, A.; Cortese, M.; O’Hagan, D.T.; De Gregorio, E.; Seubert, A.; Wack, A. Vaccine Adjuvants Alum and MF59 Induce Rapid Recruitment of Neutrophils and Monocytes That Participate in Antigen Transport to Draining Lymph Nodes. Vaccine 2011, 29, 1812–1823. [Google Scholar] [CrossRef]
- Kuroda, Y.; Nacionales, D.C.; Akaogi, J.; Reeves, W.H.; Satoh, M. Autoimmunity Induced by Adjuvant Hydrocarbon Oil Components of Vaccine. Biomed. Pharmacother. 2004, 58, 325–337. [Google Scholar] [CrossRef]
- Skinner, S.R.; Szarewski, A.; Romanowski, B.; Garland, S.M.; Lazcano-Ponce, E.; Salmerón, J.; Del Rosario-Raymundo, M.R.; Verheijen, R.H.M.; Quek, S.C.; Da Silva, D.P.; et al. Efficacy, Safety, and Immunogenicity of the Human Papillomavirus 16/18 AS04-Adjuvanted Vaccine in Women Older than 25 Years: 4-Year Interim Follow-up of the Phase 3, Double-Blind, Randomised Controlled VIVIANE Study. The Lancet 2014, 384, 2213–2227. [Google Scholar] [CrossRef]
- Arbyn, M.; Xu, L.; Simoens, C.; Martin-Hirsch, P.P. Prophylactic Vaccination against Human Papillomaviruses to Prevent Cervical Cancer and Its Precursors. Cochrane Database Syst. Rev. 2018, 5, CD009069. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Chatterjee, P.K.; Shih, A.; Imperato, G.H.; Addorisio, M.; Kumar, G.; Lee, A.; Graf, J.F.; Meyer, D.; Marino, M.; et al. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Front. Immunol. 2018, 9, 638. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Harding, B.L.; Hoffman, P.N.; Griffin, J.W.; Price, D.L.; Troncoso, J.C. Aluminum-Induced Neurofilamentous Changes in Cultured Rat Dorsal Root Ganglia Explants. J. Neurosci. 1992, 12, 1763–1771. [Google Scholar] [CrossRef]
- Colafrancesco, S.; Perricone, C.; Tomljenovic, L.; Shoenfeld, Y. Human Papilloma Virus Vaccine and Primary Ovarian Failure: Another Facet of the Autoimmune/Inflammatory Syndrome Induced by Adjuvants. Am. J. Reprod. Immunol. 2013, 70, 309–316. [Google Scholar] [CrossRef]
- Little, D.T.; Ward, H.R.G. Premature Ovarian Failure 3 Years after Menarche in a 16-Year-Old Girl Following Human Papillomavirus Vaccination. BMJ Case Rep. 2012, 2012, bcr2012006879. [Google Scholar] [CrossRef]
- Jara, L.J.; Vera-Lastra, O.; Mahroum, N.; Pineda, C.; Shoenfeld, Y. Autoimmune Post-COVID Vaccine Syndromes: Does the Spectrum of Autoimmune/Inflammatory Syndrome Expand? Clin. Rheumatol. 2022, 41, 1603–1609. [Google Scholar] [CrossRef]
- Pujol, A.; Gómez, L.-A.; Gallegos, C.; Nicolau, J.; Sanchís, P.; González-Freire, M.; López-González, Á.A.; Dotres, K.; Masmiquel, L. Thyroid as a Target of Adjuvant Autoimmunity/Inflammatory Syndrome Due to mRNA-Based SARS-CoV2 Vaccination: From Graves’ Disease to Silent Thyroiditis. J. Endocrinol. Invest. 2022, 45, 875–882. [Google Scholar] [CrossRef]
- Khan, F.; Brassill, M.J. Subacute Thyroiditis Post-Pfizer-BioNTech mRNA Vaccination for COVID-19. Endocrinol. Diabetes Metab. Case Rep. 2021, 2021, 21-0142. [Google Scholar] [CrossRef]
- Siolos, A.; Gartzonika, K.; Tigas, S. Thyroiditis Following Vaccination against COVID-19: Report of Two Cases and Review of the Literature. Metab. Open 2021, 12, 100136. [Google Scholar] [CrossRef]
- Abdelmaksoud, A.; Wollina, U.; Temiz, S.A.; Hasan, A. SARS-CoV-2 Vaccination-Induced Cutaneous Vasculitis: Report of Two New Cases and Literature Review. Dermatol. Ther. 2022, 35, e15458. [Google Scholar] [CrossRef]
- Jeffs, L.S.; Nitschke, J.; Tervaert, J.W.C.; Peh, C.A.; Hurtado, P.R. Viral RNA in the Influenza Vaccine May Have Contributed to the Development of ANCA-Associated Vasculitis in a Patient Following Immunisation. Clin. Rheumatol. 2016, 35, 943–951. [Google Scholar] [CrossRef]
- Sachinidis, A.; Garyfallos, A. COVID-19 Vaccination Can Occasionally Trigger Autoimmune Phenomena, Probably via Inducing Age-associated B Cells. Int. J. Rheum. Dis. 2022, 25, 83–85. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.; Shuai, Z.; Ye, D.; Pan, H. New-onset Autoimmune Phenomena post-COVID-19 Vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef]
- Cohen Tervaert, J.W.; Martinez-Lavin, M.; Jara, L.J.; Halpert, G.; Watad, A.; Amital, H.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA) in 2023. Autoimmun. Rev. 2023, 22, 103287. [Google Scholar] [CrossRef]
- The Putative Role of Environmental Aluminium in the Development of Chronic Neuropathology in Adults and Children. How Strong Is the Evidence and What Could Be the Mechanisms Involved?|Metabolic Brain Disease. Available online: https://link.springer.com/article/10.1007/s11011-017-0077-2 (accessed on 6 October 2024).
- Zafrir, Y.; Agmon-Levin, N.; Paz, Z.; Shilton, T.; Shoenfeld, Y. Autoimmunity Following Hepatitis B Vaccine as Part of the Spectrum of “Autoimmune (Auto-Inflammatory) Syndrome Induced by Adjuvants” (ASIA): Analysis of 93 Cases. Lupus 2012, 21, 146–152. [Google Scholar] [CrossRef]
- Barilaro, G.; Spaziani Testa, C.; Cacciani, A.; Donato, G.; Dimko, M.; Mariotti, A. ASIA Syndrome, Calcinosis Cutis and Chronic Kidney Disease Following Silicone Injections. A Case-Based Review. Immunol. Res. 2016, 64, 1142–1149. [Google Scholar] [CrossRef]
- Barroso da Silva, E.A.; Vásquez Ortiz, L.; Aragón Salleg, C.; Briceño Balcázar, I.; Tuta Quintero, E.; Urrea, X.; Gustavo Celis, L.; Pimentel, J. Autoimmunity in Patients with Silicone Breast Implants: An Exploratory Review. Rev. Colomb. Reumatol. Engl. Ed. 2024, 31, 57–67. [Google Scholar] [CrossRef]
- Miro-Mur, F.; Hindié, M.; Kandhaya-Pillai, R.; Tobajas, V.; Schwartz, S.; Alijotas-Reig, J. Medical-grade Silicone Induces Release of Proinflammatory Cytokines in Peripheral Blood Mononuclear Cells without Activating T Cells. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 510–520. [Google Scholar] [CrossRef]
- Littman, E.R.; Mccabe, K.; Beg, S. Saline Breast Implant Associated With Inflammatory Arthritis and Positive Antinuclear Antibodies (ANA): A Case Report. Cureus 2024, 16, e55061. [Google Scholar] [CrossRef]
- Spit, K.A.; Scharff, M.; de Blok, C.J.; Niessen, F.B.; Bachour, Y.; Nanayakkara, P.W. Patient-Reported Systemic Symptoms in Women with Silicone Breast Implants: A Descriptive Cohort Study. BMJ Open 2022, 12, e057159. [Google Scholar] [CrossRef]
- Bueno-Gardea, V.M.; Baeza-Ramos, J.H.; Avalos-Trejo, O.A.; Durán-Rodríguez, A.G.; Martínez-Acosta, J.R.; Baeza-Salcido, M.; de la Rosa, I.A.A.; Muñoz-Torres, M.; Abbud-Fitzmaurice, M.F.; Brito-Brito, N.R.; et al. Autoimmune/Inflammatory Syndrome Induced by Adjuvants: A Review. Int. J. Res. Med. Sci. 2023, 11, 3105–3109. [Google Scholar] [CrossRef]
- Cavallasca, J.A.; Musuruana, J.L.; del Rosario Maliandi, M. Clinical Manifestations, Laboratory Features, and Evolution in Patients with Autoimmune/Autoinflammatory Syndrome Induced by Adjuvants (ASIA). Rev. Colomb. Reumatol. Engl. Ed. 2024. [Google Scholar] [CrossRef]
- Cuéllar, M.L.; Scopelitis, E.; Tenenbaum, S.A.; Garry, R.F.; Silveira, L.H.; Cabrera, G.; Espinoza, L.R. Serum Antinuclear Antibodies in Women with Silicone Breast Implants. J. Rheumatol. 1995, 22, 236–240. [Google Scholar]
- Plavsic, A.; Arandjelovic, S.; Dimitrijevic, M.; Kusic, N.; Tomic Spiric, V.; Popovic, B.; Jovicic, Z.; Peric Popadic, A.; Miskovic, R. Autoimmune/Inflammatory Syndrome Induced by Adjuvants in a Woman with Hashimoto Thyroiditis and Familial Autoimmunity—A Case Report and Literature Review. Front. Immunol. 2023, 14, 1139603. [Google Scholar] [CrossRef]
- Maitani, K.; Kadowaki, M.; Yamagiwa, Y.; Yasuhara, Y.; Kozuki, S.; Otsuka, Y.; Kubo, T.; Tomita, K. Three Case Reports of Adult-Onset Still Disease Associated with Breast Implantation. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5844. [Google Scholar] [CrossRef]
- Nunes E Silva, D.; Gründler, C.; Spengler, M.d.G.d.M.T.; Horimoto, A.M.C.; Machado, M.A.; Frazão, I.C.; Takita, L.C. Autoimmune Syndrome Induced by Adjuvants (ASIA) after Silicone Breast Augmentation Surgery. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1487. [Google Scholar] [CrossRef]
- Tanev, D.; Marinchev, L.; Robeva, R. Autoimmune/Auto-Inflammatory Syndrome Induced by Adjuvant (ASIA) in Patients Refusing Breast Implant Explantation: Two Case Reports and a Review of the Literature. Biotechnol. Biotechnol. Equip. 2023, 37, 7–13. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Gil-Aliberas, N.; Garcia-Gimenez, V. Autoimmune/Inflammatory Syndrome Induced by Adjuvants-ASIA-Related to Biomaterials: Analysis of 45 Cases and Comprehensive Review of the Literature. Immunol. Res. 2018, 66, 120–140. [Google Scholar] [CrossRef]
- Chauhan, U.; Cassidy, B.; Cohen Tervaert, J.W. ASIA (Shoenfeld’s Syndrome) Due to Hysteroscopic Essure Sterilization. Autoimmun. Rev. 2021, 20, 102979. [Google Scholar] [CrossRef]
- Vaz, R.A.; Xavier, P.; Brito, S.; Dantas, J.; Duque, S.; Consciência, J.G.; Campos, L. Metallosis: A New Form of Autoimmune/Autoinflammatory Syndrome Induced by Adjuvants Syndrome (ASIA)? Eur. J. Case Rep. Intern. Med. 2019, 6, 1. [Google Scholar] [CrossRef]
- Schiff, A.; Jiries, N.; Goldsztein, S.; Schiff, E.; Ginsberg, S. A Possible Association of Orthopedic Metal Implants and ASIA Syndrome. Rheumatology 2021, 60, e95–e96. [Google Scholar] [CrossRef]
- Nolfi, A.L.; Brown, B.N.; Liang, R.; Palcsey, S.L.; Bonidie, M.J.; Abramowitch, S.D.; Moalli, P.A. Host Response to Synthetic Mesh in Women with Mesh Complications. Am. J. Obstet. Gynecol. 2016, 215, e1–e206. [Google Scholar] [CrossRef]
- Chung, M.K.; House, J.S.; Akhtari, F.S.; Makris, K.C.; Langston, M.A.; Islam, K.T.; Holmes, P.; Chadeau-Hyam, M.; Smirnov, A.I.; Du, X.; et al. Decoding the Exposome: Data Science Methodologies and Implications in Exposome-Wide Association Studies (ExWASs). Exposome 2024, 4, osae001. [Google Scholar] [CrossRef]
- Vermeulen, R.; Schymanski, E.L.; Barabási, A.-L.; Miller, G.W. The Exposome and Health: Where Chemistry Meets Biology. Science 2020, 367, 392–396. [Google Scholar] [CrossRef]
- Chung, M.K.; Rappaport, S.M.; Wheelock, C.E.; Nguyen, V.K.; van der Meer, T.P.; Miller, G.W.; Vermeulen, R.; Patel, C.J. Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. Environ. Health Perspect. 2021, 129, 85001. [Google Scholar] [CrossRef]
- Hahad, O.; Al-Kindi, S.; Lelieveld, J.; Münzel, T.; Daiber, A. Supporting and Implementing the Beneficial Parts of the Exposome: The Environment Can Be the Problem, but It Can Also Be the Solution. Int. J. Hyg. Environ. Health 2024, 255, 114290. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Garcia-Gimenez, V.; Vilardell-Tarrés, M. Tacrolimus in the Treatment of Chronic and Refractory Late-Onset Immune-Mediated Adverse Effects Related to Silicone Injections. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. Al 2012, 38, 38–47. [Google Scholar] [CrossRef]
- Pasin, L.; Cavalli, G.; Navalesi, P.; Sella, N.; Landoni, G.; Yavorovskiy, A.G.; Likhvantsev, V.V.; Zangrillo, A.; Dagna, L.; Monti, G. Anakinra for Patients with COVID-19: A Meta-Analysis of Non-Randomized Cohort Studies. Eur. J. Intern. Med. 2021, 86, 34–40. [Google Scholar] [CrossRef]
- Forbes, L.R.; Vogel, T.P.; Cooper, M.A.; Castro-Wagner, J.; Schussler, E.; Weinacht, K.G.; Plant, A.S.; Su, H.C.; Allenspach, E.J.; Slatter, M.; et al. Jakinibs for the Treatment of Immune Dysregulation in Patients with Gain-of-Function Signal Transducer and Activator of Transcription 1 (STAT1) or STAT3 Mutations. J. Allergy Clin. Immunol. 2018, 142, 1665–1669. [Google Scholar] [CrossRef]
- Moni, S.S.; Abdelwahab, S.I.; Jabeen, A.; Elmobark, M.E.; Aqaili, D.; Gohal, G.; Oraibi, B.; Farasani, A.M.; Jerah, A.A.; Alnajai, M.M.A.; et al. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines 2023, 11, 1704. [Google Scholar] [CrossRef]
- Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/82_2020_226 (accessed on 6 October 2024).
- Full Article: Nanoparticles: Augmenting Tumor Antigen Presentation for Vaccine and Immunotherapy Treatments of Cancer. Available online: https://www.tandfonline.com/doi/full/10.2217/nnm-2017-0254 (accessed on 6 October 2024).
- Saleemi, M.A.; Zhang, Y.; Zhang, G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024, 13, 441. [Google Scholar] [CrossRef]
- Virus-like Particle Vaccinology, from Bench to Bedside|Cellular & Molecular Immunology. Available online: https://www.nature.com/articles/s41423-022-00897-8 (accessed on 6 October 2024).
- Safety of Vaccine Adjuvants: Focus on Autoimmunity—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0264410X15001309 (accessed on 3 October 2024).
Major Criteria |
---|
Exposure to an external stimulus (infection, vaccine, silicone, adjuvant) before clinical manifestations |
Presence of ‘typical’ clinical manifestations |
Myalgia, myositis, or muscle weakness |
Arthralgia and/or arthritis |
Chronic fatigue, sleep disturbances |
Neurological manifestations |
Cognitive impairment, memory loss |
Pyrexia, dry mouth |
Improvement after removal of causing agent |
Typical biopsy of involved organs |
Minor Criteria |
Autoantibodies or antibodies directed to the suspected adjuvant |
Other clinical manifestations (i.e., irritable bowel syndrome) |
Specific HLA (i.e., HLA DRB1, HLA DQB1) |
Development of an autoimmune disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldarelli, M.; Rio, P.; Giambra, V.; Gasbarrini, A.; Gambassi, G.; Cianci, R. ASIA Syndrome: State-of-the-Art and Future Perspectives. Vaccines 2024, 12, 1183. https://doi.org/10.3390/vaccines12101183
Caldarelli M, Rio P, Giambra V, Gasbarrini A, Gambassi G, Cianci R. ASIA Syndrome: State-of-the-Art and Future Perspectives. Vaccines. 2024; 12(10):1183. https://doi.org/10.3390/vaccines12101183
Chicago/Turabian StyleCaldarelli, Mario, Pierluigi Rio, Vincenzo Giambra, Antonio Gasbarrini, Giovanni Gambassi, and Rossella Cianci. 2024. "ASIA Syndrome: State-of-the-Art and Future Perspectives" Vaccines 12, no. 10: 1183. https://doi.org/10.3390/vaccines12101183
APA StyleCaldarelli, M., Rio, P., Giambra, V., Gasbarrini, A., Gambassi, G., & Cianci, R. (2024). ASIA Syndrome: State-of-the-Art and Future Perspectives. Vaccines, 12(10), 1183. https://doi.org/10.3390/vaccines12101183