Well-Being and Performance of Nursery Pigs Subjected to Different Commercial Vaccines Against Porcine Circovirus Type 2, Mycoplasma hyopneumoniae and Lawsonia intracellularis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Zootechnical Performance and Clinical Signs
3.2. Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauw, W.M.; Rydhmer, L.; Kyriazakis, I.; Øverland, M.; Gilbert, H.; Dekkers, J.C.; Hermesch, S.; Bouquet, A.; Gómez Izquierdo, E.; Louveau, I.; et al. Prospects for Sustainability of Pig Production in Relation to Climate Change and Novel Feed Resources. J. Sci. Food Agric. 2020, 100, 3575–3586. [Google Scholar] [CrossRef] [PubMed]
- Špinka, M. Advances in Pig Welfare; Woodhead Publishing: Cambridge, UK, 2017; ISBN 9780081011195. [Google Scholar]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Schmidt, G.; et al. Welfare of Pigs on Farm. EFSA J. 2022, 20, e07421. [Google Scholar] [CrossRef] [PubMed]
- Weary, D.M.; Jasper, J.; Hötzel, M.J. Understanding Weaning Distress. Appl. Anim. Behav. Sci. 2008, 110, 24–41. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Lee, J.-K.; Eom, T.-K.; Son, S.-H.; Hong, J.-K.; Kim, K.-H.; Rhim, S.-J. Behavioral Characteristics of Weaned Piglets Mixed in Different Groups. Asian-Australas. J. Anim. Sci. 2015, 29, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Suiryanrayna, M.V.A.N.; Ramana, J.V. A Review of the Effects of Dietary Organic Acids Fed to Swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef]
- Huting, A.M.S.; Middelkoop, A.; Guan, X.; Molist, F. Using Nutritional Strategies to Shape the Gastro-Intestinal Tracts of Suckling and Weaned Piglets. Animals 2021, 11, 402. [Google Scholar] [CrossRef]
- Jayaraman, B.; Nyachoti, C.M. Husbandry Practices and Gut Health Outcomes in Weaned Piglets: A Review. Anim. Nutr. 2017, 3, 205–211. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Poutahidis, T.; Tallarico, N.; Hardas, A.; Teliousis, K.; Arsenos, G.; Fortomaris, P.D. Dietary Supplementation of Encapsulated Organic Acids Enhances Performance and Modulates Immune Regulation and Morphology of Jejunal Mucosa in Piglets. Res. Vet. Sci. 2017, 115, 174–182. [Google Scholar] [CrossRef]
- Zheng, L.; Duarte, M.E.; Sevarolli Loftus, A.; Kim, S.W. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front. Vet. Sci. 2021, 8, 628258. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The Biological Stress of Early Weaned Piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef]
- Karuppannan, A.K.; Opriessnig, T. Lawsonia Intracellularis: Revisiting the Disease Ecology and Control of This Fastidious Pathogen in Pigs. Front. Vet. Sci. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Maes, D.; Sibila, M.; Kuhnert, P.; Segalés, J.; Haesebrouck, F.; Pieters, M. Update on Mycoplasma Hyopneumoniae Infections in Pigs: Knowledge Gaps for Improved Disease Control. Transbound. Emerg. Dis. 2018, 65, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-J. Porcine Circovirus Type 2 (PCV2): Pathogenesis and Interaction with the Immune System. Annu. Rev. Anim. Biosci. 2013, 1, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Pieters, M.G.; Maes, D. Mycoplasmosis. In Diseases of Swine; Wiley: Hoboken, NJ, USA, 2019; pp. 863–883. [Google Scholar]
- Saikumar, G.; Das, T. Porcine Circovirus. In Recent Advances in Animal Virology; Springer: Singapore, 2019; pp. 171–195. [Google Scholar]
- Segalés, J.; Sibila, M. Revisiting Porcine Circovirus Disease Diagnostic Criteria in the Current Porcine Circovirus 2 Epidemiological Context. Vet. Sci. 2022, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Zarate, J.A.; Andrade, M.R.; Pereira, C.E.R.; Vasconcellos, A.; Wagatsuma, M.M.; Sato, J.P.H.; Daniel, A.G.S.; Rezende, L.A.; Otoni, L.A.V.; Laub, R.P.; et al. Oral Fluid for Detection of Exposure to Lawsonia Intracellularis in Naturally Infected Pigs. Vet. J. 2019, 244, 34–36. [Google Scholar] [CrossRef]
- Nicholas, R.A.J.; Ayling, R.D.; McAuliffe, L. Vaccines for Mycoplasma Diseases in Animals and Man. J. Comp. Pathol. 2009, 140, 85–96. [Google Scholar] [CrossRef]
- Tizard, I.R. Porcine Vaccines. In Vaccines for Veterinarians; Elsevier: Amsterdam, The Netherlands, 2021; pp. 225–242.e1. [Google Scholar]
- Hernández-Caravaca, I.; Gourgues, S.F.; Rodríguez, V.; Estrada, E.D.; Cerón, J.J.; Escribano, D. Serum Acute Phase Response Induced by Different Vaccination Protocols against Circovirus Type 2 and Mycoplasma Hyopneumoniae in Piglets. Res. Vet. Sci. 2017, 114, 69–73. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Deb, B.; Bergevin, M.D.; Churchill, K.; Dawkins, K.; Dunn, J.; Hu, D.; Moody, C.; O’Connor, A.M.; O’Sullivan, T.L.; et al. Efficacy of Bacterial Vaccines to Prevent Respiratory Disease in Swine: A Systematic Review and Network Meta-Analysis. Anim. Health Res. Rev. 2019, 20, 274–290. [Google Scholar] [CrossRef]
- Opriessnig, T.; Mattei, A.A.; Karuppannan, A.K.; Halbur, P.G. Future Perspectives on Swine Viral Vaccines: Where Are We Headed? Porc. Health Manag. 2021, 7, 1. [Google Scholar] [CrossRef]
- Hennig-Pauka, I.; Menzel, A.; Boehme, T.R.; Schierbaum, H.; Ganter, M.; Schulz, J. Haptoglobin and C-Reactive Protein—Non-Specific Markers for Nursery Conditions in Swine. Front. Vet. Sci. 2019, 6, 92. [Google Scholar] [CrossRef]
- Eckersall, P.D.; Bell, R. Acute Phase Proteins: Biomarkers of Infection and Inflammation in Veterinary Medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Salamano, G.; Mellia, E.; Candiani, D.; Ingravalle, F.; Bruno, R.; Ru, G.; Doglione, L. Changes in Haptoglobin, C-Reactive Protein and Pig-MAP during a Housing Period Following Long Distance Transport in Swine. Vet. J. 2008, 177, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Carroll, G.A.; Boyle, L.A.; Hanlon, A.; Palmer, M.A.; Collins, L.; Griffin, K.; Armstrong, D.; O’Connell, N.E. Identifying Physiological Measures of Lifetime Welfare Status in Pigs: Exploring the Usefulness of Haptoglobin, C- Reactive Protein and Hair Cortisol Sampled at the Time of Slaughter. Ir. Vet. J. 2018, 71, 8. [Google Scholar] [CrossRef]
- Temple, D.; Jiménez, M.; Escribano, D.; Martín-Valls, G.; Díaz, I.; Manteca, X. Welfare Benefits of Intradermal Vaccination of Piglets. Animals 2020, 10, 1898. [Google Scholar] [CrossRef]
- Broom, D.M. A History of Animal Welfare Science. Acta Biotheor. 2011, 59, 121–137. [Google Scholar] [CrossRef]
- Weimer, S.L.; Fangman, T.J.; Karriker, L.A.; Stalder, K.J.; Johnson, A.K. Nursery Pig Behavior Evaluation Pre- and Post Injection Using Digital-Image Methodology. J. Swine Health Prod. 2018, 26, 25–33. [Google Scholar] [CrossRef]
- Weimer, S.; Johnson, A.K.; Tyler, H.D.; Stalder, K.J.; Karriker, L.A.; Fangman, T. When Nursery Pigs Are Not Approaching a Human Observer What Are They Doing? 2012. Available online: https://works.bepress.com/locke-karriker/3/ (accessed on 14 March 2024).
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; de Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R. Tabelas Brasileiras Para Suínos e Aves, 4th ed.; UFV: Viçosa, Brazil, 2017; ISBN 978-85-8179-120-3. [Google Scholar]
- de Carvalho, R.H.; Callegari, M.A.; Dias, C.P.; Kirwan, S.; da Costa, M.C.R.; da Silva, C.A. Euglena Gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity. Animals 2023, 13, 3490. [Google Scholar] [CrossRef]
- Rossi, L.; Turin, L.; Alborali, G.L.; Demartini, E.; Filipe, J.F.S.; Riva, F.; Riccaboni, P.; Scanziani, E.; Trevisi, P.; Dall’Ara, P.; et al. Translational Approach to Induce and Evaluate Verocytotoxic E. Coli O138 Based Disease in Piglets. Animals 2021, 11, 2415. [Google Scholar] [CrossRef]
- Spiehs, M.J.; Shurson, G.C.; Johnston, L.J. Effects of Two Direct-Fed Microbials on the Ability of Pigs to Resist an Infection with Salmonella Enterica Serovar Typhimurium. J. Swine Health Prod. 2008, 16, 27–36. [Google Scholar] [CrossRef]
- Vilas-Boas, J.; Klerkx, L.; Lie, R. Facilitating International Animal Welfare Standards Implementation in National Contexts: The Role of Intermediaries in Brazilian Pig Production. J. Rural. Stud. 2022, 90, 53–64. [Google Scholar] [CrossRef]
- Vonderohe, C.E.; Brizgys, L.A.; Richert, J.A.; Radcliffe, J.S. Swine Production: How Sustainable Is Sustainability? Anim. Front. 2022, 12, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Gómez, Y.; Stygar, A.H.; Boumans, I.J.M.M.; Bokkers, E.A.M.; Pedersen, L.J.; Niemi, J.K.; Pastell, M.; Manteca, X.; Llonch, P. A Systematic Review on Validated Precision Livestock Farming Technologies for Pig Production and Its Potential to Assess Animal Welfare. Front. Vet. Sci. 2021, 8, 660565. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Weersink, A.; von Massow, M.; Poljak, Z. Assessing the Value of Antibiotics on Farms: Modeling the Impact of Antibiotics and Vaccines for Managing Lawsonia Intracellularis in Hog Production. Front. Vet. Sci. 2019, 6, 364. [Google Scholar] [CrossRef] [PubMed]
- Caspari, K.; Kümmerlen, D.; Voets, H.; Eichin, E.; Zeeh, H.; Zimmermann, W. Feldstudie Zum Einsatz von Enterisol® Ileitis in Einem Schweinebetrieb in Der Schweiz. Schweiz. Arch. Tierheilkd. 2009, 151, 31–32. [Google Scholar] [CrossRef]
- Grodzicker, T.; Williams, J.; Sharp, P.; Sambrook, J. Physical Mapping of Temperature-Sensitive Mutations of Adenoviruses. Cold Spring Harb. Symp. Quant. Biol. 1974, 39, 439–446. [Google Scholar] [CrossRef]
- Obradovic, M.R.; Wilson, H.L. Immune Response and Protection against Lawsonia Intracellularis Infections in Pigs. Vet. Immunol. Immunopathol. 2020, 219, 109959. [Google Scholar] [CrossRef]
- Pleguezuelos, P.; Sibila, M.; Cuadrado, R.; López-Jiménez, R.; Pérez, D.; Huerta, E.; Llorens, A.M.; Núñez, J.I.; Segalés, J.; López-Soria, S. Exploratory Field Study on the Effects of Porcine Circovirus 2 (PCV-2) Sow Vaccination at Different Physiological Stages Mimicking Blanket Vaccination. Porc. Health Manag. 2021, 7, 35. [Google Scholar] [CrossRef]
- Roerink, F.; Morgan, C.L.; Knetter, S.M.; Passat, M.-H.; Archibald, A.L.; Ait-Ali, T.; Strait, E.L. A Novel Inactivated Vaccine against Lawsonia Intracellularis Induces Rapid Induction of Humoral Immunity, Reduction of Bacterial Shedding and Provides Robust Gut Barrier Function. Vaccine 2018, 36, 1500–1508. [Google Scholar] [CrossRef]
- Helm, E.T.; Burrough, E.R.; Leite, F.L.; Gabler, N.K. Lawsonia Intracellularis Infected Enterocytes Lack Sucrase-Isomaltase Which Contributes to Reduced Pig Digestive Capacity. Vet. Res. 2021, 52, 90. [Google Scholar] [CrossRef]
- Tizard, I.R. Adjuvants and Adjuvanticity. In Vaccines for Veterinarians; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–86.e1. [Google Scholar]
- Madapong, A.; Saeng-chuto, K.; Tantituvanont, A.; Nilubol, D. Using a Concurrent Challenge with Porcine Circovirus 2 and Porcine Reproductive and Respiratory Syndrome Virus to Compare Swine Vaccination Programs. Sci. Rep. 2022, 12, 15524. [Google Scholar] [CrossRef]
- Witvliet, M.; Holtslag, H.; Nell, T.; Segers, R.; Fachinger, V. Efficacy and Safety of a Combined Porcine Circovirus and Mycoplasma Hyopneumoniae Vaccine in Finishing Pigs. Trials Vaccinol. 2015, 4, 43–49. [Google Scholar] [CrossRef]
- Roth, J.; de Souza, G.E.P. Fever Induction Pathways: Evidence from Responses to Systemic or Local Cytokine Formation. Braz. J. Med. Biol. Res. 2001, 34, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Hart, B.L. Beyond Fever: Comparative Perspectives on Sickness Behavior. In Encyclopedia of Animal Behavior; Elsevier: Amsterdam, The Netherlands, 2010; pp. 205–210. [Google Scholar]
- Beach, N.M.; Meng, X.-J. Efficacy and Future Prospects of Commercially Available and Experimental Vaccines against Porcine Circovirus Type 2 (PCV2). Virus Res. 2012, 164, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Burakova, Y.; Madera, R.; McVey, S.; Schlup, J.R.; Shi, J. Adjuvants for Animal Vaccines. Viral Immunol. 2018, 31, 11–22. [Google Scholar] [CrossRef]
- Lai, R.P.J.; Seaman, M.S.; Tonks, P.; Wegmann, F.; Seilly, D.J.; Frost, S.D.W.; LaBranche, C.C.; Montefiori, D.C.; Dey, A.K.; Srivastava, I.K.; et al. Mixed Adjuvant Formulations Reveal a New Combination That Elicit Antibody Response Comparable to Freund’s Adjuvants. PLoS ONE 2012, 7, e35083. [Google Scholar] [CrossRef]
- Committee for Medicinal Products for Veterinary Use (CVMP). CVMP Assessment Report for Porcilis PCV M Hyo (EMEA/V/C/003796/0000); European Medicines Agency: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Fangman, T.; Edler, R.A.; Baumert, D.; Dubois, P. Willingness to Approach Behavior and Feed Disappearance of Weaned Pigs Following Vaccination With Mycoplasma Vaccines. J. Appl. Anim. Welf. Sci. 2009, 12, 149–150. [Google Scholar] [CrossRef]
- Chae, C. Commercial Porcine Circovirus Type 2 Vaccines: Efficacy and Clinical Application. Vet. J. 2012, 194, 151–157. [Google Scholar] [CrossRef]
- Fraile, L.; Saco, Y.; Grau-Roma, L.; Nofrarías, M.; López-Soria, S.; Sibila, M.; Callén, A.; Bassols, A.; Segalés, J. Serum Haptoglobin Dynamics in Pigs Vaccinated or Not Vaccinated against Porcine Circovirus Type 2. Porc. Health Manag. 2015, 1, 3. [Google Scholar] [CrossRef]
Treatments | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Antigen | Vaccination I (22 days old) | |||
PCV2 and Mhp * | FLEXcombo® | Porcilis® PCV M HYO | FLEXcombo® | |
Dose | Single dose (2 mL) | Single dose (2 mL) | Single dose (2 mL) | Single dose (2 mL) |
Route | IM | IM | IM | IM |
Antigen | Vaccination II (29 days old) | |||
L. intracellularis | Enterisol® Ileitis | Porcilis® Ileitis | Porcilis® Ileitis | Saline solution 0.9% |
Dose | Single dose (2 mL) | Single dose (2 mL) | Single dose (2 mL) | Single dose (2 mL) |
Route | Oral (by drench) | IM | IM | IM |
Vaccine details | ||||
Vaccine | Antigen | Adjuvant | ||
FLEXcombo® | Porcine circovirus type 2 ORF2 protein and | ‡ Carbomer (polymer compound of acrylic acid) | ||
Mycoplasma hyopneumoniae bacterin | ||||
Enterisol Ileitis® | Live attenuated Lawsonia intracellularis | No adjuvant | ||
Porcilis PCV M HYO® | Porcine circovirus type 2 (PCV2) ORF2 subunit antigen and Mycoplasma hyopneumoniae bacterin | ϕ Light mineral oil and aluminum (as hydroxide) | ||
Porcilis ileitis® | Lawsonia intracellularis bacterin | Light mineral oil and vitamin E-acetate |
Parameters | Treatments | CV (%) | p-Value | |||
---|---|---|---|---|---|---|
T1 (* n = 10) | T2 (n = 10) | T3 (n = 10) | T4 (n = 10) | |||
Pre-initial I (21–28 d) | ||||||
BW21d (kg) | 6.344 ± 0.29 | 6.371 ± 0.28 | 6.342 ± 0.28 | 6.345 ± 0.28 | 13.55 | 0.9998 |
DWG (kg) | 0.130 ± 0.01 | 0.125 ± 0.01 | 0.107 ± 0.01 | 0.113 ± 0.01 | 31.36 | 0.5209 |
DFI (kg) | 0.195 ± 0.01 | 0.200 ± 0.01 | 0.182 ± 0.01 | 0.186 ± 0.01 | 15.40 | 0.5436 |
FCR | 1.604 ± 0.11 | 1.711 ± 0.17 | 1.730 ± 0.14 | 1.703 ± 0.12 | 25.07 | 0. 6979 |
Pre-initial II (29–35 d) | ||||||
BW29d (kg) | 7.254 ± 0.30 | 7.253 ± 0.26 | 7.092 ± 0.26 | 7.143 ± 0.27 | 11.60 | 0.9673 |
DWG (kg) | 0.290 ± 0.01 | 0.264 ± 0.01 | 0.244 ± 0.01 | 0.275 ± 0.01 | 15.75 | 0.1108 |
DFI (kg) | 0.456 a ± 0.01 | 0.437 ab ± 0.01 | 0.397 b ± 0.01 | 0.450 ab ± 0.01 | 11.16 | 0.0258 |
FCR | 1.579 ± 0.03 | 1.672 ± 0.05 | 1.641 ± 0.05 | 1.667 ± 0.08 | 11.44 | 0.6913 |
Initial I (36–42 d) | ||||||
BW36d (kg) | 9.285 ± 0.36 | 9.106 ± 0.35 | 8.806 ± 0.28 | 9.081 ± 0.30 | 10.99 | 0.7791 |
DWG (kg) | 0.441 ± 0.02 | 0.452 ± 0.01 | 0.429 ± 0.01 | 0.438 ± 0.01 | 10.88 | 0.7610 |
DFI (kg) | 0.773 ± 0.02 | 0.769 ± 0.02 | 0.747 ± 0.01 | 0.772 ± 0.01 | 8.32 | 0.7870 |
FCR | 1.764 ± 0.03 | 1.701 ± 0.02 | 1.745 ± 0.02 | 1.768 ± 0.03 | 5.24 | 0.3568 |
Initial II (43–63 d) | ||||||
BW42d (kg) | 15.467 ± 0.58 | 15.447 ± 0.54 | 14.815 ± 0.35 | 15.215 ± 0.43 | 9.76 | 0.7641 |
DWG (kg) | 0.664 ± 0.01 | 0.650 ± 0.01 | 0.673 ± 0.01 | 0.697 ± 0.02 | 8.33 | 0.3125 |
DFI (kg) | 1.041 ± 0.02 | 1.047 ± 0.02 | 1.042 ± 0.03 | 1.064 ± 0.05 | 10.36 | 0.9661 |
FCR | 1.572 ± 0.03 | 1.625 ± 0.07 | 1.546 ± 0.03 | 1.528 ± 0.05 | 10.94 | 0.6362 |
BW63d (kg) | 24.769 ± 0.62 | 24.551 ± 0.72 | 24.241 ± 0.33 | 24.976 ± 0.68 | 7.54 | 0.8513 |
Total (22–64 d) | ||||||
DWG (kg) | 0.438 ± 0.01 | 0.432 ± 0.01 | 0.426 ± 0.01 | 0.443 ± 0.01 | 7.39 | 0.6759 |
DFI (kg) | 0.713 ± 0.01 | 0.711 ± 0.01 | 0.693 ± 0.01 | 0.718 ±0.02 | 6.60 | 0.6674 |
FCR | 1.630 ± 0.02 | 1.654 ± 0.04 | 1.627 ± 0.02 | 1.618 ± 0.02 | 5.36 | 0.8403 |
Temperature (°C) | Treatments | CV (%) | p-Value | |||
---|---|---|---|---|---|---|
T1 (* n = 20) | T2 (n = 20) | T3 (n = 20) | T4 (n = 20) | |||
−1 h | 39.11 ± 0.24 | 39.17 ± 0.25 | 39.19 ± 0.22 | 39.15 ± 0.24 | 1.03 | 0.9296 |
+8 h | 39.59 b ± 0.28 | 40.77 a ± 0.57 | 40.90 a ± 0.48 | 39.51 b ± 0.27 | 1.18 | 0.0000 |
+24 h | 39.44 c ± 0.21 | 39.81 a ± 0.30 | 39.69 ab ± 0.34 | 39.47 bc ± 0.29 | 0.89 | 0.0031 |
Oriented | Not Oriented | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatments * | Touched | Oriented | Standing | Sitting | Supported | Lying Down | Eating | Drinking | ||
Before Vaccination | T1 | n | 3 | 7 | 24 | 7 | 0 | 19 | 0 | 0 |
% | 5.00 | 11.67 | 40.00 | 11.67 | 0.00 | 31.67 | 0.00 | 0.00 | ||
T2 | n | 6 | 10 | 19 | 4 | 0 | 19 | 0 | 2 | |
% | 10.00 | 16.67 | 31.67 | 6.67 | 0.00 | 31.67 | 0.00 | 3.33 | ||
T3 | n | 5 | 14 | 21 | 10 | 0 | 10 | 0 | 0 | |
% | 8.33 | 23.33 | 35.00 | 16.67 | 0.00 | 16.67 | 0.00 | 0.00 | ||
T4 | n | 2 | 13 | 16 | 10 | 0 | 19 | 0 | 0 | |
% | 3.33 | 21.67 | 26.67 | 16.67 | 0.00 | 31.67 | 0.00 | 0.00 | ||
p-value | 0.48 | 0.44 | 0.64 | 0.36 | -- | 0.3 | -- | 0.11 | ||
+4 h | T1 | n | 8 b | 22 | 21 | 6 | 0 | 3 c | 0 | 0 |
% | 13.33 | 36.67 | 35.00 | 10.00 | 0.00 | 5.00 | 0.00 | 0.00 | ||
T2 | n | 3 c | 12 | 25 | 12 | 0 | 8 b | 0 | 0 | |
% | 5.00 | 20.00 | 41.67 | 20.00 | 0.00 | 13.33 | 0.00 | 0.00 | ||
T3 | n | 2 c | 18 | 19 | 7 | 0 | 14 a | 0 | 0 | |
% | 3.33 | 30.00 | 31.67 | 11.67 | 0.00 | 23.33 | 0.00 | 0.00 | ||
T4 | n | 11 a | 18 | 21 | 4 | 0 | 6 b | 0 | 0 | |
% | 18.33 | 30.00 | 35.00 | 6.67 | 0.00 | 10.00 | 0.00 | 0.00 | ||
p-value | 0.02 | 0.41 | 0.83 | 0.19 | -- | 0.04 | -- | 0.00 | ||
+12 h | T1 | n | 1 | 12 a | 32 | 7 | 0 | 8 c | 0 | 0 |
% | 1.67 | 20.00 | 53.33 | 11.67 | 0 | 13.33 | 0.00 | 0.00 | ||
T2 | n | 0 | 5 b | 26 | 8 | 0 | 21 a | 0 | 0 | |
% | 0 | 8.33 | 43.33 | 13.33 | 0 | 35.00 | 0.00 | 0.00 | ||
T3 | n | 0 | 3 b | 34 | 9 | 0 | 14 b | 0 | 0 | |
% | 0 | 5.00 | 56.67 | 15 | 0 | 23.33 | 0.00 | 0.00 | ||
T4 | n | 2 | 12 a | 39 | 6 | 1 | 0 d | 0 | 0 | |
% | 3.33 | 20.00 | 65.00 | 10.00 | 1.67 | 0.00 | 0.00 | 0.00 | ||
p-value | 0.3 | 0.04 | 0.45 | 0.88 | 0.39 | 0 | -- | -- | ||
+24 h | T1 | n | 4 | 14 | 14 | 8 ab | 0 | 13 | 0 | 0 |
% | 6.67 | 23.33 | 35.00 | 13.33 | 0.00 | 21.67 | 0.00 | 0.00 | ||
T2 | n | 2 | 10 | 24 | 12 a | 0 | 10 | 0 | 2 | |
% | 3.33 | 16.67 | 16.67 | 20.0 | 0.00 | 16.67 | 0.00 | 3.33 | ||
T3 | n | 3 | 11 | 26 | 3 b | 0 | 17 | 0 | 0 | |
% | 5.00 | 18.33 | 18.33 | 5.00 | 0.00 | 28.33 | 0.00 | 0.00 | ||
T4 | n | 3 | 15 | 18 | 13 a | 0 | 11 | 0 | 0 | |
% | 5.00 | 25.00 | 25.00 | 21.67 | 0.00 | 18.33 | 0.00 | 0.00 | ||
p-value | 0.88 | 0.71 | 0.65 | 0.08 | -- | 0.52 | -- | 0.21 | ||
+48 h | T1 | n | 9 | 13 | 20 | 5 c | 0 | 13 | 0 | 0 |
% | 15.00 | 21.67 | 33.33 | 8.33 | 0.00 | 21.67 | 0.00 | 0.00 | ||
T2 | n | 3 | 11 | 24 | 6 c | 0 | 16 | 0 | 0 | |
% | 5.00 | 18.33 | 40.00 | 10.00 | 0.00 | 26.67 | 0.00 | 0.00 | ||
T3 | n | 7 | 12 | 12 | 25 a | 0 | 15 | 0 | 0 | |
% | 11.67 | 20 | 20.00 | 41.67 | 0.00 | 25 | 0.00 | 0.00 | ||
T4 | n | 7 | 15 | 12 | 13 b | 0 | 11 | 0 | 1 | |
% | 11.86 | 25.42 | 20.34 | 22.03 | 0.00 | 18.64 | 0.00 | 1.69 | ||
p-value | 0.4 | 0.86 | 0.18 | 0.01 | -- | 0.8 | -- | 0.51 | ||
+72 h | T1 | n | 11 | 19 | 25 | 0 | 0 | 5 | 0 | 0 |
% | 18.33 | 31.67 | 41.67 | 0.00 | 0.00 | 8.33 | 0.00 | 0.00 | ||
T2 | n | 14 | 14 | 26 | 3 | 0 | 2 | 0 | 1 | |
% | 23.33 | 23.33 | 43.33 | 5.00 | 0.00 | 3.33 | 0.00 | 1.67 | ||
T3 | n | 11 | 17 | 24 | 3 | 0 | 1 | 0 | 1 | |
% | 18.64 | 28.81 | 40.68 | 5.08 | 0.00 | 1.69 | 0.00 | 1.69 | ||
T4 | n | 17 | 21 | 12 | 4 | 0 | 3 | 0 | 2 | |
% | 28.81 | 35.59 | 20.34 | 6.78 | 0.00 | 5.08 | 0.00 | 3.39 | ||
p-value | 0.59 | 0.66 | 0.13 | 0.77 | -- | 0.7 | -- | 0.8 |
Parameters | Treatments | CV (%) | p-Value | ||
---|---|---|---|---|---|
T1 (* n = 20) | T3 (* n = 20) | T4 (* n = 20) | |||
1 h before vaccination | |||||
CRP (ng/mL) | 479.5 ± 75.3 | 417.7 ± 55.3 | 529.3 ± 72.2 | 63.26 | 0.5253 |
Haptoglobin (ng/mL) | 59.1 ± 25.2 | 75.6 ± 16.3 | 37.2 ± 9.3 | 99.8 | 0.1780 |
24 h post-vaccination | |||||
CRP (ng/mL) | 549.5 b ± 79.3 | 1034.8 a ± 112.4 | 526.6 b ± 526.6 | 63.19 | 0.0001 |
Haptoglobin (ng/mL) | 58.4 b ± 17.3 | 535.1 a ± 95.8 | 176.8 b ± 58.5 | 124.3 | 0.0004 |
48 h post-vaccination | |||||
CRP (ng/mL) | 643.9 ab ± 86.3 | 894.3 a ± 83.5 | 421.3 b ± 69.8 | 61.17 | 0.0003 |
Haptoglobin (ng/mL) | 197.1 c ± 56.4 | 979.3 a ± 89.2 | 494.1 b ± 75.7 | 79.3 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.A.; Callegari, M.A.; Dias, C.P.; de Souza, K.L.; Romano, G.S.; Hernig, L.F.; Lippke, R.T.; Jansen, R.; Leite, F.L.; Filipe, F.; et al. Well-Being and Performance of Nursery Pigs Subjected to Different Commercial Vaccines Against Porcine Circovirus Type 2, Mycoplasma hyopneumoniae and Lawsonia intracellularis. Vaccines 2024, 12, 1242. https://doi.org/10.3390/vaccines12111242
Silva CA, Callegari MA, Dias CP, de Souza KL, Romano GS, Hernig LF, Lippke RT, Jansen R, Leite FL, Filipe F, et al. Well-Being and Performance of Nursery Pigs Subjected to Different Commercial Vaccines Against Porcine Circovirus Type 2, Mycoplasma hyopneumoniae and Lawsonia intracellularis. Vaccines. 2024; 12(11):1242. https://doi.org/10.3390/vaccines12111242
Chicago/Turabian StyleSilva, Caio Abércio, Marco Aurélio Callegari, Cleandro Pazinato Dias, Kelly Lais de Souza, Gabrieli Souza Romano, Luciana Fiorin Hernig, Ricardo Tesche Lippke, Rutger Jansen, Fernando Lopes Leite, Fernando Filipe, and et al. 2024. "Well-Being and Performance of Nursery Pigs Subjected to Different Commercial Vaccines Against Porcine Circovirus Type 2, Mycoplasma hyopneumoniae and Lawsonia intracellularis" Vaccines 12, no. 11: 1242. https://doi.org/10.3390/vaccines12111242
APA StyleSilva, C. A., Callegari, M. A., Dias, C. P., de Souza, K. L., Romano, G. S., Hernig, L. F., Lippke, R. T., Jansen, R., Leite, F. L., Filipe, F., & de Carvalho, R. H. (2024). Well-Being and Performance of Nursery Pigs Subjected to Different Commercial Vaccines Against Porcine Circovirus Type 2, Mycoplasma hyopneumoniae and Lawsonia intracellularis. Vaccines, 12(11), 1242. https://doi.org/10.3390/vaccines12111242