First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Cohorts and Dosing
2.3. Sentinel Participant Protocol
2.4. Dose Escalation
2.5. Adverse Events Monitoring
2.6. Follow-Up Schedule
2.7. Blood Sample Collection
2.8. Outcomes
2.9. Immunological Assays
2.10. Neutralizing Antibodies
2.11. ORFV Binding and Neutralizing Antibodies
2.12. Vaccine Candidate
2.13. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. 2023 Data.Who.int, WHO Coronavirus (COVID-19) Dashboard > Vaccines [Dashboard]. Available online: https://data.who.int/dashboards/covid19/vaccines (accessed on 30 July 2024).
- Edouard Mathieu, H.R.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; Roser, M. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 30 July 2024).
- Centers for Disease Control and Prevention. COVID Data Tracker; Department of Health and Human Services: Atlanta, GA, USA. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 29 July 2024).
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kamble, P.; Daulatabad, V.; Singhal, A.; Ahmed, Z.S.; Choubey, A.; Bhargava, S.; John, N.A. JN.1 variant in enduring COVID-19 pandemic: Is it a variety of interest (VoI) or variety of concern (VoC)? Horm. Mol. Biol. Clin. Investig. 2024, 45, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.B.; Wise, L.M.; Mercer, A.A. Molecular genetic analysis of orf virus: A poxvirus that has adapted to skin. Viruses 2015, 7, 1505–1539. [Google Scholar] [CrossRef] [PubMed]
- Haig, D.; Mercer, A.A. Parapoxviruses. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 57–63. [Google Scholar]
- Metz, C.; Haug, V.; Muller, M.; Amann, R. Pharmacokinetic and Environmental Risk Assessment of Prime-2-CoV, a Non-Replicating Orf Virus-Based Vaccine against SARS-CoV-2. Vaccines 2024, 12, 492. [Google Scholar] [CrossRef]
- Rziha, H.J.; Buttner, M.; Muller, M.; Salomon, F.; Reguzova, A.; Laible, D.; Amann, R. Genomic Characterization of Orf Virus Strain D1701-V (Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Dellers, R.W.; Schurig, G.G. Contagious ecthyma virus-vaccination failures. Am. J. Vet. Res. 1984, 45, 263–266. [Google Scholar]
- Haig, D.M.; Mercer, A.A. Ovine diseases. Orf. Vet. Res. 1998, 29, 311–326. [Google Scholar]
- Amann, R.; Rohde, J.; Wulle, U.; Conlee, D.; Raue, R.; Martinon, O.; Rziha, H.J. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J. Virol. 2013, 87, 1618–1630. [Google Scholar] [CrossRef]
- do Nascimento, G.M.; de Oliveira, P.S.B.; Butt, S.L.; Diel, D.G. Immunogenicity of chimeric hemagglutinins delivered by an orf virus vector platform against swine influenza virus. Front. Immunol. 2024, 15, 1322879. [Google Scholar] [CrossRef]
- Joshi, L.R.; Knudsen, D.; Piñeyro, P.; Dhakal, S.; Renukaradhya, G.J.; Diel, D.G. Protective Efficacy of an Orf Virus-Vector Encoding the Hemagglutinin and the Nucleoprotein of Influenza A Virus in Swine. Front. Immunol. 2021, 12, 747574. [Google Scholar] [CrossRef]
- Müller, M.; Reguzova, A.; Löffler, M.W.; Amann, R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front. Immunol. 2022, 13, 873351. [Google Scholar] [CrossRef]
- Schneider, M.; Müller, M.; Yigitliler, A.; Xi, J.; Simon, C.; Feger, T.; Rziha, H.J.; Stubenrauch, F.; Rammensee, H.G.; Iftner, T.; et al. Orf Virus-Based Therapeutic Vaccine for Treatment of Papillomavirus-Induced Tumors. J. Virol. 2020, 94, e00398-20. [Google Scholar] [CrossRef] [PubMed]
- Reguzova, A.; Ghosh, M.; Muller, M.; Rziha, H.J.; Amann, R. Orf Virus-Based Vaccine Vector D1701-V Induces Strong CD8+ T Cell Response against the Transgene but Not against ORFV-Derived Epitopes. Vaccines 2020, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Büttner, M.; Rziha, H.J. Parapoxviruses: From the lesion to the viral genome. J. Vet. Med. B Infect. Dis. Vet. Public. Health 2002, 49, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.A.; Burger, D. In vivo and in vitro characteristics of contagious ecthyma virus isolates: Host response mechanism. Vet. Microbiol. 1989, 19, 23–36. [Google Scholar] [CrossRef]
- Eilts, F.; Labisch, J.J.; Orbay, S.; Harsy, Y.M.J.; Steger, M.; Pagallies, F.; Amann, R.; Pflanz, K.; Wolff, M.W. Stability studies for the identification of critical process parameters for a pharmaceutical production of the Orf virus. Vaccine 2023, 41, 4731–4742. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Reguzova, A.; Muller, M.; Pagallies, F.; Burri, D.; Salomon, F.; Rziha, H.J.; Bittner-Schrader, Z.; Verstrepen, B.E.; Boszormenyi, K.P.; Verschoor, E.J.; et al. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. NPJ Vaccines 2024, 9, 191. [Google Scholar] [CrossRef]
- Chiuppesi, F.; Zaia, J.A.; Frankel, P.H.; Stan, R.; Drake, J.; Williams, B.; Acosta, A.M.; Francis, K.; Taplitz, R.A.; Dickter, J.K.; et al. Safety and immunogenicity of a synthetic multiantigen modified vaccinia virus Ankara-based COVID-19 vaccine (COH04S1): An open-label and randomised, phase 1 trial. Lancet Microbe 2022, 3, e252–e264. [Google Scholar] [CrossRef]
- Burri, D.J.; Renz, L.; Mueller, M.; Pagallies, F.; Klinkhardt, U.; Amann, R.; Derouazi, M. Novel Multi-Antigen Orf-Virus-Derived Vaccine Elicits Protective Anti-SARS-CoV-2 Response in Monovalent and Bivalent Formats. Vaccines 2024, 12, 490. [Google Scholar] [CrossRef]
- Pagallies, F.; Labisch, J.J.; Wronska, M.; Pflanz, K.; Amann, R. Efficient and scalable clarification of Orf virus from HEK suspension for vaccine development. Vaccine X 2024, 18, 100474. [Google Scholar] [CrossRef]
- Oronsky, B.; Larson, C.; Caroen, S.; Hedjran, F.; Sanchez, A.; Prokopenko, E.; Reid, T. Nucleocapsid as a next-generation COVID-19 vaccine candidate. Int. J. Infect. Dis. 2022, 122, 529–530. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.K.; Mazumdar, K.; Gordy, J.T. The Nucleocapsid Protein of SARS-CoV-2: A Target for Vaccine Development. J. Virol. 2020, 94, e00647-20. [Google Scholar] [CrossRef] [PubMed]
- Geers, D.; Shamier, M.C.; Bogers, S.; den Hartog, G.; Gommers, L.; Nieuwkoop, N.N.; Schmitz, K.S.; Rijsbergen, L.C.; van Osch, J.A.T.; Dijkhuizen, E.; et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 2021, 6, eabj1750. [Google Scholar] [CrossRef] [PubMed]
- Matchett, W.E.; Joag, V.; Stolley, J.M.; Shepherd, F.K.; Quarnstrom, C.F.; Mickelson, C.K.; Wijeyesinghe, S.; Soerens, A.G.; Becker, S.; Thiede, J.M.; et al. Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. J. Immunol. 2021, 207, 376–379. [Google Scholar] [CrossRef]
- Cohen, C.A.; Leung, N.H.L.; Kaewpreedee, P.; Lee, K.W.K.; Jia, J.Z.; Cheung, A.W.L.; Cheng, S.M.S.; Mori, M.; Ip, D.K.M.; Poon, L.L.M.; et al. Antibody Fc receptor binding and T cell responses to homologous and heterologous immunization with inactivated or mRNA vaccines against SARS-CoV-2. Nat. Commun. 2024, 15, 7358. [Google Scholar] [CrossRef]
- Dangi, T.; Sanchez, S.; Class, J.; Richner, M.; Visvabharathy, L.; Chung, Y.R.; Bentley, K.; Stanton, R.J.; Koralnik, I.J.; Richner, J.M.; et al. Improved control of SARS-CoV-2 by treatment with a nucleocapsid-specific monoclonal antibody. J. Clin. Investig. 2022, 132, e162282. [Google Scholar] [CrossRef]
- Lopez-Munoz, A.D.; Kosik, I.; Holly, J.; Yewdell, J.W. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity. Sci. Adv. 2022, 8, eabp9770. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Iketani, S.; Nair, M.S.; Li, Z.; Mohri, H.; Wang, M.; Yu, J.; Bowen, A.D.; Chang, J.Y.; et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022, 608, 603–608. [Google Scholar] [CrossRef]
- Hajnik, R.L.; Plante, J.A.; Liang, Y.; Alameh, M.G.; Tang, J.; Bonam, S.R.; Zhong, C.; Adam, A.; Scharton, D.; Rafael, G.H.; et al. Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models. Sci. Transl. Med. 2022, 14, eabq1945. [Google Scholar] [CrossRef]
- Jia, Q.; Bielefeldt-Ohmann, H.; Maison, R.M.; Maslesa-Galic, S.; Cooper, S.K.; Bowen, R.A.; Horwitz, M.A. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 Membrane and Nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. NPJ Vaccines 2021, 6, 47. [Google Scholar] [CrossRef]
- Chiuppesi, F.; Nguyen, V.H.; Park, Y.; Contreras, H.; Karpinski, V.; Faircloth, K.; Nguyen, J.; Kha, M.; Johnson, D.; Martinez, J.; et al. Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. NPJ Vaccines 2022, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Dangi, T.; Class, J.; Palacio, N.; Richner, J.M.; Penaloza MacMaster, P. Combining spike- and nucleocapsid-based vaccines improves distal control of SARS-CoV-2. Cell Rep. 2021, 36, 109664. [Google Scholar] [CrossRef] [PubMed]
- Routhu, N.K.; Gangadhara, S.; Lai, L.; Davis-Gardner, M.E.; Floyd, K.; Shiferaw, A.; Bartsch, Y.C.; Fischinger, S.; Khoury, G.; Rahman, S.A.; et al. A modified vaccinia Ankara vaccine expressing spike and nucleocapsid protects rhesus macaques against SARS-CoV-2 Delta infection. Sci. Immunol. 2022, 7, eabo0226. [Google Scholar] [CrossRef] [PubMed]
- Sieling, P.; King, T.; Wong, R.; Nguyen, A.; Wnuk, K.; Gabitzsch, E.; Rice, A.; Adisetiyo, H.; Hermreck, M.; Verma, M.; et al. Prime hAd5 Spike + Nucleocapsid Vaccination Induces Ten-Fold Increases in Mean T-Cell Responses in Phase 1 Subjects that are Sustained Against Spike Variants. medRxiv 2021. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Lee, J.; Suh, Y.S.; Song, Y.G.; Choi, Y.J.; Lee, K.H.; Seo, S.H.; Song, M.; Oh, J.W.; Kim, M.; et al. Safety and immunogenicity of two recombinant DNA COVID-19 vaccines containing the coding regions of the spike or spike and nucleocapsid proteins: An interim analysis of two open-label, non-randomised, phase 1 trials in healthy adults. Lancet Microbe 2022, 3, e173–e183. [Google Scholar] [CrossRef]
- Thura, M.; Sng, J.X.E.; Ang, K.H.; Li, J.; Gupta, A.; Hong, J.M.; Hong, C.W.; Zeng, Q. Targeting intra-viral conserved nucleocapsid (N) proteins as novel vaccines against SARS-CoVs. Biosci. Rep. 2021, 41, BSR20211491. [Google Scholar] [CrossRef]
- Bennett, C.; Woo, W.; Bloch, M.; Cheung, K.; Griffin, P.; Mohan, R.; Deshmukh, S.; Arya, M.; Cumming, O.; Neville, A.M.; et al. Immunogenicity and safety of a bivalent (omicron BA.5 plus ancestral) SARS-CoV-2 recombinant spike protein vaccine as a heterologous booster dose: Interim analysis of a phase 3, non-inferiority, randomised, clinical trial. Lancet Infect. Dis. 2024, 24, 581–593. [Google Scholar] [CrossRef]
- Chalkias, S.; Harper, C.; Vrbicky, K.; Walsh, S.R.; Essink, B.; Brosz, A.; McGhee, N.; Tomassini, J.E.; Chen, X.; Chang, Y.; et al. A Bivalent Omicron-Containing Booster Vaccine against COVID-19. N. Engl. J. Med. 2022, 387, 1279–1291. [Google Scholar] [CrossRef]
- Amanatidou, E.; Gkiouliava, A.; Pella, E.; Serafidi, M.; Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Dalamaga, M. Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges. Metabol. Open 2022, 14, 100180. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cardenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef] [PubMed]
- Fong, Y.; Huang, Y.; Benkeser, D.; Carpp, L.N.; Anez, G.; Woo, W.; McGarry, A.; Dunkle, L.M.; Cho, I.; Houchens, C.R.; et al. Immune correlates analysis of the PREVENT-19 COVID-19 vaccine efficacy clinical trial. Nat. Commun. 2023, 14, 331. [Google Scholar] [CrossRef]
- Sun, K.; Bhiman, J.N.; Tempia, S.; Kleynhans, J.; Madzorera, V.S.; Mkhize, Q.; Kaldine, H.; McMorrow, M.L.; Wolter, N.; Moyes, J.; et al. SARS-CoV-2 correlates of protection from infection against variants of concern. Nat. Med. 2024, 30, 2805–2812. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Montefiori, D.C.; McDermott, A.B.; Fong, Y.; Benkeser, D.; Deng, W.; Zhou, H.; Houchens, C.R.; Martins, K.; Jayashankar, L.; et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 2022, 375, 43–50. [Google Scholar] [CrossRef]
- Zhou, Z.; Barrett, J.; He, X. Immune Imprinting and Implications for COVID-19. Vaccines 2023, 11, 875. [Google Scholar] [CrossRef]
- Wheatley, A.K.; Fox, A.; Tan, H.X.; Juno, J.A.; Davenport, M.P.; Subbarao, K.; Kent, S.J. Immune imprinting and SARS-CoV-2 vaccine design. Trends Immunol. 2021, 42, 956–959. [Google Scholar] [CrossRef]
- McCafferty, S.; Haque, A.; Vandierendonck, A.; Weidensee, B.; Plovyt, M.; Stuchlikova, M.; Francois, N.; Valembois, S.; Heyndrickx, L.; Michiels, J.; et al. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity. Mol. Ther. 2022, 30, 2968–2983. [Google Scholar] [CrossRef]
- Saxena, M.; Van, T.T.H.; Baird, F.J.; Coloe, P.J.; Smooker, P.M. Pre-existing immunity against vaccine vectors--friend or foe? Microbiology (Reading) 2013, 159, 1–11. [Google Scholar] [CrossRef]
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral vectored vaccines: Design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Altenburg, A.F.; van Trierum, S.E.; de Bruin, E.; de Meulder, D.; van de Sandt, C.E.; van der Klis, F.R.M.; Fouchier, R.A.M.; Koopmans, M.P.G.; Rimmelzwaan, G.F.; de Vries, R.D. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Sci. Rep. 2018, 8, 6474. [Google Scholar] [CrossRef] [PubMed]
- McCoy, K.; Tatsis, N.; Korioth-Schmitz, B.; Lasaro, M.O.; Hensley, S.E.; Lin, S.W.; Li, Y.; Giles-Davis, W.; Cun, A.; Zhou, D.; et al. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J. Virol. 2007, 81, 6594–6604. [Google Scholar] [CrossRef] [PubMed]
- Pine, S.O.; Kublin, J.G.; Hammer, S.M.; Borgerding, J.; Huang, Y.; Casimiro, D.R.; McElrath, M.J. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans. PLoS ONE 2011, 6, e18526. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | All Cohorts (n = 60) | Cohort 1 (n = 12) | Cohort 2 (n = 12) | Cohort 3 (n =1 2) | Cohort 4 (n = 12) | Cohort 5 (n = 12) | |
---|---|---|---|---|---|---|---|
Age, years | 28.4 (19–53) | 26.8 (20–39) | 26.2 (21–38) | 33.3 (20–53) | 27.7 (19–41) | 27.9 (19–46) | |
Gender | Female | 32 (53.3%) | 5 (41.7%) | 8 (66.7%) | 6 (50%) | 7 (58.3%) | 6 (50%) |
Male | 28 (46.7%) | 7 (58.3%) | 4 (33.3%) | 6 (50%) | 5 (41.7%) | 6 (50%) | |
Body-mass index, kg/m2 | 23.0 (18.7–29.6) | 22.8 (18.9–28.1) | 23.1 (20.7–27.2) | 22.9 (19.6–25.2) | 23.7 (18.7–29.6) | 22.5 (18.9–29.4) | |
Race | Caucasian | 57 (95%) | 11 (91.7%) | 11 (91.7%) | 12 (100%) | 12 (100%) | 11 (91.7%) |
Asian | 2 (3.3%) | 0 | 1 (8.3%) | 0 | 0 | 1 (8.3%) | |
Other | 1 (1.7%) | 1 (8.3%) | 0 | 0 | 0 | 0 | |
Previous COVID-19 vaccine doses | 3x BNT162b2 only | 50 (83.3%) | 12 (100%) | 11 (91.7%) | 9 (75%) | 10 (83.3%) | 8 (66.7%) |
3x mRNA-1273 only | 1 (1.6%) | 0 | 0 | 1 (8.3%) | 0 | 0 | |
Combination of BNT162b2 + mRNA-1273 | 8 (13.3%) | 0 | 1 (8.3%) | 2 (16.7%) | 1 (8.3%) | 4 (33.3%) | |
Other * | 1 (1.6%) | 0 | 0 | 0 | 1 (8.3%) | 0 | |
Time between previous COVID-19 vaccine and first study dose, days | Mean (SD) | 275 (61) | 212 (36) | 233 (26) | 285 (62) | 310 (35) | 333 (39) |
Pre-Infections with COVID-19 (reported) | 6 (10%) | 0 | 0 | 4 (33.3%) | 2 (16.7%) | 0 |
All Cohorts (n = 60) | Cohort 1 (n = 12) | Cohort2 (n = 12) | Cohort3 (n = 12) | Cohort 4 (n = 12) | Cohort 5 (n = 12) | ||
---|---|---|---|---|---|---|---|
Local | |||||||
Any | Total | 36 (60%) | 2 (16.7%) | 8 (66.7%) | 7 (58.3%) | 10 (83.3%) | 9 (75%) |
Grade 1 | 35 (58.3%) | 2 (16.7%) | 8 (66.7%) | 7 (58.3%) | 9 (75%) | 9 (75%) | |
Grade 2 | 1 (1.7%) | 0 | 0 | 0 | 1 (8.3%) | 0 | |
Induration | Total | 9 (15%) | 1 (8.3%) | 2 (16.7%) | 1 (8.3%) | 1 (8.3%) | 4 (33.3%) |
Grade 1 | 9 (15%) | 1 (8.3%) | 2 (16.7%) | 1 (8.3%) | 1 (8.3%) | 4 (33.3%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
Pain at injection site | Total | 34 (56.7%) | 2 (16.7%) | 8 (66.7%) | 7 (58.3%) | 10 (83.3%) | 7 (58.3%) |
Grade 1 | 33 (55%) | 2 (16.7%) | 8 (66.7%) | 7 (58.3%) | 9 (75%) | 7 (58.3%) | |
Grade 2 | 1 (1.7%) | 0 | 0 | 0 | 1 (8.3%) | 0 | |
Redness | Total | 4 (6.7%) | 0 | 0 | 2 (16.7%) | 0 | 2 (16.7%) |
Grade 1 | 4 (6.7%) | 0 | 0 | 2 (16.7%) | 0 | 2 (16.7%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
Swelling | Total | 3 (5%) | 0 | 0 | 1 (8.3%) | 0 | 2 (16.7%) |
Grade 1 | 3 (5%) | 0 | 0 | 1 (8.3%) | 0 | 2 (16.7%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
Systemic | |||||||
Any | Total | 33 (55%) | 9 (75%) | 5 (41.7%) | 5 (41.7%) | 7 (58.3%) | 7 (58.3%) |
Grade 1 | 25 (41.7%) | 7 (58.3%) | 3 (25%) | 5 (41.7%) | 5 (41.7%) | 5 (41.7) | |
Grade 2 | 8 (13.3%) | 2 (16.7%) | 2 (16.7%) | 0 | 2 (16.7%) | 2 (16.7%) | |
Chills | Total | 3 (5%) | 0 | 0 | 0 | 0 | 3 (25%) |
Grade 1 | 3 (5%) | 0 | 0 | 0 | 0 | 3 (25%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
Diarrhea | Total | 4 (6.7%) | 2 (16.7%) | 0 | 1 (8.3%) | 1 (8.3%) | 0 |
Grade 1 | 3 (5%) | 1 (8.3%) | 0 | 1 (8.3%) | 1 (8.3%) | 0 | |
Grade 2 | 1 (1.7%) | 1 (8.3%) | 0 | 0 | 0 | 0 | |
Fatigue | Total | 24 (40%) | 7 (58.3%) | 4 (33.3%) | 4 (33.3%) | 4 (33.3%) | 5 (41.7%) |
Grade 1 | 19 (31.7%) | 6 (50%) | 2 (16.7%) | 4 (33.3%) | 3 (25%) | 4 (33.3%) | |
Grade 2 | 5 (8.3%) | 1 (8.3%) | 2 (16.7%) | 0 | 1 (8.3%) | 1 (8.3%) | |
Fever | Total | 1 (1.7%) | 0 | 0 | 0 | 0 | 1 (8.3%) |
Grade 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
Grade 2 | 1 (1.7%) | 0 | 0 | 0 | 0 | 1 (8.3%) | |
Headache | Total | 19 (31.7%) | 6 (50%) | 2 (16.7%) | 0 | 6 (50%) | 5 (41.7%) |
Grade 1 | 17 (28.3%) | 6 (50%) | 1 (8.3%) | 0 | 5 (41.7%) | 5 (41.7%) | |
Grade 2 | 2 (3.3%) | 0 | 1 (8.3%) | 0 | 1 (8.3%) | 0 | |
Nausea, vomiting | Total | 1 (1.7%) | 0 | 0 | 0 | 0 | 1 (8.3%) |
Grade 1 | 1 (1.7%) | 0 | 0 | 0 | 0 | 1 (8.3%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
New or worsened joint pain | Total | 5 (8.3%) | 0 | 0 | 2 (16.7%) | 1 (8.3%) | 2 (16.7%) |
Grade 1 | 5 (8.3%) | 0 | 0 | 2 (16.7%) | 1 (8.3%) | 2 (16.7%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
New or worsened muscle pain | Total | 10 (16.7%) | 1 (8.3%) | 0 | 3 (25%) | 3 (25%) | 3 (25%) |
Grade 1 | 10 (16.7%) | 1 (8.3%) | 0 | 3 (25%) | 3 (25%) | 3 (25%) | |
Grade 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esen, M.; Fischer-Herr, J.; Gabor, J.J.; Gaile, J.M.; Fleischmann, W.A.; Smeenk, G.W.; de Moraes, R.A.; Bélard, S.; Calle, C.L.; Woldearegai, T.G.; et al. First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster. Vaccines 2024, 12, 1288. https://doi.org/10.3390/vaccines12111288
Esen M, Fischer-Herr J, Gabor JJ, Gaile JM, Fleischmann WA, Smeenk GW, de Moraes RA, Bélard S, Calle CL, Woldearegai TG, et al. First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster. Vaccines. 2024; 12(11):1288. https://doi.org/10.3390/vaccines12111288
Chicago/Turabian StyleEsen, Meral, Johanna Fischer-Herr, Julian Justin Gabor, Johanna Marika Gaile, Wim Alexander Fleischmann, Geerten Willem Smeenk, Roberta Allgayer de Moraes, Sabine Bélard, Carlos Lamsfus Calle, Tamirat Gebru Woldearegai, and et al. 2024. "First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster" Vaccines 12, no. 11: 1288. https://doi.org/10.3390/vaccines12111288
APA StyleEsen, M., Fischer-Herr, J., Gabor, J. J., Gaile, J. M., Fleischmann, W. A., Smeenk, G. W., de Moraes, R. A., Bélard, S., Calle, C. L., Woldearegai, T. G., Egger-Adam, D., Haug, V., Metz, C., Reguzova, A., Löffler, M. W., Balode, B., Matthies, L. C., Ramharter, M., Amann, R., & Kremsner, P. G. (2024). First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster. Vaccines, 12(11), 1288. https://doi.org/10.3390/vaccines12111288