Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures
Abstract
:1. Introduction
2. The Impact of Immunosenescence on Vaccine Immune Responses
2.1. COVID-19 Vaccines
Vaccine Type | Specific Product | Age-Related Immunological Response Characteristics | References |
---|---|---|---|
Inactivated Vaccines | CoronaVac | Inflammatory markers (IL-6, TNF-α/β, MIP-β, and IFN-γ) negatively correlate across the aging spectrum. Older individuals show delayed antibody responses, lower antibody titers, and faster decline compared to younger adults. | [25] |
BBIBP-CorV | Lower antibody titers were observed in individuals > 60 years. Advanced age correlates with slower antibody production rates. | [26] | |
CoviVac | No significant age-related differences were observed; seroconversion rates > 85% in both 18–60 and >60 age groups. | [27] | |
mRNA Vaccines | BNT162b2 | Negative correlation between age and spike protein-binding antibodies and neutralizing antibodies. Older group (86 years) showed a 10-fold decrease in neutralizing antibody titers. IFN-γ and IL-2 negatively correlated with age (r = −0.49). | [30,31,32,33] |
SYS6006 | Significantly lower GMTs in the older group compared to adults: younger group: 232.1 (20 µg), 130.6 (30 µg); older group: 48.7 (20 µg), 66.7 (30 µg). | [34] | |
Viral Vector Vaccines | Ad5-vectored vaccine | Subjects ≥ 55 years showed significantly lower responses compared to younger subjects: RBD-specific ELISA antibodies (p = 0.0018), live virus-neutralizing antibodies (p < 0.0001), pseudovirus-neutralizing antibodies (p = 0.046). | [37] |
Ad26.COV2.S | Subjects ≥ 65 years demonstrated slower initial antibody production; after a booster dose at 3 months, they achieved comparable levels to younger adults. | [38] |
2.2. Influenza Vaccines
2.3. Pneumococcal Vaccines
2.4. Herpes Zoster Vaccines
Characteristics | ZVL | RZV |
---|---|---|
Vaccine Efficacy % (95% CI) | ||
50–59 years | 69.8 (54.1–80.6) [67] | 96.6 (89.6–99.3) [72] |
60–69 years | 65.5 (51.5–75.5) [66] | 97.4 (90.1–99.7) [72] |
≥70 years | 55.4 (39.9–66.9) [66] | 97.9 (87.9–100.0) [72] |
Long-term Efficacy% (95% CI) | ||
Year 1 | 68.7 (66.3–70.9) [68] or 67.5 (65.4–69.5) [69] | 97.7 (93.1–99.5) [73] |
Year 2 | 47.2 (44.1–50.1) [69] | 92.7 (86.2–96.6) [73] |
Year 3 | 39.1 (33.8–43.9) [68] | 92.4 (85.0–96.6) [73] |
Year 6 | 32.9 (23.1–41.5) [68] | 84.9 (70.4–93.1) [73] |
Year 7 | 16.5 (1.4–29.3) [68] | 85.3 (71.3–93.3) [73] |
Year 8 | 4.2 (−24.0 to 25.9) [68] or 31.8 (15.1–45.2) [69] | 84.1 (64.4–94.0) [73] |
Age Effect on Immune Response |
2.5. Respiratory Syncytial Virus Vaccines
2.6. Other Vaccines
3. Strategies to Enhance Immune Responses in Older Adults
3.1. Adjuvants
3.2. Increasing Antigen Dosage
3.3. Repeated Vaccination
3.4. Other Approaches
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, D.; Weinberger, B.; Grubeck-Loebenstein, B. The Aging of the Immune System. Transpl. Int. 2009, 22, 1041–1050. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular Mechanisms and Diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Grubeck-Loebenstein, B.; Della Bella, S.; Iorio, A.M.; Michel, J.-P.; Pawelec, G.; Solana, R. Immunosenescence and Vaccine Failure in the Elderly. Aging Clin. Exp. Res. 2009, 21, 201–209. [Google Scholar] [CrossRef]
- Lim, U.; Song, M.-A. DNA Methylation as a Biomarker of Aging in Epidemiologic Studies. Methods Mol. Biol. 2018, 1856, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Bondy, S.C. Mitochondrial Dysfunction as the Major Basis of Brain Aging. Biomolecules 2003, 14, 402. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Youm, Y.-H.; Grant, R.W.; McCabe, L.R.; Albarado, D.C.; Nguyen, K.Y.; Ravussin, A.; Pistell, P.; Newman, S.; Carter, R.; Laque, A.; et al. Canonical Nlrp3 Inflammasome Links Systemic Low-Grade Inflammation to Functional Decline in Aging. Cell Metab. 2013, 18, 519–532. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and Aging: Signaling Pathways and Intervention Therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.R.; Tchalla, E.Y.I.; Bhalla, M.; Bou Ghanem, E.N. The Age-Driven Decline in Neutrophil Function Contributes to the Reduced Efficacy of the Pneumococcal Conjugate Vaccine in Old Hosts. Front. Cell. Infect. Microbiol. 2022, 12, 849224. [Google Scholar] [CrossRef] [PubMed]
- Sapey, E.; Patel, J.M.; Greenwood, H.L.; Walton, G.M.; Hazeldine, J.; Sadhra, C.; Parekh, D.; Dancer, R.C.A.; Nightingale, P.; Lord, J.M.; et al. Pulmonary Infections in the Elderly Lead to Impaired Neutrophil Targeting, Which Is Improved by Simvastatin. Am. J. Respir. Crit. Care Med. 2017, 196, 1325–1336. [Google Scholar] [CrossRef]
- Shaw, A.C.; Goldstein, D.R.; Montgomery, R.R. Age-Dependent Dysregulation of Innate Immunity. Nat. Rev. Immunol. 2013, 13, 875–887. [Google Scholar] [CrossRef]
- Wherry, E.J.; Ha, S.-J.; Kaech, S.M.; Haining, W.N.; Sarkar, S.; Kalia, V.; Subramaniam, S.; Blattman, J.N.; Barber, D.L.; Ahmed, R. Molecular Signature of CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity 2007, 27, 670–684. [Google Scholar] [CrossRef]
- Gibson, K.L.; Wu, Y.; Barnett, Y.; Duggan, O.; Vaughan, R.; Kondeatis, E.; Nilsson, B.; Wikby, A.; Kipling, D.; Dunn-Walters, D.K. B-cell Diversity Decreases in Old Age and Is Correlated with Poor Health Status. Aging Cell 2009, 8, 18–25. [Google Scholar] [CrossRef]
- Lithander, F.E.; Neumann, S.; Tenison, E.; Lloyd, K.; Welsh, T.J.; Rodrigues, J.C.L.; Higgins, J.P.T.; Scourfield, L.; Christensen, H.; Haunton, V.J.; et al. COVID-19 in Older People: A Rapid Clinical Review. Age Ageing 2020, 49, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and Effectiveness of mRNA BNT162b2 Vaccine against SARS-CoV-2 Infections and COVID-19 Cases, Hospitalisations, and Deaths Following a Nationwide Vaccination Campaign in Israel: An Observational Study Using National Surveillance Data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of Global Seasonal Influenza-Associated Respiratory Mortality: A Modelling Study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- CDC Preliminary Estimated Flu Disease Burden 2022–2023 Flu Season. Available online: https://www.cdc.gov/flu-burden/php/data-vis/2022-2023.html (accessed on 30 October 2024).
- Hamid, S.; Winn, A.; Parikh, R.; Jones, J.M.; McMorrow, M.; Prill, M.M.; Silk, B.J.; Scobie, H.M.; Hall, A.J. Seasonality of Respiratory Syncytial Virus—United States, 2017–2023. MMWR Morb. Mortal. Wkly. Rep. 2007, 72, 355–361. [Google Scholar] [CrossRef]
- Elias, C.; Nunes, M.C.; Saadatian-Elahi, M. Epidemiology of Community-Acquired Pneumonia Caused by Streptococcus Pneumoniae in Older Adults: A Narrative Review. Curr. Opin. Infect. Dis. 2003, 37, 144. [Google Scholar] [CrossRef]
- Kristensen, M.; van Lier, A.; Eilers, R.; McDonald, S.A.; Opstelten, W.; van der Maas, N.; van der Hoek, W.; Kretzschmar, M.E.; Nielen, M.M.; de Melker, H.E. Burden of Four Vaccine Preventable Diseases in Older Adults. Vaccine 2016, 34, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Tian, L.; Pang, Z.; Yang, Q.; Huang, T.; Fan, J.; Song, L.; Tong, Y.; Fan, H. COVID-19 Vaccine Development: Milestones, Lessons and Prospects. Signal Transduct. Target. Ther. 2022, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.R.; Correia, C.A.; Marmorato, M.P.; Dias, J.Z.d.C.; Thomazella, M.V.; Cabral da Silva, A.; de Oliveira, A.C.S.; Gusmão, A.F.; Ferrari, L.; Freitas, A.C.; et al. Humoral and Cellular Immune Responses to CoronaVac up to One Year after Vaccination. Front. Immunol. 2023, 13, 1032411. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine, BBIBP-CorV: A Randomised, Double-Blind, Placebo-Controlled, Phase 1/2 Trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef]
- Gordeychuk, I.V.; Kozlovskaya, L.I.; Siniugina, A.A.; Yagovkina, N.V.; Kuzubov, V.I.; Zakharov, K.A.; Volok, V.P.; Dodina, M.S.; Gmyl, L.V.; Korotina, N.A.; et al. Safety and Immunogenicity of Inactivated Whole Virion COVID-19 Vaccine CoviVac in Clinical Trials in 18–60 and 60+ Age Cohorts. Viruses 2023, 15, 1828. [Google Scholar] [CrossRef]
- Holtkamp, C.; Schöler, L.; Anastasiou, O.E.; Brune, B.; Fessmann, K.; Elsner, C.; Möhlendick, B.; Čiučiulkaitė, I.; Dudda, M.; Trilling, M.; et al. Antibody Responses Elicited by mRNA Vaccination in Firefighters Persist Six Months and Correlate Inversely with Age and Directly with BMI. Heliyon 2023, 9, e12746. [Google Scholar] [CrossRef] [PubMed]
- Fedele, G.; Trentini, F.; Schiavoni, I.; Abrignani, S.; Antonelli, G.; Baldo, V.; Baldovin, T.; Bandera, A.; Bonura, F.; Clerici, P.; et al. Evaluation of Humoral and Cellular Response to Four Vaccines against COVID-19 in Different Age Groups: A Longitudinal Study. Front. Immunol. 2022, 13, 1021396. [Google Scholar] [CrossRef]
- Canaday, D.H.; Carias, L.; Oyebanji, O.A.; Keresztesy, D.; Wilk, D.; Payne, M.; Aung, H.; St. Denis, K.; Lam, E.C.; Rowley, C.F.; et al. Reduced BNT162b2 Messenger RNA Vaccine Response in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)–Naive Nursing Home Residents. Clin. Infect. Dis. 2021, 73, 2112–2115. [Google Scholar] [CrossRef]
- Demaret, J.; Corroyer-Simovic, B.; Alidjinou, E.K.; Goffard, A.; Trauet, J.; Miczek, S.; Vuotto, F.; Dendooven, A.; Huvent-Grelle, D.; Podvin, J.; et al. Impaired Functional T-Cell Response to SARS-CoV-2 After Two Doses of BNT162b2 mRNA Vaccine in Older People. Front. Immunol. 2021, 12, 778679. [Google Scholar] [CrossRef]
- Scola, L.; Ferraro, D.; Sanfilippo, G.L.; De Grazia, S.; Lio, D.; Giammanco, G.M. Age and Cytokine Gene Variants Modulate the Immunogenicity and Protective Effect of SARS-CoV-2 mRNA-Based Vaccination. Vaccines 2023, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Ferreira, I.A.T.M.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; Baker, S.; Dougan, G.; et al. Age-Related Immune Response Heterogeneity to SARS-CoV-2 Vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef]
- Chen, G.-L.; Qiu, Y.-Z.; Wu, K.-Q.; Wu, Y.; Wang, Y.-H.; Zou, Y.-Y.; Peng, C.-G.; Zhao, J.; Su, C.; Ma, J.-H.; et al. Safety and Immunogenicity of Primary Vaccination with a SARS-CoV-2 mRNA Vaccine (SYS6006) in Chinese Participants Aged 18 Years or More: Two Randomized, Observer-Blinded, Placebo-Controlled and Dose-Escalation Phase 1 Clinical Trials. Hum. Vaccines Immunother. 2023, 19, 2285089. [Google Scholar] [CrossRef]
- Dudley, H.M.; O’Mara, M.; Auma, A.; Gong, J.; Ross, Y.; Gurevich, N.; Carbone, S.; Reihs, A.; Nguyen, Y.; McComsey, G.A.; et al. Rheumatoid Arthritis and Older Age Are Associated with Lower Humoral and Cellular Immune Response to Primary Series COVID-19 mRNA Vaccine. Vaccine 2023, 41, 6112–6119. [Google Scholar] [CrossRef] [PubMed]
- Swanson, P.A.; Padilla, M.; Hoyland, W.; McGlinchey, K.; Fields, P.A.; Bibi, S.; Faust, S.N.; McDermott, A.B.; Lambe, T.; Pollard, A.J.; et al. AZD1222/ChAdOx1 nCoV-19 Vaccination Induces a Polyfunctional Spike Protein–Specific T H 1 Response with a Diverse TCR Repertoire. Sci. Transl. Med. 2021, 13, eabj7211. [Google Scholar] [CrossRef]
- Zhu, F.-C.; Guan, X.-H.; Li, Y.-H.; Huang, J.-Y.; Jiang, T.; Hou, L.-H.; Li, J.-X.; Yang, B.-F.; Wang, L.; Wang, W.-J.; et al. Immunogenicity and Safety of a Recombinant Adenovirus Type-5-Vectored COVID-19 Vaccine in Healthy Adults Aged 18 Years or Older: A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef]
- Le Gars, M.; Hendriks, J.; Sadoff, J.; Ryser, M.; Struyf, F.; Douoguih, M.; Schuitemaker, H. Immunogenicity and Efficacy of Ad26.COV2.S: An Adenoviral Vector–Based COVID-19 Vaccine. Immunol. Rev. 2022, 310, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Mwimanzi, F.; Lapointe, H.R.; Cheung, P.K.; Sang, Y.; Yaseen, F.; Umviligihozo, G.; Kalikawe, R.; Datwani, S.; Omondi, F.H.; Burns, L.; et al. Older Adults Mount Less Durable Humoral Responses to Two Doses of COVID-19 mRNA Vaccine but Strong Initial Responses to a Third Dose. J. Infect. Dis. 2022, 226, 983–994. [Google Scholar] [CrossRef]
- Mwimanzi, F.; Lapointe, H.R.; Cheung, P.K.; Sang, Y.; Yaseen, F.; Kalikawe, R.; Datwani, S.; Burns, L.; Young, L.; Leung, V.; et al. Impact of Age and Severe Acute Respiratory Syndrome Coronavirus 2 Breakthrough Infection on Humoral Immune Responses After Three Doses of Coronavirus Disease 2019 mRNA Vaccine. Open Forum Infect. Dis. 2023, 10, ofad073. [Google Scholar] [CrossRef]
- Datwani, S.; Kalikawe, R.; Mwimanzi, F.; Speckmaier, S.; Liang, R.; Sang, Y.; Waterworth, R.; Yaseen, F.; Lapointe, H.; Barad, E.; et al. Dynamics of T-Cell Responses Following COVID-19 mRNA Vaccination and Breakthrough Infection in Older Adults. Pathog. Immun. 2023, 8, 117–135. [Google Scholar] [CrossRef]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and Human Vaccine Immune Responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Blomberg, B.B. Aging Induces B Cell Defects and Decreased Antibody Responses to Influenza Infection and Vaccination. Immun. Ageing A 2020, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Hodl, I.; Forstner, P.; Hatzl, S.; Sareban, N.; Moritz, M.; Fessler, J.; Dreo, B.; Uhl, B.; Url, C.; et al. CD19+IgD+CD27- Naïve B Cells as Predictors of Humoral Response to COVID 19 mRNA Vaccination in Immunocompromised Patients. Front. Immunol. 2021, 12, 803742. [Google Scholar] [CrossRef]
- Xiao, C.; Ren, Z.; Zhang, B.; Mao, L.; Zhu, G.; Gao, L.; Su, J.; Ye, J.; Long, Z.; Zhu, Y.; et al. Insufficient Epitope-Specific T Cell Clones Are Responsible for Impaired Cellular Immunity to Inactivated SARS-CoV-2 Vaccine in Older Adults. Nat. Aging 2012, 3, 418–435. [Google Scholar] [CrossRef]
- Krammer, F. The Human Antibody Response to Influenza A Virus Infection and Vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Harrington, W.N.; Kackos, C.M.; Webby, R.J. The Evolution and Future of Influenza Pandemic Preparedness. Exp. Mol. Med. 2021, 53, 737–749. [Google Scholar] [CrossRef]
- Osterholm, M.T.; Kelley, N.S.; Sommer, A.; Belongia, E.A. Efficacy and Effectiveness of Influenza Vaccines: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2012, 12, 36–44. [Google Scholar] [CrossRef]
- Zhou, B.; Meliopoulos, V.A.; Wang, W.; Lin, X.; Stucker, K.M.; Halpin, R.A.; Stockwell, T.B.; Schultz-Cherry, S.; Wentworth, D.E. Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. J. Virol. 2016, 90, 8454–8463. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Joshi, S.R.; Ueda, I.; Wilson, J.; Blevins, T.P.; Siconolfi, B.; Meng, H.; Devine, L.; Raddassi, K.; Tsang, S.; et al. Prolonged Proinflammatory Cytokine Production in Monocytes Modulated by Interleukin 10 After Influenza Vaccination in Older Adults. J. Infect. Dis. 2015, 211, 1174–1184. [Google Scholar] [CrossRef]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of Interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef]
- Basu, I.; Agarwal, M.; Shah, V.; Shukla, V.; Naik, S.; Supe, P.D.; Srivastava, M.K.; Giriraja, K.V.; Pinjar, P.; Mishra, P.K.; et al. Immunogenicity and Safety of Two Quadrivalent Influenza Vaccines in Healthy Adult and Elderly Participants in India—A Phase III, Active-Controlled, Randomized Clinical Study. Hum. Vaccines Immunother. 2022, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Wei, M.; Guo, X.; Zhang, Y.; Wang, Z.; Xia, X.; Qi, X.; Wang, L.; Li, X.; Leng, S.X. Immunogenicity and Safety of Quadrivalent Influenza Vaccine among Young and Older Adults in Tianjin, China: Implication of Immunosenescence as a Risk Factor. Immun. Ageing 2023, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, C.P.; Belsky, D.W.; Andrew, M.K.; Haynes, L.; Loeb, M.; Pawelec, G.; McElhaney, J.E.; Kuchel, G.A. Advanced Biological Age Is Associated with Improved Antibody Responses in Older High-Dose Influenza Vaccine Recipients over Four Consecutive Seasons. Immun. Ageing 2022, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.R.; Li, H.; Morgan, R.; Chen, Y.; Kuo, H.; Ning, X.; Shea, P.; Wu, C.; Merport, K.; Saldanha, R.; et al. Sex-Specific Effects of Aging on Humoral Immune Responses to Repeated Influenza Vaccination in Older Adults. Npj Vaccines 2021, 6, 147. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.T.; Nachbagauer, R.; Ensz, D.; Schwartz, H.; Carmona, L.; Schaefers, K.; Avanesov, A.; Stadlbauer, D.; Henry, C.; Chen, R.; et al. Safety and Immunogenicity of a Phase 1/2 Randomized Clinical Trial of a Quadrivalent, mRNA-Based Seasonal Influenza Vaccine (mRNA-1010) in Healthy Adults: Interim Analysis. Nat. Commun. 2020, 14, 3631. [Google Scholar] [CrossRef]
- Cowling, B.J.; Perera, R.A.P.M.; Valkenburg, S.A.; Leung, N.H.L.; Iuliano, A.D.; Tam, Y.H.; Wong, J.H.F.; Fang, V.J.; Li, A.P.Y.; So, H.C.; et al. Comparative Immunogenicity of Several Enhanced Influenza Vaccine Options for Older Adults: A Randomized, Controlled Trial. Clin. Infect. Dis. 2020, 71, 1704–1714. [Google Scholar] [CrossRef]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell Dev. Biol. 2021, 9, 633776. [Google Scholar] [CrossRef]
- Paradiso, P.R. Pneumococcal Conjugate Vaccine for Adults: A New Paradigm. Clin. Infect. Dis. 2012, 55, 259–264. [Google Scholar] [CrossRef]
- Shah, A.A. Simplifying Pneumococcal Immunizations for Adults. Am. Fam. Physician 2022, 105, 580–581. [Google Scholar]
- Haranaka, M.; Yono, M.; Kishino, H.; Igarashi, R.; Oshima, N.; Sawata, M.; Platt, H.L. Safety, Tolerability, and Immunogenicity of a 21-Valent Pneumococcal Conjugate Vaccine, V116, in Japanese Healthy Adults: A Phase I Study. Hum. Vaccines Immunother. 2023, 19, 2228162. [Google Scholar] [CrossRef]
- Ravichandran, S.; Erra-Diaz, F.; Karakaslar, O.E.; Marches, R.; Kenyon-Pesce, L.; Rossi, R.; Chaussabel, D.; Nehar-Belaid, D.; LaFon, D.C.; Pascual, V.; et al. Distinct Baseline Immune Characteristics Associated with Responses to Conjugated and Unconjugated Pneumococcal Polysaccharide Vaccines in Older Adults. Nat. Immunol. 2024, 25, 316–329. [Google Scholar] [CrossRef] [PubMed]
- van der Heiden, M.; Shetty, S.; Bijvank, E.; Beckers, L.; Cevirgel, A.; van Sleen, Y.; Tcherniaeva, I.; Ollinger, T.; Burny, W.; van Binnendijk, R.S.; et al. Multiple Vaccine Comparison in the Same Adults Reveals Vaccine-Specific and Age-Related Humoral Response Patterns: An Open Phase IV Trial. Nat. Commun. 2024, 15, 6603. [Google Scholar] [CrossRef] [PubMed]
- Platt, H.L.; Cardona, J.F.; Haranaka, M.; Schwartz, H.I.; Narejos Perez, S.; Dowell, A.; Chang, C.-J.; Dagan, R.; Tamms, G.M.; Sterling, T.; et al. A Phase 3 Trial of Safety, Tolerability, and Immunogenicity of V114, 15-Valent Pneumococcal Conjugate Vaccine, Compared with 13-Valent Pneumococcal Conjugate Vaccine in Adults 50 Years of Age and Older (PNEU-AGE). Vaccine 2022, 40, 162–172. [Google Scholar] [CrossRef]
- Essink, B.; Sabharwal, C.; Cannon, K.; Frenck, R.; Lal, H.; Xu, X.; Sundaraiyer, V.; Peng, Y.; Moyer, L.; Pride, M.W.; et al. Pivotal Phase 3 Randomized Clinical Trial of the Safety, Tolerability, and Immunogenicity of 20-Valent Pneumococcal Conjugate Vaccine in Adults Aged ≥18 Years. Clin. Infect. Dis. 2022, 75, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Oxman, M.N.; Levin, M.J.; Johnson, G.R.; Schmader, K.E.; Straus, S.E.; Gelb, L.D.; Arbeit, R.D.; Simberkoff, M.S.; Gershon, A.A.; Davis, L.E.; et al. A Vaccine to Prevent Herpes Zoster and Postherpetic Neuralgia in Older Adults. N. Engl. J. Med. 2005, 352, 2271–2284. [Google Scholar] [CrossRef]
- Schmader, K.E.; Levin, M.J.; Gnann, J.W.; McNeil, S.A.; Vesikari, T.; Betts, R.F.; Keay, S.; Stek, J.E.; Bundick, N.D.; Su, S.-C.; et al. Efficacy, Safety, and Tolerability of Herpes Zoster Vaccine in Persons Aged 50-59 Years. Clin. Infect. Dis. 2012, 54, 922–928. [Google Scholar] [CrossRef]
- Tseng, H.F.; Harpaz, R.; Luo, Y.; Hales, C.M.; Sy, L.S.; Tartof, S.Y.; Bialek, S.; Hechter, R.C.; Jacobsen, S.J. Declining Effectiveness of Herpes Zoster Vaccine in Adults Aged ≥60 Years. J. Infect. Dis. 2016, 213, 1872–1875. [Google Scholar] [CrossRef]
- Baxter, R.; Bartlett, J.; Fireman, B.; Marks, M.; Hansen, J.; Lewis, E.; Aukes, L.; Chen, Y.; Klein, N.P.; Saddier, P. Long-Term Effectiveness of the Live Zoster Vaccine in Preventing Shingles: A Cohort Study. Am. J. Epidemiol. 2018, 187, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Oxman, M.N.; Zhang, J.H.; Johnson, G.R.; Stanley, H.; Hayward, A.R.; Caulfield, M.J.; Irwin, M.R.; Smith, J.G.; Clair, J.; et al. Varicella-Zoster Virus–Specific Immune Responses in Elderly Recipients of a Herpes Zoster Vaccine. J. Infect. Dis. 2008, 197, 825–835. [Google Scholar] [CrossRef]
- Weinberg, A.; Pang, L.; Johnson, M.J.; Caldas, Y.; Cho, A.; Tovar-Salazar, A.; Canniff, J.; Schmader, K.E.; Popmihajlov, Z.; Levin, M.J. The Effect of Age on the Immunogenicity of the Live Attenuated Zoster Vaccine Is Predicted by Baseline Regulatory T Cells and Varicella-Zoster Virus-Specific T Cell Immunity. J. Virol. 2019, 93, e00305-19. [Google Scholar] [CrossRef]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.; Hastie, A.; Diez-Domingo, J.; Tinoco, J.C.; Yu, C.-J.; Andrews, C.; Beytout, J.; Caso, C.; Cheng, H.-S.; Cheong, H.J.; et al. The Adjuvanted Recombinant Zoster Vaccine Confers Long-Term Protection Against Herpes Zoster: Interim Results of an Extension Study of the Pivotal Phase 3 Clinical Trials ZOE-50 and ZOE-70. Clin. Infect. Dis. 2022, 74, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Chlibek, R.; Bayas, J.M.; Collins, H.; de la Pinta, M.L.R.; Ledent, E.; Mols, J.F.; Heineman, T.C. Safety and Immunogenicity of an AS01-Adjuvanted Varicella-Zoster Virus Subunit Candidate Vaccine Against Herpes Zoster in Adults ≥50 Years of Age. J. Infect. Dis. 2013, 208, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.J.; Liu, C.; Ghosh, D.; Lang, N.; Levin, M.J.; Weinberg, A. Cell-Mediated Immune Responses After Administration of the Live or the Recombinant Zoster Vaccine: 5-Year Persistence. J. Infect. Dis. 2022, 225, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Scott Schmid, D.; Leung, J.; Johnson, M.J.; Miao, C.; Levin, M.J. Predictors of 5-Year Persistence of Antibody Responses to Zoster Vaccines. J. Infect. Dis. 2023, 228, 1367–1374. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Volpe, S.; Catteau, G.; Chlibek, R.; David, M.P.; Richardus, J.H.; Lal, H.; Oostvogels, L.; Pauksens, K.; Ravault, S.; et al. Persistence of Immune Response to an Adjuvanted Varicella-Zoster Virus Subunit Vaccine for up to Year Nine in Older Adults. Hum. Vaccines Immunother. 2018, 14, 1370–1377. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Heineman, T.C.; Lal, H.; Godeaux, O.; Chlibek, R.; Hwang, S.-J.; McElhaney, J.E.; Vesikari, T.; Andrews, C.; Choi, W.S.; et al. Immune Responses to a Recombinant Glycoprotein E Herpes Zoster Vaccine in Adults Aged 50 Years or Older. J. Infect. Dis. 2018, 217, 1750–1760. [Google Scholar] [CrossRef]
- Savic, M.; Penders, Y.; Shi, T.; Branche, A.; Pirçon, J. Respiratory Syncytial Virus Disease Burden in Adults Aged 60 Years and Older in High-income Countries: A Systematic Literature Review and Meta-analysis. Influenza Other Respir. Viruses 2023, 17, e13031. [Google Scholar] [CrossRef]
- Mullard, A. FDA Approves mRNA-Based RSV Vaccine. Nat. Rev. Drug Discov. 2024, 23, 487. [Google Scholar] [CrossRef]
- Walsh, E.E.; Pérez Marc, G.; Zareba, A.M.; Falsey, A.R.; Jiang, Q.; Patton, M.; Polack, F.P.; Llapur, C.; Doreski, P.A.; Ilangovan, K.; et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 1465–1477. [Google Scholar] [CrossRef]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Falsey, A.R.; Scott, D.A.; Gurtman, A.; Zareba, A.M.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Radley, D.; et al. A Randomized Phase 1/2 Study of a Respiratory Syncytial Virus Prefusion F Vaccine. J. Infect. Dis. 2022, 225, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Walsh, E.E.; Scott, D.A.; Gurtman, A.; Zareba, A.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Jiang, Q.; et al. Phase 1/2 Randomized Study of the Immunogenicity, Safety, and Tolerability of a Respiratory Syncytial Virus Prefusion F Vaccine in Adults With Concomitant Inactivated Influenza Vaccine. J. Infect. Dis. 2022, 225, 2056–2066. [Google Scholar] [CrossRef]
- Athan, E.; Baber, J.; Quan, K.; Scott, R.J.; Jaques, A.; Jiang, Q.; Li, W.; Cooper, D.; Cutler, M.W.; Kalinina, E.V.; et al. Safety and Immunogenicity of Bivalent RSVpreF Vaccine Coadministered With Seasonal Inactivated Influenza Vaccine in Older Adults. Clin. Infect. Dis. 2024, 78, 1360–1368. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Hwang, S.-J.; Ylisastigui, P.; Liu, C.-S.; Takazawa, K.; Yono, M.; Ervin, J.E.; Andrews, C.P.; Fogarty, C.; Eckermann, T.; et al. Immunogenicity and Safety Following 1 Dose of AS01E-Adjuvanted Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults: A Phase 3 Trial. J. Infect. Dis. 2024, 230, e102–e110. [Google Scholar] [CrossRef]
- Ferguson, M.; Schwarz, T.F.; Núñez, S.A.; Rodríguez-García, J.; Mital, M.; Zala, C.; Schmitt, B.; Toursarkissian, N.; Mazarro, D.O.; Großkopf, J.; et al. Noninferior Immunogenicity and Consistent Safety of Respiratory Syncytial Virus Prefusion F Protein Vaccine in Adults 50–59 Years Compared to ≥60 Years of Age. Clin. Infect. Dis. 2024, 79, ciae364. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Mithani, R.; Kapoor, A.; Lu, S.; Asmar, L.E.; Panozzo, C.A.; Shaw, C.A.; Stoszek, S.K.; August, A. 234. Safety and Immunogenicity of mRNA-1345, an mRNA-Based RSV Vaccine in Younger and Older Adult Cohorts: Results from a Phase 1, Randomized Clinical Trial. Open Forum Infect. Dis. 2022, 9, ofac492-312. [Google Scholar] [CrossRef]
- Samy, N.; Reichhardt, D.; Schmidt, D.; Chen, L.M.; Silbernagl, G.; Vidojkovic, S.; Meyer, T.P.; Jordan, E.; Adams, T.; Weidenthaler, H.; et al. Safety and Immunogenicity of Novel Modified Vaccinia Ankara-Vectored RSV Vaccine: A Randomized Phase I Clinical Trial. Vaccine 2020, 38, 2608–2619. [Google Scholar] [CrossRef]
- Aliprantis, A.O.; Shaw, C.A.; Griffin, P.; Farinola, N.; Railkar, R.A.; Cao, X.; Liu, W.; Sachs, J.R.; Swenson, C.J.; Lee, H.; et al. A Phase 1, Randomized, Placebo-Controlled Study to Evaluate the Safety and Immunogenicity of an mRNA-Based RSV Prefusion F Protein Vaccine in Healthy Younger and Older Adults. Hum. Vaccines Immunother. 2021, 17, 1248–1261. [Google Scholar] [CrossRef]
- Falsey, A.R.; Williams, K.; Gymnopoulou, E.; Bart, S.; Ervin, J.; Bastian, A.R.; Menten, J.; De Paepe, E.; Vandenberghe, S.; Chan, E.K.H.; et al. Efficacy and Safety of an Ad26.RSV.preF–RSV preF Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 609–620. [Google Scholar] [CrossRef]
- Wagner, A.; Garner-Spitzer, E.; Jasinska, J.; Kollaritsch, H.; Stiasny, K.; Kundi, M.; Wiedermann, U. Age-Related Differences in Humoral and Cellular Immune Responses after Primary Immunisation: Indications for Stratified Vaccination Schedules. Sci. Rep. 2018, 8, 9825. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R.; Deming, M.E.; Toapanta, F.R.; Heuser, M.D.; Chrisley, L.; Barnes, R.S.; Wasserman, S.S.; Blackwelder, W.C.; Handwerger, B.S.; Pasetti, M.; et al. The SENIEUR Protocol and the Efficacy of Hepatitis B Vaccination in Healthy older Persons by Age, Gender, and Vaccine Route. Immun. Ageing 2020, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.; Shinkafi, S.H.; Alshrari, A.S.; Yunusa, A.; Umar, M.T.; Hudu, S.A.; Jimoh, A.O. A Comprehensive Review of Hepatitis B Vaccine Nonresponse and Associated Risk Factors. Vaccines 2024, 12, 710. [Google Scholar] [CrossRef]
- Versteegen, P.; Barkoff, A.-M.; Valente Pinto, M.; van de Kasteele, J.; Knuutila, A.; Bibi, S.; de Rond, L.; Teräsjärvi, J.; Sanders, K.; de Zeeuw-Brouwer, M.; et al. Memory B Cell Activation Induced by Pertussis Booster Vaccination in Four Age Groups of Three Countries. Front. Immunol. 2022, 13, 864674. [Google Scholar] [CrossRef]
- Rack, C.; Almanzar, G.; Schäfer, A.; Völkl, S.; Dobler, G.; Mutterer, A.; Schmalzing, M.; Hick, S.; Steimer, M.; Jahn, L.; et al. Immunogenicity of Tick-Borne-Encephalitis-Virus-(TBEV)-Vaccination and Impact of Age on Humoral and Cellular TBEV-Specific Immune Responses in Patients with Rheumatoid Arthritis. Vaccine 2024, 42, 745–752. [Google Scholar] [CrossRef]
- Stephenson, I.; Bugarini, R.; Nicholson, K.G.; Podda, A.; Wood, J.M.; Zambon, M.C.; Katz, J.M. Cross-Reactivity to Highly Pathogenic Avian Influenza H5N1 Viruses after Vaccination with Nonadjuvanted and MF59-Adjuvanted Influenza A/Duck/Singapore/97 (H5N3) Vaccine: A Potential Priming Strategy. J. Infect. Dis. 2005, 191, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, D.T.; Ott, G.S.; De Gregorio, E.; Seubert, A. The Mechanism of Action of MF59—An Innately Attractive Adjuvant Formulation. Vaccine 2012, 30, 4341–4348. [Google Scholar] [CrossRef]
- Nicolay, U.; Heijnen, E.; Nacci, P.; Patriarca, P.A.; Leav, B. Immunogenicity of aIIV3, MF59-Adjuvanted Seasonal Trivalent Influenza Vaccine, in Older Adults ≥65 Years of Age: Meta-Analysis of Cumulative Clinical Experience. Int. J. Infect. Dis. 2019, 85, S1–S9. [Google Scholar] [CrossRef]
- Li, A.P.Y.; Cohen, C.A.; Leung, N.H.L.; Fang, V.J.; Gangappa, S.; Sambhara, S.; Levine, M.Z.; Iuliano, A.D.; Perera, R.A.P.M.; Ip, D.K.M.; et al. Immunogenicity of Standard, High-Dose, MF59-Adjuvanted, and Recombinant-HA Seasonal Influenza Vaccination in Older Adults. Npj Vaccines 2021, 6, 25. [Google Scholar] [CrossRef]
- Squarcione, S.; Sgricia, S.; Biasio, L.R.; Perinetti, E. Comparison of the Reactogenicity and Immunogenicity of a Split and a Subunit-Adjuvanted Influenza Vaccine in Elderly Subjects. Vaccine 2003, 21, 1268–1274. [Google Scholar] [CrossRef]
- Nicholson, K.G.; Abrams, K.R.; Batham, S.; Clark, T.W.; Hoschler, K.; Lim, W.S.; Medina, M.-J.; Nguyen-Van-Tam, J.S.; Read, R.C.; Warren, F.C.; et al. Immunogenicity and Safety of a Two-Dose Schedule of Whole-Virion and AS03A-Adjuvanted 2009 Influenza A (H1N1) Vaccines: A Randomised, Multicentre, Age-Stratified, Head-to-Head Trial. Lancet Infect. Dis. 2011, 11, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine 2019, 37, 3167–3178. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Sher, A.; Seder, R.A.; Ivanova, D.L.; Thompson, S.B.; Klarquist, J.; Harbell, M.G.; Kilgore, A.M.; Lasda, E.L.; Hesselberth, J.R.; et al. Adjuvant System AS03 Containing α-Tocopherol Modulates Innate Immune Response and Leads to Improved Adaptive Immunity. Vaccine 2011, 29, 2461–2473. [Google Scholar] [CrossRef]
- Sajkov, D.; Woodman, R.; Honda-Okubo, Y.; Barbara, J.; Chew, D.; Toson, B.; Petrovsky, N. A Multiseason Randomized Controlled Trial of Advax-Adjuvanted Seasonal Influenza Vaccine in Participants With Chronic Disease or Older Age. J. Infect. Dis. 2024, 230, 444–454. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, D.; Liu, X.; He, J.; Lv, R.; Zhang, J.; Zhao, Z.; Wang, L. Study on immune effect of Ganoderma lucidum spore polysaccharide as adjuvant of influenza vaccine. Jilin J. Chin. Med. 2023, 43, 1442–1448. [Google Scholar]
- Wang, J.; Ding, Y.; Chong, K.; Cui, M.; Cao, Z.; Tang, C.; Tian, Z.; Hu, Y.; Zhao, Y.; Jiang, S. Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery. Front. Immunol. 2011, 12, 1148. [Google Scholar] [CrossRef]
- Siram, K.; Lathrop, S.K.; Abdelwahab, W.M.; Tee, R.; Davison, C.J.; Partlow, H.A.; Evans, J.T.; Burkhart, D.J. Co-Delivery of Novel Synthetic TLR4 and TLR7/8 Ligands Adsorbed to Aluminum Salts Promotes Th1-Mediated Immunity against Poorly Immunogenic SARS-CoV-2 RBD. Vaccines 2022, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-Y.; Zheng, X.-L.; Coghi, P.S.; Chen, J.-H.; Dong, B.-J.; Fan, X.-X.; Hallam, J.; Jones, T.; Alley, J.; Kohut, M.L. Revolutionizing Adjuvant Development: Harnessing AI for next-Generation Cancer Vaccines. Front. Immunol. 2024, 15, 1438030. [Google Scholar] [CrossRef]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2023, 33, 492–503. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Fox, C.B. New Generation Adjuvants—From Empiricism to Rational Design. Vaccine 2015, 33, B14–B20. [Google Scholar] [CrossRef]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key Roles of Adjuvants in Modern Vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Sher, A.; Seder, R.A.; Ivanova, D.L.; Thompson, S.B.; Klarquist, J.; Harbell, M.G.; Kilgore, A.M.; Lasda, E.L.; Hesselberth, J.R.; et al. Vaccine Adjuvant-Elicited CD8+ T Cell Immunity Is Co-Dependent on T-Bet and FOXO1. Cell Rep. 2023, 42, 112911. [Google Scholar] [CrossRef]
- Sanchez, L.; Nakama, T.; Nagai, H.; Matsuoka, O.; Inoue, S.; Inoue, T.; Shrestha, A.; Pandey, A.; Chang, L.-J.; De Bruijn, I. Superior Immunogenicity of High-Dose Quadrivalent Inactivated Influenza Vaccine versus Standard-Dose Vaccine in Japanese Adults ≥ 60 Years of Age: Results from a Phase III, Randomized Clinical Trial. Vaccine 2023, 41, 2553–2561. [Google Scholar] [CrossRef]
- Ortiz de Lejarazu, R.; Martinón Torres, F.; Gil de Miguel, Á.; Díez Domingo, J.; Redondo Marguello, E. High-dose trivalent influenza vaccine: Safety and immunogenicity. Rev. Esp. Quimioter. 2021, 34, 1–11. [Google Scholar] [CrossRef]
- Jackson, L.A.; El Sahly, H.M.; George, S.; Winokur, P.; Edwards, K.; Brady, R.C.; Rouphael, N.; Keitel, W.A.; Mulligan, M.J.; Burton, R.L.; et al. Randomized Clinical Trial of a Single versus a Double Dose of 13-Valent Pneumococcal Conjugate Vaccine in Adults 55 through 74 years of Age Previously Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine. Vaccine 2018, 36, 606–614. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.; Matsushita, M.; Komatsu, N.; Yagi, Y.; Takeuchi, S.; Seo, H. Impact of Repeated Yearly Vaccination on Immune Responses to Influenza Vaccine in an Elderly Population. Am. J. Infect. Control 2020, 48, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Abolhassani, H.; Du, L.; Piralla, A.; Bertoglio, F.; de Campos-Mata, L.; Wan, H.; Schubert, M.; Cassaniti, I.; Wang, Y.; et al. Heterologous Immunization with Inactivated Vaccine Followed by mRNA-Booster Elicits Strong Immunity against SARS-CoV-2 Omicron Variant. Nat. Commun. 2022, 13, 2670. [Google Scholar] [CrossRef]
- Leroux-Roels, I.; Van Ranst, M.; Vandermeulen, C.; Abeele, C.V.; De Schrevel, N.; Salaun, B.; Verheust, C.; David, M.-P.; Kotb, S.; Hulstrøm, V. Safety and Immunogenicity of a Revaccination With a Respiratory Syncytial Virus Prefusion F Vaccine in Older Adults: A Phase 2b Study. J. Infect. Dis. 2024, 229, 355–366. [Google Scholar] [CrossRef]
- Kawakami, K.; Kishino, H.; Kanazu, S.; Toshimizu, N.; Takahashi, K.; Sterling, T.; Wang, M.; Musey, L. Revaccination with 23-Valent Pneumococcal Polysaccharide Vaccine in the Japanese Elderly Is Well Tolerated and Elicits Immune Responses. Vaccine 2016, 34, 3875–3881. [Google Scholar] [CrossRef] [PubMed]
- Vukmanovic-Stejic, M.; Chambers, E.S.; Suárez-Fariñas, M.; Sandhu, D.; Fuentes-Duculan, J.; Patel, N.; Agius, E.; Lacy, K.E.; Turner, C.T.; Larbi, A.; et al. Enhancement of Cutaneous Immunity during Aging by Blocking P38 Mitogen-Activated Protein (MAP) Kinase–Induced Inflammation. J. Allergy Clin. Immunol. 2018, 142, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Mannick, J.B.; Del Giudice, G.; Lattanzi, M.; Valiante, N.M.; Praestgaard, J.; Huang, B.; Lonetto, M.A.; Maecker, H.T.; Kovarik, J.; Carson, S.; et al. mTOR Inhibition Improves Immune Function in the Elderly. Sci. Transl. Med. 2014, 6, 268ra179. [Google Scholar] [CrossRef]
- Hallam, J.; Jones, T.; Alley, J.; Kohut, M.L. Exercise after Influenza or COVID-19 Vaccination Increases Serum Antibody without an Increase in Side Effects. Brain. Behav. Immun. 2022, 102, 1–10. [Google Scholar] [CrossRef]
- Şevgin, Ö.; Özer, S. Effect of Physical Exercise on Inactivated COVID-19 Vaccine Antibody Response in the Elderly. Hum. Antibodies 2024, 32, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Papp, G.; Szabó, K.; Jámbor, I.; Mile, M.; Berki, A.R.; Arany, A.C.; Makra, G.; Szodoray, P.; Csiki, Z.; Balogh, L. Regular Exercise May Restore Certain Age-Related Alterations of Adaptive Immunity and Rebalance Immune Regulation. Front. Immunol. 2021, 12, 639308. [Google Scholar] [CrossRef]
- Castro-Herrera, V.M.; Fisk, H.L.; Wootton, M.; Lown, M.; Owen-Jones, E.; Lau, M.; Lowe, R.; Hood, K.; Gillespie, D.; Hobbs, F.D.R.; et al. Combination of the Probiotics Lacticaseibacillus Rhamnosus GG and Bifidobacterium Animalis Subsp. Lactis, BB-12 Has Limited Effect on Biomarkers of Immunity and Inflammation in Older People Resident in Care Homes: Results From the Probiotics to Reduce Infections iN CarE Home reSidentS Randomized, Controlled Trial. Front. Immunol. 2021, 12, 643321. [Google Scholar] [CrossRef]
- Fernández-Ferreiro, A.; Formigo-Couceiro, F.J.; Veiga-Gutierrez, R.; Maldonado-Lobón, J.A.; Hermida-Cao, A.M.; Rodriguez, C.; Bañuelos, O.; Olivares, M.; Blanco-Rojo, R. Effects of Loigolactobacillus Coryniformis K8 CECT 5711 on the Immune Response of Elderly Subjects to COVID-19 Vaccination: A Randomized Controlled Trial. Nutrients 2022, 14, 228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Shao, C.; Li, J.; Zhu, F. Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures. Vaccines 2024, 12, 1289. https://doi.org/10.3390/vaccines12111289
Chen L, Shao C, Li J, Zhu F. Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures. Vaccines. 2024; 12(11):1289. https://doi.org/10.3390/vaccines12111289
Chicago/Turabian StyleChen, Li, Chengwei Shao, Jingxin Li, and Fengcai Zhu. 2024. "Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures" Vaccines 12, no. 11: 1289. https://doi.org/10.3390/vaccines12111289
APA StyleChen, L., Shao, C., Li, J., & Zhu, F. (2024). Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures. Vaccines, 12(11), 1289. https://doi.org/10.3390/vaccines12111289