Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Preparation of Single-Cell Suspension from Spleens
2.3. Antibody Staining of Single-Cell Suspensions from Splenic Tissue for Flow Cytometry
2.3.1. Cell Preparation, Antibody Mixtures, and Staining Procedure
2.3.2. Intracellular Langerin Staining
2.3.3. Sample Acquisition
3. Results
3.1. Characterization of Dendritic Cell Subsets in Steady-State Mouse Spleen
Cell Population | Marker-Negative | Marker-Positive |
---|---|---|
cDC1 | Lineage, CD11b, SIRPα, Ly6G, Siglec-F | CD8α, CD11c, CD24, CD26, CD205, MHC-II, XCR1, Dectin-1+/− |
Langerin+ cDC1 | CD103, Langerin | |
cDC2 | Lineage, CD8α, CD24, CD205, XCR1, Ly6G, Siglec-F | CD11c, CD26, CD11b, MHC-II, SIRPα, Dectin-1+/− |
cDC2A | CD4, ESAM | |
cDC2B | Clec12A, CX3CR1, Ly6C | |
Plasmacytoid DCs (pDCs) | Lineage, MHC-II, CD64 | Ly6C, PDCA-1, SIRPα, CD8α+/− |
Macrophages | Lineage, CD26, Ly6G, Siglec-F, XCR1 | CD11c, CD11b, CD64, F4/80, FcεR1a, MHC-II, MerTK, SIRPα |
Monocytes | Lineage, CD11c, MHC-II, Ly6G, Siglec-F | CD11b, CD64, CX3CR1, Ly6C+/− |
Mo-DC | Lineage, CD26, Ly6G | CD11c, CD11b, CD64, Ly6C, MHC-II, SIRPα |
Inflammatory DC (Inf-cDC2) | Lineage, XCR1 | CD11c, CD26, CD64, FcεR1a, MHC-II, SIRPα |
3.2. Identification of Additional Myeloid Cell Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amon, L.; Lehmann, C.H.; Baranska, A.; Schoen, J.; Heger, L.; Dudziak, D. Transcriptional control of dendritic cell development and functions. Int. Rev. Cell Mol. Biol. 2019, 349, 55–151. [Google Scholar] [PubMed]
- Cabeza-Cabrerizo, M.; Cardoso, A.; Minutti, C.M.; Pereira da Costa, M.; Reis e Sousa, C. Dendritic Cells Revisited. Annu. Rev. Immunol. 2021, 39, 131–166. [Google Scholar] [CrossRef] [PubMed]
- Eisenbarth, S.C. Dendritic cell subsets in T cell programming: Location dictates function. Nat. Rev. Immunol. 2019, 19, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Durai, V.; Murphy, K.M. Functions of Murine Dendritic Cells. Immunity 2016, 45, 719–736. [Google Scholar] [CrossRef]
- Mildner, A.; Jung, S. Development and function of dendritic cell subsets. Immunity 2014, 40, 642–656. [Google Scholar] [CrossRef]
- Alculumbre, S.; Raieli, S.; Hoffmann, C.; Chelbi, R.; Danlos, F.X.; Soumelis, V. Plasmacytoid pre-dendritic cells (pDC): From molecular pathways to function and disease association. Semin. Cell Dev. Biol. 2019, 86, 24–35. [Google Scholar] [CrossRef]
- Swiecki, M.; Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 2015, 15, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.A.; Probst, H.C.; Clausen, B.E. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur. J. Immunol. 2023, 53, e2149548. [Google Scholar] [CrossRef]
- Rigamonti, A.; Villar, J.; Segura, E. Monocyte differentiation within tissues: A renewed outlook. Trends Immunol. 2023, 44, 999–1013. [Google Scholar] [CrossRef]
- Gardner, A.; de Mingo Pulido, Á.; Ruffell, B. Dendritic Cells and Their Role in Immunotherapy. Front. Immunol. 2020, 11, 924. [Google Scholar] [CrossRef]
- Guilliams, M.; Dutertre, C.A.; Scott, C.L.; McGovern, N.; Sichien, D.; Chakarov, S.; Van Gassen, S.; Chen, J.; Poidinger, M.; De Projdk, S.; et al. Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity 2016, 45, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.C.; Gudjonson, H.; Pritykin, Y.; Deep, D.; Lavallée, V.P.; Mendoza, A.; Fromme, R.; Mazutie, L.; Ariyan, C.; Leslie, C.; et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell 2019, 179, 846–863.e824. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.L.; Caton, M.L.; Bogunovic, M.; Greter, M.; Grajkowska, L.T.; Ng, D.; Klinakis, A.; Charo, I.F.; Jung, S.; Gommerman, J.L.; et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 2011, 35, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Chakarov, S.; Kobayashi, T.; Sakamoto, K.; Voisin, B.; Duan, K.; Nakagawa, T.; Horiuchi, K.; Amagai, M.; Ginhoux, F.; et al. Cell-autonomous FLT3L shedding via ADAM10 mediates conventional dendritic cell development in mouse spleen. Proc. Natl. Acad. Sci. USA 2019, 116, 14714–14723. [Google Scholar] [CrossRef]
- Bosteels, C.; Neyt, K.; Vanheerswynghels, M.; van Helden, M.J.; Sichien, D.; Debeuf, N.; De Prijck, S.; Bosteels, V.; Vandamme, N.; Martens, L.; et al. Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity 2020, 52, 1039–1056.e1039. [Google Scholar] [CrossRef]
- Pakalniškytė, D.; Schraml, B.U. Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Adv. Immunol. 2017, 134, 89–135. [Google Scholar]
- Anderson, D.A., III; Dutertre, C.A.; Ginhoux, F.; Murphy, K.M. Genetic models of human and mouse dendritic cell development and function. Nat. Reviews. Immunol. 2021, 21, 101–115. [Google Scholar] [CrossRef]
- Anderson, D.A., III; Murphy, K.M.; Briseño, C.G. Development, Diversity, and Function of Dendritic Cells in Mouse and Human. Cold Spring Harb. Perspect. Biol. 2018, 10, a028613. [Google Scholar] [CrossRef]
- Diener, N.; Fontaine, J.-F.; Klein, M.; Hieronymus, T.; Wanke, F.; Kurschus, F.C.; Ludwig, A.; Ware, C.; Saftig, P.; Bopp, T.; et al. Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc. Natl. Acad. Sci. USA 2021, 118, e2111234118. [Google Scholar] [CrossRef]
- Lombardi, V.; Speak, A.O.; Kerzerho, J.; Szely, N.; Akbari, O. CD8α+β− and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunol. 2012, 5, 432–443. [Google Scholar] [CrossRef]
- Brown, A.S.; Bourges, D.; Ang, D.K.; Hartland, E.L.; Van Driel, I.R. CD8 subunit expression by plasmacytoid dendritic cells is variable, and does not define stable subsets. Mucosal Immunol. 2014, 7, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5, 987–995. [Google Scholar] [CrossRef]
- Crozat, K.; Tamoutounour, S.; Vu Manh, T.-P.; Fossum, E.; Luche, H.; Ardouin, L.; Guilliams, M.; Azukizawa, H.; Bogen, B.; Malissen, B.; et al. Cutting edge: Expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J. Immunol. 2011, 187, 4411–4415. [Google Scholar] [CrossRef] [PubMed]
- Hildner, K.; Edelson, B.T.; Purtha, W.E.; Diamond, M.; Matsushita, H.; Kohyama, M.; Calderon, B.; Schraml, B.U.; Diamond, M.S.; Scheriber, R.D.; et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 2008, 322, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Tussiwand, R.; Everts, B.; Grajales-Reyes, G.E.; Kretzer, N.M.; Iwata, A.; Bagaitkar, J.; Wu, X.; Wong, R.; Anderson, D.A.; Murphy, T.L.; et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 2015, 42, 916–928. [Google Scholar] [CrossRef]
- Dudziak, D.; Kamphorst, A.O.; Heidkamp, G.F.; Buchholz, V.R.; Trumpfheller, C.; Yamazaki, S.; Cheong, C.; Liu, K.; Lee, H.-W.; Park, C.G.; et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007, 315, 107–111. [Google Scholar] [CrossRef]
- Satpathy, A.T.; Briseño, C.G.; Lee, J.S.; Ng, D.; Manieri, N.A.; Kc, W.; Wu, X.; Thomas, S.R.; Lee, W.-L.; Turkoz, M.; et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 2013, 14, 937–948. [Google Scholar] [CrossRef]
- Heger, L.; Hatscher, L.; Liang, C.; Lehmann, C.H.K.; Amon, L.; Lühr, J.J.; Kaszubowski, T.; Nzirorera, R.; Schaft, N.; Dörrie, J.; et al. XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors. Proc. Natl. Acad. Sci. USA 2023, 120, e2300343120. [Google Scholar] [CrossRef]
- Backer, R.A.; Diener, N.; Clausen, B.E. Langerin+CD8+ Dendritic Cells in the Splenic Marginal Zone: Not So Marginal After All. Front. Immunol. 2019, 10, 741. [Google Scholar] [CrossRef]
- Qiu, C.H.; Miyake, Y.; Kaise, H.; Kitamura, H.; Ohara, O.; Tanaka, M. Novel subset of CD8α+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 2009, 182, 4127–4136. [Google Scholar] [CrossRef]
- Farrand, K.J.; Dickgreber, N.; Stoitzner, P.; Ronchese, F.; Petersen, T.R.; Hermans, I.F. Langerin+ CD8α+ dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens. J. Immunol. 2009, 183, 7732–7742. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.R.; Knight, D.A.; Tang, C.-W.; Osmond, T.L.; Hermans, I.F. Batf3-independent langerin− CX3CR1− CD8α+ splenic DCs represent a precursor for classical cross-presenting CD8α+ DCs. J. Leukoc. Biol. 2014, 96, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, K.A.; Daniels, N.J.; Petersen, T.R.; Hermans, I.F.; Kirman, J.R. Langerin+ CD8α+ Dendritic Cells Drive Early CD8+ T Cell Activation and IL-12 Production During Systemic Bacterial Infection. Front. Immunol. 2018, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Idoyaga, J.; Suda, N.; Suda, K.; Park, C.G.; Steinman, R.M. Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 2009, 106, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, S.; Clark, E.A. Dendritic cell-associated lectin 2 (DCAL2) defines a distinct CD8α− dendritic cell subset. J. Leukoc. Biol. 2012, 91, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Nish, S.A.; Jiang, R.; Hou, L.; Licona-Limón, P.; Weinstein, J.S.; Zhao, H.; Medzhitov, R. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 2013, 39, 722–732. [Google Scholar] [CrossRef]
- Tamoutounour, S.; Guilliams, M.; Sanchis, F.M.; Liu, H.; Terhorst, D.; Malosse, C.; Pollet, E.; Ardouin, L.; Luche, H.; Sanchez, C.; et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013, 39, 925–938. [Google Scholar] [CrossRef]
- Scott, C.; Bain, C.; Wright, P.; Sichien, D.; Kotarsky, K.; Persson, E.; Luda, K.; Guilliams, M.; Lambrecht, B.; Agace, W.; et al. CCR2+CD103− intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 2015, 8, 327–339. [Google Scholar] [CrossRef]
- Schlitzer, A.; Sivakamasundari, V.; Chen, J.; Bin Sumatoh, H.R.; Schreuder, J.; Lum, J.; Malleret, B.; Zhang, S.; Larbi, A.; Zolezzi, F.; et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 2015, 16, 718–728. [Google Scholar] [CrossRef]
- Bain, C.C.; Scott, C.L.; Uronen-Hansson, H.; Gudjonsson, S.; Jansson, O.; Grip, O.; Guilliams, M.; Malissen, B.; Agace, W.W.; Mowat, A.M. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013, 6, 498–510. [Google Scholar] [CrossRef]
- Veninga, H.; Borg, E.G.F.; Vreeman, K.; Taylor, P.R.; Kalay, H.; van Kooyk, Y.; Kraal, G.; Martinez-Pomares, L.; Haan, J.M.D. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur. J. Immunol. 2015, 45, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Schwandt, T.; Greuter, M.; Oosting, M.; Jüngerkes, F.; Tüting, T.; Boon, L.; O’toole, T.; Kraal, G.; Limmer, A.; et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc. Natl. Acad. Sci. USA 2010, 107, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Mildner, A.; Yona, S. Developmental and Functional Heterogeneity of Monocytes. Immunity 2018, 49, 595–613. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Misharin, A.; Perlman, H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytom. A 2012, 81, 343–350. [Google Scholar] [CrossRef]
- Jakubzick, C.V.; Randolph, G.J.; Henson, P.M. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol. 2017, 17, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Geissmann, F.; Jung, S.; Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19, 71–82. [Google Scholar] [CrossRef]
- Auffray, C.; Fogg, D.; Garfa, M.; Elain, G.; Join-Lambert, O.; Kayal, S.; Sarnacki, S.; Cumano, A.; Lauvau, G.; Geissmann, F. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317, 666–670. [Google Scholar] [CrossRef]
- Langlet, C.; Tamoutounour, S.; Henri, S.; Luche, H.; Ardouin, L.; Grégoire, C.; Malissen, B.; Guilliams, M. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 2012, 188, 1751–1760. [Google Scholar] [CrossRef]
- Satpathy, A.T.; Kc, W.; Albring, J.C.; Edelson, B.T.; Kretzer, N.M.; Bhattacharya, D.; Murthy, T.L.; Murphy, K.M. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 2012, 209, 1135–1152. [Google Scholar] [CrossRef]
- Miller, J.C.; Brown, B.D.; Shay, T.; Gautier, E.L.; Jojic, V.; Cohain, A.; Pandey, G.; Leboeuf, M.; Elpek, K.G.; Helft, J.; et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 2012, 13, 888–899. [Google Scholar] [CrossRef]
- McGovern, N.; Schlitzer, A.; Gunawan, M.; Jardine, L.; Shin, A.; Poyner, E.; Green, K.; Dickinson, R.; Wang, X.-N.; Low, D.; et al. Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity 2014, 41, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Varol, C.; Landsman, L.; Fogg, D.K.; Greenshtein, L.; Gildor, B.; Margalit, R.; Kalchenko, V.; Geissmann, F.; Jung, S. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2007, 204, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.B.; Backer, R.A.; Clausen, B.E. Revisiting Current Concepts on the Tolerogenicity of Steady-State Dendritic Cell Subsets and Their Maturation Stages. J. Immunol. 2021, 206, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, M.; Guilliams, M.; Vanheerswynghels, M.; Deswarte, K.; Branco-Madeira, F.; Toussaint, W.; Vanhoutte, L.; Neyt, K.; Killeen, N.; Malissen, B.; et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 2013, 38, 322–335. [Google Scholar] [CrossRef]
- Schlitzer, A.; Ginhoux, F. Organization of the mouse and human DC network. Curr. Opin. Immunol. 2014, 26, 90–99. [Google Scholar] [CrossRef]
- Villani, A.C.; Satija, R.; Reynolds, G.; Sarkizova, S.; Shekhar, K.; Fletcher, J.; Griesbeck, M.; Butler, A.; Zheng, S.; Lazo, S.; et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017, 356, eaah4573. [Google Scholar] [CrossRef]
- Clark, G.J.; Silveira, P.A.; Hogarth, P.M.; Hart, D.N. The cell surface phenotype of human dendritic cells. Semin. Cell Dev. Biol. 2019, 86, 3–14. [Google Scholar] [CrossRef]
- Haniffa, M.; Shin, A.; Bigley, V.; McGovern, N.; Teo, P.; See, P.; Wasan, P.S.; Wang, X.-N.; Malinarich, F.; Malleret, B.; et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012, 37, 60–73. [Google Scholar] [CrossRef]
- De Monte, A.; Olivieri, C.V.; Vitale, S.; Bailleux, S.; Castillo, L.; Giordanengo, V.; Maryanski, J.L.; Segure, E.; Doglio, A. CD1c-Related DCs that Express CD207/Langerin, but Are Distinguishable from Langerhans Cells, Are Consistently Present in Human Tonsils. Front. Immunol. 2016, 7, 197. [Google Scholar] [CrossRef]
- Bigley, V.; McGovern, N.; Milne, P.; Dickinson, R.; Pagan, S.; Cookson, S.; Haniffa, M.; Collin, M. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J. Leukoc. Biol. 2015, 97, 627–634. [Google Scholar] [CrossRef]
- Melum, G.R.; Farkas, L.; Scheel, C.; Van Dieren, B.; Gran, E.; Liu, Y.-J.; Johansen, F.-E.; Jahnsen, F.L.; Baekkevold, E.S. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa. J. Allergy Clin. Immunol. 2014, 134, 613–621.e617. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.J.; Sanchez-Schmitz, G.; Liebman, R.M.; Schäkel, K. The CD16+ (FcgammaRIII+) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J. Exp. Med. 2002, 196, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Torres, C.; García-Romo, G.S.; Cornejo-Cortés, M.A.; Rivas-Carvalho, A.; Sánchez-Schmitz, G. CD16+ and CD16− human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int. Immunol. 2001, 13, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Minutti, C.M.; Piot, C.; da Costa, M.P.; Chakravarty, P.; Rogers, N.; Encabo, H.H.; Cardoso, A.; Loong, J.; Bessou, G.; Mionnet, C.; et al. Distinct ontogenetic lineages dictate cDC2 heterogeneity. Nat. Immunol. 2024, 25, 448–461. [Google Scholar] [CrossRef]
Reagent: Monoclonal Antibodies | Clone | Conjugate | Isotype | Manufacturer | Order Number |
---|---|---|---|---|---|
Anti-CD4 | RM4-5 | PE-eFluor 610 | Rat IgG2a, κ | Thermo Fisher, Waltham, MA, USA | 61-0042-82 |
Anti-CD8α | 53-6.7 | PE-Cy7 | Rat IgG2a, κ | Biolegend, San Diego, CA, USA | 100722 |
Anti-CD11b | M1/70 | BV605 | Rat IgG2b, κ | BD Biosciences, Franklin Lakes, NJ, USA | 563015 |
Anti-CD11c | N418 | APC-R700 | Hamster IgG2 | BD Biosciences | 565872 |
Anti-CD19 | 6D5 | PE-Cy5 | Rat IgG2a, κ | Biolegend | 115510 |
Anti-CD24 | M1/69 | FITC | Rat IgG2a | Biolegend | 137006 |
Anti-CD26 | H194-112 | PerCP-Cy5.5 | Rat IgG2a, κ | Thermo Fisher, | 45-0261-82 |
Anti-CD45pan | 30-F11 | BUV805 | Rat IgG2b, κ | BD Biosciences | 748370 |
Anti-CD49b | DX5 | PE-Cy5 | Rat IgM, κ | Thermo Fisher | 15-5971-82 |
Anti-CD64 | X54-5/7.1 | PerCP-710 | Mouse IgG1, κ | Thermo Fisher | 46-0641-82 |
Anti-CD90.2 | 30-H12 | PE-Cy5 | Rat IgG2b, κ | Biolegend | 105314 |
Anti-CD103 | M290 | BUV395 | Rat IgG2a, κ | BD Biosciences | 740238 |
Anti-CD172a (anti-SIRPα) | P84 | BUV563 | Rat IgG1, κ | BD Biosciences | 741349 |
Anti-CD207 (anti-Langerin) | 929F3.01 | AF647 | Rat IgG2a | Dendritics, Lyon, France | DDX0362A647 |
Anti-CD317 (anti-PDCA1) | 927 | BV711 | Rat IgG2b, κ | BD Biosciences | 747604 |
Anti-CD369 (anti-Dectin-1) | RA3-6B2 | BUV496 | Rat IgG2a, κ | BD Biosciences | 612950 |
Anti-CD371 (anti-Clec12A) | 1/06-5D3 | BV421 | Rat IgG2a, κ | BD Biosciences | 564795 |
Anti-CX3CR1 | Z8-50 | BB790-P | Rat IgG2a, κ | BD Biosciences | Custom |
Anti-ESAM | 1G8/ESAM | PE | Rat IgG2a, κ | Biolegend | 136203 |
Anti-F4/80 | T45-2342 | BUV737 | Rat IgG2a, κ | BD Biosciences | 749283 |
Anti-FcεR1a | MAR-01 | BUV615-P | Hamster IgG | BD Biosciences | 751770 |
Anti-I-A/I-E (anti-MHC-II) | M5/114.15.2 | BV786 | Rat IgG2b, κ | BD Biosciences | 742894 |
Anti-Ly6C | HK1.4 | BV570 | Rat IgG2c, κ | Biolegend | 128030 |
Anti-Ly6G | 1A8 | BV750 | Rat IgG2a, κ | BD Biosciences | 747072 |
Anti-MerTK | M1/69 | BUV661 | Rat IgG2b, κ | BD Biosciences | 750679 |
Anti-NK1.1 | PK136 | PE-Cy5 | Mouse IgG2a, κ | Biolegend | 108716 |
Anti-Siglec-F | E50-2440 | BV480 | Rat IgG2a, κ | BD Biosciences | 746668 |
Anti-XCR1 | ZET | BV650 | Mouse IgG2b, κ | Biolegend | 148220 |
Anti-CD16/32 (Anti-FcyRIIB/III) | 2.4G2 | Purified | Rat IgG2a, λ | Biolegend | 101302 |
Chemicals, enzymes, and solutions | |||||
Dulbecco’s Phosphate-Buffered Saline (PBS) without calcium and magnesium | Sigma, St. Louis, MS, USA | D8537 | |||
0.5 M Ethylenediaminetetraacetate (EDTA) solution | Sigma | 03690 | |||
Ethylenediaminetetraacetic acid disodium salt dihydrate | Sigma | E5123-1KG | |||
Sodium hydroxide ≥ 98%, p.a., ISO, in pellets | Carl Roth, Karlsruhe, Germany | 6771.1 | |||
Brilliant Stain Buffer Plus | BD Biosciences | 566385 | |||
Fetal Bovine Serum (FBS) | Thermo Fisher, Waltham, MA, USA | 10270-106 | |||
Fixable Viability Stain (L/D) | FVS780 | BD Biosciences | 565388 | ||
Collagenase Type IV | Worthington, Lakewood, NJ, USA | LS0004186 | |||
Deoxyribonuclease I (DNaseI) | Roche, Basel, Switzerland | 11284932001 |
Equipment | Company | Purpose |
---|---|---|
Centrifuge “Z 446 K” | Hermle LaborTechnik, Wehingen, Germany | Centrifugation of 15- and 50 mL tubes, and U-bottom plates |
FACSymphony A5 | BD Biosciences, San Diego, CA, USA | Flow cytometric analysis of single-cell suspensions |
PipetMan (P10-P1000) | Gilson, Middleton, WI, USA | Pipetting |
PipetBoy | Thermo Fisher, Waltham, MA, USA | Pipetting |
Neubauer chamber 0.100 mm; 0.0025 mm2 | Superior Marienfeld, Lauda Königshofen, Germany | Cell counting |
96-well U-bottom plate (cat# 163320) | Thermo Fisher, Waltham, MA, USA | Sample preparation for flow cytometry |
2 mL microcentrifuge tubes (cat# 72.695.200) | Sarstedt, Nümbrecht, Germany | Preparation of Antibody Master Mixes |
Pipette tips | Brand, Wertheim, Germany | Pipetting |
15 mL tubes (cat# 188271) | Greiner, Kremsmünster, Austria | Centrifugation of cell suspensions |
50 mL tubes (cat# 227261) | Greiner bio-one, Kremsmünster, Austria | Centrifugation of cell suspensions |
Serological pipettes (1–25 mL) | Gilson, Lewis Center, OH, USA | Pipetting |
40 μm cell strainer (cat# 352340) | Falcon, London, UK | Filtration of samples derived before FACS staining |
FACS tube (cat#352008) | Sigma, St. Louis, MS, USA | Regular FACS tubes for acquisition of single-cell suspensions derived from spleen at a flow cytometer |
Small scissors (cat# 14060-10) | FST, Heidelberg, Germany | Super fine scissors to cut spleen tissue in small parts |
Curved forceps (cat# 11271-30) | FST, Heidelberg, Germany | Specialized surgical forceps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Backer, R.A.; Probst, H.C.; Clausen, B.E. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines 2024, 12, 1294. https://doi.org/10.3390/vaccines12111294
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines. 2024; 12(11):1294. https://doi.org/10.3390/vaccines12111294
Chicago/Turabian StyleBacker, Ronald A., Hans Christian Probst, and Björn E. Clausen. 2024. "Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen" Vaccines 12, no. 11: 1294. https://doi.org/10.3390/vaccines12111294
APA StyleBacker, R. A., Probst, H. C., & Clausen, B. E. (2024). Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines, 12(11), 1294. https://doi.org/10.3390/vaccines12111294