Incidence of SARS-CoV-2 Infection Among European Healthcare Workers and Effectiveness of the First Booster COVID-19 Vaccine, VEBIS HCW Observational Cohort Study, May 2021–May 2023
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of the Cohort
3.2. Incidence of SARS-CoV-2 Infection by Wave
3.3. Relative Vaccine Effectiveness of the First Booster COVID-19 Vaccine Dose
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Labour Office. World Employment and Social Outlook 2023: The Value of Essential Work; International Labour Office: Geneva, Switzerland, 2023; Available online: https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40dgreports/%40dcomm/%40publ/documents/publication/wcms_871016.pdf (accessed on 6 February 2024).
- World Health Organization. Health Workers at Risk, Older Adults and Residents of Long-Term Care Facilities to Be Prioritized for COVID-19 Vaccination 2022. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/11/health-workers-at-risk,-older-adults-and-residents-of-long-term-care-facilities-to-be-prioritized-for-covid-19-vaccination (accessed on 16 February 2024).
- European Centre for Disease Prevention and Control. Overview of the Implementation of COVID-19 Vaccination Strategies and Deployment Plans in the EU/EEA; ECDC: Stockholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Overview-of-COVID-19-vaccination-strategies-deployment-plans-in-the-EU-EEA-Jan-2022_1.pdf (accessed on 16 February 2024).
- Nguyen, L.H.; Drew, D.A.; Graham, M.S.; Joshi, A.D.; Guo, C.G.; Ma, W.; Mehta, R.S.; Warner, E.T.; Sikavi, D.R.; Lo, C.H.; et al. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health 2020, 5, e475–e483. [Google Scholar] [CrossRef]
- World Health Organization. Implementation Guide for Vaccination of Health Workers; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. The Impact of COVID-19 on Health and Care Workers: A Closer Look at Deaths; Health Workforce Department—Working Paper 1; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bandyopadhyay, S.; Baticulon, R.E.; Kadhum, M.; Alser, M.; Ojuka, D.K.; Badereddin, Y.; Kamath, A.; Parepalli, S.A.; Brown, G.; Iharchane, S.; et al. Infection and mortality of healthcare workers worldwide from COVID-19: A systematic review. BMJ Glob. Health 2020, 5, e003097. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.V.; Wood, R.; Gribben, C.; Caldwell, D.; Bishop, J.; Weir, A.; Kennedy, S.; Reid, M.; Smith-Palmer, A.; Goldberg, D.; et al. Risk of hospital admission with coronavirus disease 2019 in healthcare workers and their households: Nationwide linkage cohort study. BMJ 2020, 371, m3582. [Google Scholar] [CrossRef]
- World Health Organization. WHO Roadmap on Uses of COVID-19 Vaccines in the Context of Omicron and High Population Immunity; World Health Organization: Geneva, Switzerland, 2023; Available online: https://iris.who.int/bitstream/handle/10665/373987/WHO-2019-nCoV-Vaccines-SAGE-Prioritization-2023.2-eng.pdf?sequence=1 (accessed on 19 February 2024).
- European Centre for Disease Prevention and Control. Interim Public Health Considerations for COVID-19 Vaccination Roll-Out During 2023; ECDC: Stockholm, Sweden, 2023; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-interim-public-health-considerations-vaccination-2023.pdf (accessed on 19 February 2024).
- McGlacken, T.; Codd, M. Comparison, by Country, of the Uptake of COVID-19 Vaccination by Health Care Workers in the EU/EEA. Eur. J. Public Health 2023, 33 (Suppl. S2), ckad160.1040. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Interim Analysis of COVID-19 Vaccine Effectiveness in Healthcare Workers, an ECDC Multi-Country Study, May 2021–July 2022; ECDC: Stockholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-analysis-vaccine-effectiveness-healthcare-workers.pdf (accessed on 9 October 2023).
- European Centre for Disease Prevention and Control. Generic Protocol for ECDC Studies of COVID-19 Vaccine Effectiveness Against Confirmed SARS-CoV-2 Using Healthcare Worker Cohorts, Version 2.0; ECDC: Stockholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/en/publications-data/generic-protocol-ecdc-studies-covid-19-vaccine-effectiveness (accessed on 9 October 2023).
- Bergeri, I.; Lewis, H.C.; Subissi, L.; Nardone, A.; Valenciano, M.; Cheng, B.; Glonti, K.; Williams, B.; Abejirinde, I.O.O.; Simniceanu, A.; et al. Early epidemiological investigations: World Health Organization UNITY protocols provide a standardized and timely international investigation framework during the COVID-19 pandemic. Influenza Other Respir. Viruses 2022, 16, 7–13. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe. Cohort Study to Measure COVID-19 Vaccine Effectiveness Among Health Workers in WHO European Region: Guidance Document; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Thompson, M.G.; Natarajan, K.; Irving, S.A.; Rowley, E.A.; Griggs, E.P.; Gaglani, M.; Klein, N.P.; Grannis, S.J.; DeSilva, M.B.; Stenehjem, E.; et al. Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance—VISION Network, 10 States, August 2021–January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 139–145. [Google Scholar]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639. [Google Scholar] [CrossRef]
- Ferdinands, J.M.; Rao, S.; Dixon, B.E.; Mitchell, P.K.; DeSilva, M.B.; Irving, S.A.; Lewis, N.; Natarajan, K.; Stenehjem, E.; Grannis, S.J.; et al. Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance—VISION Network, 10 States, August 2021–January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 255–263. [Google Scholar]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after COVID-19 Vaccination and Previous Infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Rose, A.M.; Nicolay, N.; Martín, V.S.; Mazagatos, C.; Petrović, G.; Baruch, J.; Denayer, S.; Seyler, L.; Domegan, L.; Launay, O.; et al. Vaccine effectiveness against COVID-19 hospitalisation in adults (≥20 years) during Omicron-dominant circulation: I-MOVE-COVID-19 and VEBIS SARI VE networks, Europe, 2021 to 2022. Euro Surveill. 2023, 28, 2300187. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.K.; Hegmann, K.T.; Thiese, M.S.; Burgess, J.L.; Ellingson, K.; Lutrick, K.; Olsho, L.E.; Edwards, L.J.; Sokol, B.; Caban-Martinez, A.J.; et al. Protection with a Third Dose of mRNA Vaccine against SARS-CoV-2 Variants in Frontline Workers. N. Engl. J. Med. 2022, 386, 1855–1857. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.T.; Kwan, A.T.; Rodríguez-Barraquer, I.; Singer, B.J.; Park, H.J.; Lewnard, J.A.; Sears, D.; Lo, N.C. Infectiousness of SARS-CoV-2 breakthrough infections and reinfections during the Omicron wave. Nat. Med. 2023, 29, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Oordt-Speets, A.; Spinardi, J.; Mendoza, C.; Yang, J.; Morales, G.; McLaughlin, J.M.; Kyaw, M.H. Effectiveness of COVID-19 Vaccination on Transmission: A Systematic Review. COVID 2023, 3, 1516–1527. [Google Scholar] [CrossRef]
- World Health Organization. Infection Prevention and Control in the Context of Coronavirus Disease (COVID-19): A Living Guideline; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-IPC-guideline-2023.2 (accessed on 6 February 2024).
- Plumb, I.D.; Mohr, N.M.; Hagen, M.; Wiegand, R.; Dumyati, G.; Harland, K.K.; Krishnadasan, A.; Gist, J.J.; Abedi, G.; Fleming-Dutra, K.E.; et al. Effectiveness of a Messenger RNA Vaccine Booster Dose Against Coronavirus Disease 2019 Among US Healthcare Personnel, October 2021–July 2022. Open Forum Infect. Dis. 2023, 10, ofad457. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Negro, C.; Mastrangelo, G.; Filon, F.L. Primary SARS-CoV-2 Infections, Re-infections and Vaccine Effectiveness during the Omicron Transmission Period in Healthcare Workers of Trieste and Gorizia (Northeast Italy), 1 December 2021–31 May 2022. Viruses 2022, 14, 2688. [Google Scholar] [CrossRef] [PubMed]
- Consonni, D.; Lombardi, A.; Mangioni, D.; Bono, P.; Oggioni, M.; Renteria, S.U.; Valzano, A.; Bordini, L.; Nava, C.D.; Tiwana, N.; et al. Immunogenicity and effectiveness of BNT162b2 COVID-19 vaccine in a cohort of healthcare workers in Milan (Lombardy Region, Northern Italy). Epidemiol. Prev. 2022, 46, 250–258. [Google Scholar] [PubMed]
- Spitzer, A.; Angel, Y.; Marudi, O.; Zeltser, D.; Saiag, E.; Goldshmidt, H.; Goldiner, I.; Stark, M.; Halutz, O.; Gamzu, R.; et al. Association of a Third Dose of BNT162b2 Vaccine with Incidence of SARS-CoV-2 Infection Among Health Care Workers in Israel. JAMA 2022, 327, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Brotons, P.; Perez-Argüello, A.; Launes, C.; Torrents, F.; Subirats, M.P.; Saucedo, J.; Claverol, J.; Garcia-Garcia, J.J.; Rodas, G.; Fumado, V.; et al. Validation and implementation of a direct RT-qPCR method for rapid screening of SARS-CoV-2 infection by using non-invasive saliva samples. Int. J. Infect. Dis. 2021, 110, 363–370. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall | Pre-Delta | Delta | Omicron | ||||
---|---|---|---|---|---|---|---|---|
(n = 3015) | (n = 1337) | (n = 1641) | (n = 2554) | |||||
Sex | N | % | N | % | N | % | N | % |
Female | 2396 | 79 | 991 | 74 | 1230 | 75 | 2096 | 82 |
Age (years) | ||||||||
Median [p25–75] | 44 | 35–53 | 45 | 35–54 | 45 | 35–54 | 44 | 35–53 |
<35 | 741 | 25 | 329 | 25 | 384 | 23 | 598 | 23 |
35–40 | 383 | 13 | 163 | 12 | 207 | 13 | 334 | 13 |
40–44 | 398 | 13 | 158 | 12 | 198 | 12 | 356 | 14 |
45–49 | 452 | 15 | 179 | 13 | 225 | 14 | 395 | 15 |
50–54 | 418 | 14 | 182 | 14 | 243 | 15 | 357 | 14 |
55+ | 623 | 21 | 326 | 24 | 384 | 23 | 514 | 20 |
Role | ||||||||
Medical doctor | 686 | 23 | 345 | 26 | 428 | 26 | 536 | 21 |
Nurse | 1361 | 46 | 597 | 45 | 751 | 46 | 1184 | 47 |
Allied professionals | 119 | 4 | 50 | 4 | 59 | 4 | 90 | 4 |
Laboratory | 149 | 5 | 81 | 6 | 85 | 5 | 132 | 5 |
Administration/reception | 324 | 11 | 121 | 9 | 138 | 8 | 285 | 11 |
Ancillary | 75 | 3 | 48 | 4 | 48 | 3 | 55 | 2 |
Other | 249 | 8 | 86 | 6 | 121 | 7 | 225 | 9 |
Smoking | ||||||||
Never smoked | 1632 | 55 | 698 | 53 | 890 | 55 | 1411 | 56 |
Ex-smoker | 635 | 21 | 302 | 23 | 351 | 22 | 552 | 22 |
Current smoker | 689 | 23 | 309 | 24 | 364 | 23 | 552 | 22 |
Missing | 59 | 2 | 28 | 2 | 36 | 2 | 39 | 2 |
Underlying conditions | ||||||||
At least one | 559 | 33 | 214 | 36 | 265 | 37 | 525 | 35 |
Previous SARS-CoV-2 infection | ||||||||
Yes | 1041 | 35 | 169 | 13 | 244 | 15 | 1002 | 40 |
No | 1892 | 65 | 1151 | 87 | 1376 | 85 | 1482 | 60 |
Missing | 82 | 3 | 17 | 1 | 21 | 1 | 70 | 3 |
Vaccinated (doses) | ||||||||
0 | 84 | 3 | 37 | 3 | 38 | 2 | 45 | 2 |
1 | 96 | 3 | 62 | 5 | 58 | 4 | 47 | 2 |
2 | 1818 | 60 | 1238 | 93 | 1517 | 92 | 524 | 21 |
3 | 907 | 30 | 28 | 2 | 1828 | 72 | ||
4 | 110 | 4 | 110 | 4 |
Outcome | Delta-Predominant Circulation | Omicron-Predominant Circulation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Adjusted by Site | Fully Adjusted * | Adjusted by Site | Fully Adjusted * | |||||||
N | PT | e | rVE (95% CI) | rVE (95% CI) | N | PT | e | rVE (95% CI) | rVE (95% CI) | |
All infections | ||||||||||
Overall | ||||||||||
Primary course ≥ 90 days | 1058 | 36,990 | 20 | reference | reference | 488 | 35,916 | 88 | reference | reference |
First booster dose ≥ 7 days | 536 | 13,046 | 6 | 53 (−43; 85) | 59 (−26; 87) | 1864 | 197,822 | 535 | 7 (−18; 27) | 22 (1; 39) |
By time since vaccination | ||||||||||
Primary course ≥ 90 days | 1058 | 36,990 | 20 | reference | reference | 488 | 35,916 | 88 | reference | reference |
First booster 7–89 days | 536 | 13,016 | 6 | 53 (−44; 85) | 59 (−26; 87) | 1008 | 48,969 | 135 | 43 (21; 60) | 51 (31; 65) |
First booster ≥90 days | 7 | 30 | 0 | N/A | N/A | 1537 | 148,853 | 400 | −13 (−46; 23) | 6 (−23; 28) |
By infection type | ||||||||||
Asymptomatic HCWs | ||||||||||
Primary course ≥ 90 days | 1058 | 36,990 | 7 | reference | reference | 488 | 35,916 | 27 | reference | reference |
First booster dose ≥ 7 days | 536 | 13,046 | 4 | 46 (−146; 88) | 59 (−88; 91) | 1864 | 197,822 | 197 | 1 (−52; 35) | 10 (−38; 41) |
By time since vaccination asymptomatic HCWs | ||||||||||
Primary course ≥ 90 days | 1058 | 36,990 | 7 | reference | reference | 488 | 35,916 | 27 | reference | reference |
First booster 7–89 days | 536 | 13,016 | 4 | 45 (−146; 88) | 59 (−88; 91) | 1008 | 48,969 | 45 | 37 (−15; 66) | 43 (−6; 69) |
First booster ≥ 90 days | 7 | 30 | 0 | N/A | N/A | 1537 | 148,853 | 152 | −20 (−93; 25) | −9 (−76; 33) |
Symptomatic HCWs | ||||||||||
Primary course ≥ 90 days | 1058 | 36,990 | 13 | reference | reference | 488 | 35,916 | 61 | reference | reference |
First booster dose ≥ 7 days | 536 | 13,046 | 2 | 60 (−117; 93) | 62 (−114; 93) | 1864 | 197,822 | 338 | 10 (−19; 33) | 29 (5; 47) |
By time since vaccination symptomatic HCWs | ||||||||||
Primary course ≥ 90 days | 1058 | 36,990 | 13 | reference | reference | 488 | 35,916 | 61 | reference | reference |
First booster 7–89 days | 536 | 13,016 | 2 | 60 (−117; 93) | 62 (−114; 93) | 1008 | 48,969 | 90 | 47 (20; 64) | 55 (33; 70) |
First booster ≥ 90 days | 7 | 30 | 0 | N/A | N/A | 1537 | 148,853 | 248 | −9 (−49; 20) | 14 (−19; 37) |
By prior SARS-CoV-2 infection | ||||||||||
Prior infection | ||||||||||
Primary course ≥ 90 days | 168 | 6225 | 1 | reference | reference | 267 | 25,203 | 47 | reference | reference |
First booster dose ≥ 7 days | 49 | 1320 | 0 | N/A | N/A | 744 | 81,887 | 146 | 27 (−3; 48) | 20 (−14; 43) ** |
No prior infection | ||||||||||
Primary course ≥ 90 days | 885 | 30,594 | 19 | reference | reference | 221 | 10,355 | 41 | reference | reference |
First booster dose ≥ 7 days | 484 | 11,687 | 6 | 58 (−31; 87) | 57 (−36; 86) ** | 1182 | 114,005 | 378 | 19 (−15; 43) | 28 (−2; 49) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savulescu, C.; Prats-Uribe, A.; Brolin, K.; Lovrić Makarić, Z.; Uusküla, A.; Panagiotakopoulos, G.; Bergin, C.; Fleming, C.; Agodi, A.; Bonfanti, P.; et al. Incidence of SARS-CoV-2 Infection Among European Healthcare Workers and Effectiveness of the First Booster COVID-19 Vaccine, VEBIS HCW Observational Cohort Study, May 2021–May 2023. Vaccines 2024, 12, 1295. https://doi.org/10.3390/vaccines12111295
Savulescu C, Prats-Uribe A, Brolin K, Lovrić Makarić Z, Uusküla A, Panagiotakopoulos G, Bergin C, Fleming C, Agodi A, Bonfanti P, et al. Incidence of SARS-CoV-2 Infection Among European Healthcare Workers and Effectiveness of the First Booster COVID-19 Vaccine, VEBIS HCW Observational Cohort Study, May 2021–May 2023. Vaccines. 2024; 12(11):1295. https://doi.org/10.3390/vaccines12111295
Chicago/Turabian StyleSavulescu, Camelia, Albert Prats-Uribe, Kim Brolin, Zvjezdana Lovrić Makarić, Anneli Uusküla, Georgios Panagiotakopoulos, Colm Bergin, Catherine Fleming, Antonella Agodi, Paolo Bonfanti, and et al. 2024. "Incidence of SARS-CoV-2 Infection Among European Healthcare Workers and Effectiveness of the First Booster COVID-19 Vaccine, VEBIS HCW Observational Cohort Study, May 2021–May 2023" Vaccines 12, no. 11: 1295. https://doi.org/10.3390/vaccines12111295
APA StyleSavulescu, C., Prats-Uribe, A., Brolin, K., Lovrić Makarić, Z., Uusküla, A., Panagiotakopoulos, G., Bergin, C., Fleming, C., Agodi, A., Bonfanti, P., Murri, R., Zvirbulis, V., Zavadska, D., Szuldrzynski, K., Machado, A., Popescu, C. P., Craiu, M., Cisneros, M., Latorre-Millán, M., ... the VEBIS HCW VE Study Group. (2024). Incidence of SARS-CoV-2 Infection Among European Healthcare Workers and Effectiveness of the First Booster COVID-19 Vaccine, VEBIS HCW Observational Cohort Study, May 2021–May 2023. Vaccines, 12(11), 1295. https://doi.org/10.3390/vaccines12111295