Calcium Chloride Treatment Enhances Antigen Production in Foot-and-Mouth Disease Vaccines for Serotypes SAT1 and SAT3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Viruses, Calcium Chloride, and Titration
2.2. Quantification of FMD Vaccine Antigen
2.3. Cell Viability Assay of BHK-21 Suspension Cells Treated with CaCl2
2.4. Determining Optimal CaCl2 Concentration for FMD Vaccine Antigen Production
2.5. Determining Optimal Timing for CaCl2 Addition in FMD Vaccine Antigen Production
2.6. Determining Optimal Medium for CaCl2-Modified FMD Vaccine Antigen Production
2.7. Statistical Analysis
3. Results
3.1. Cell Viability Assay of BHK-21 Suspension Cells Treated with CaCl2
3.2. Optimal CaCl2 Concentration for FMD Vaccine Antigen Production
3.3. Optimal Timing for CaCl2 Addition in FMD Vaccine Antigen Production
3.4. Optimal Medium for CaCl2 Addition in FMD Vaccine Antigen Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Moraes, M.P.; de Los Santos, T.; Koster, M.; Turecek, T.; Wang, H.; Andreyev, V.G.; Grubman, M.J. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. J. Virol. 2007, 81, 7124–7135. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E.; Escarmís, C.; Baranowski, E.; Ruiz-Jarabo, C.M.; Carrillo, E.; Núñez, J.I.; Sobrino, F. Evolution of foot-and-mouth disease virus. Virus Res. 2003, 91, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Geale, D.; Barnett, P.; Clarke, G.; Davis, J.; Kasari, T. A review of OIE country status recovery using vaccinate-to-live versus vaccinate-to-die foot-and-mouth disease response policies II: Waiting periods after emergency vaccination in FMD free countries. Transbound. Emerg. Dis. 2015, 62, 388–406. [Google Scholar] [CrossRef]
- Paton, D.; Valarcher, J.; Bergmann, I.; Matlho, O.; Zakharov, V.; Palma, E.; Thomson, G. Selection of foot and mouth disease vaccine strains—A review. Rev. Sci. Tech. Off. Int. Épizooties 2005, 24, 981. [Google Scholar] [CrossRef]
- Rudreshappa, A.G.; Sanyal, A.; Mohapatra, J.K.; Subramaniam, S.; De, A.; Das, B.; Singanallur, N.B.; Jangam, A.K.; Muthukrishnan, M.; Villuppanoor, S.A. Emergence of antigenic variants with in serotype A foot and mouth disease virus in India and evaluation of a new vaccine candidate panel. Vet. Microbiol. 2012, 158, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Maradei, E.; Malirat, V.; Beascoechea, C.P.; Espinoza, A.M.; Novo, S.G.; Smitsaart, E.; Salgado, G.; Mattion, N.; Toledo, J.R.; Bergmann, I.E. Emergence of antigenic variants of Foot-and-Mouth Disease Virus serotype O in Ecuador and preliminary evaluation of a field strain as a vaccine candidate. Vaccine 2014, 32, 2446–2451. [Google Scholar] [CrossRef]
- Bari, F.D.; Parida, S.; Tekleghiorghis, T.; Dekker, A.; Sangula, A.; Reeve, R.; Haydon, D.T.; Paton, D.J.; Mahapatra, M. Genetic and antigenic characterisation of serotype A FMD viruses from East Africa to select new vaccine strains. Vaccine 2014, 32, 5794–5800. [Google Scholar] [CrossRef]
- Jo, H.-E.; You, S.-H.; Choi, J.-H.; Ko, M.-K.; Shin, S.H.; Song, J.; Jo, H.; Lee, M.J.; Kim, S.-M.; Kim, B. Evaluation of novel inactivated vaccines for the SAT 1, SAT 2 and SAT 3 serotypes of foot-and-mouth disease in pigs. Virol. J. 2019, 16, 156. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Lee, G.; Kim, A.; Park, J.-H.; Lee, M.J.; Kim, B.; Kim, S.-M. A vaccine strain of the A/Asia/Sea-97 lineage of foot-and-mouth disease virus with a single amino acid substitution in the p1 region that is adapted to suspension culture provides high immunogenicity. Vaccines 2021, 9, 308. [Google Scholar] [CrossRef]
- Lee, G.; Hwang, J.-H.; Park, J.-H.; Lee, M.J.; Kim, B.; Kim, S.-M. Vaccine strain of O/ME-SA/Ind-2001e of foot-and-mouth disease virus provides high immunogenicity and broad antigenic coverage. Antivir. Res. 2020, 182, 104920. [Google Scholar] [CrossRef]
- Shahiduzzaman, A.; Haque, M.; Rahman, M.; Khan, M.; Rahman, M. Serotyping and adaptation of foot and mouth disease virus in BHK-21 cell line towards the development of vaccine candidate. Int. J. Vaccines Vaccin. 2016, 3, 00060. [Google Scholar]
- Nagendrakumar, S.B.; Srinivasan, V.A.; Madhanmohan, M.; Yuvaraj, S.; Parida, S.; Di Nardo, A.; Horsington, J.; Paton, D.J. Evaluation of cross-protection between O1 Manisa and O1 Campos in cattle vaccinated with foot-and-mouth disease virus vaccine incorporating different payloads of inactivated O1 Manisa antigen. Vaccine 2011, 29, 1906–1912. [Google Scholar] [CrossRef]
- Clavijo, A.; Wright, P.; Kitching, P. Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet. J. 2004, 167, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Doel, T.R.; Chong, W.K.T. Comparative immunogenicity of 146S, 75S and 12S particles of foot-and-mouth disease virus. Arch. Virol. 1982, 73, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Rohas-Sanchez, L.; Zhang, E.; Sokolova, V.; Zhong, M.; Yan, H.; Lu, M.; Epple, M. Genetic immunization against hepatitis B virus with calcium phosphate manoparticles in vitro and in vivo. Biomaterialia 2020, 110, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Dening, W.; Das, S.; Guo, S.; Xu, J.; Kappes, J.C.; Hel, Z. Optimization of the transductional efficiency of lentiviral vector: Effect of sera and polycations. Mol. Biotechnol. 2013, 53, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.A.; Maake, L.; Botha, E.; Theron, J.; Maree, F.F. Inherent biophysical stability of foot-and-mouth disease SAT1, SAT2 and SAT3 viruses. Virus Res. 2019, 264, 45–55. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Spitteler, M.A.; Romo, A.; Magi, N.; Seo, M.-G.; Yun, S.-J.; Barroumeres, F.; Regulier, E.G.; Bellinzoni, R. Validation of a high performance liquid chromatography method for quantitation of foot-and-mouth disease virus antigen in vaccines and vaccine manufacturing. Vaccine 2019, 37, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.-Y.; Park, S.Y.; Park, S.H.; Jin, J.S.; Kim, E.-S.; Kim, J.Y.; Park, J.-H.; Ko, Y.-J. Validation of Pretreatment Methods for the In-Process Quantification of Foot-and-Mouth Disease Vaccine Antigens. Vaccines 2021, 9, 1361. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, S.Y.; Jin, J.S.; Kim, D.; Park, J.H.; Park, S.H.; Ko, Y.J. Efficacy of bionary ethylenimine in the inactivation of foot-and-mouth disease virus for vaccine production in South Korea. Pathogens 2023, 12, 760. [Google Scholar] [CrossRef]
- Irurzun, A.; Arroyo, J.; Alvarez, A.; Carrasco, L. Enhanced intracellular calcium concentration during poliovirus infection. J. Virol. 1995, 69, 5142–5146. [Google Scholar] [CrossRef]
- Aldabe, R.; Irurzun, A.; Carrasco, L. Poliovirus protein 2BC increases cytosolic free calcium concentrations. J. Virol. 1997, 71, 6214–6217. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Kim, H.; Park, S.; Park, S.; Lee, J.M.; Kim, J.S.; Park, J.W.; Park, C.K.; Park, J.H.; Ko, Y.J. Investigation of the optimal medium and application strategy for foot-and-mouth disease vaccine antigen production. J. Appl. Microbiol. 2021, 131, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Hoffmann, B.; Zimmer, A.; Beer, M.; Eschbaumer, M. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol. J. 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, A.; Wang, Q.; Dong, X.; Ilca, S.L.; Ondiviela, M.; Zihe, R.; Seago, J.; Charleston, B.; Fry, E.E.; Abrescia, N.G. Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat. Commun. 2017, 8, 15408. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.R.; Slack, R.J. The effect of divalent metal cations on the αv integrin binding site is ligand and integrin specific. Biomed. Pharmacother. 2019, 110, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Bishop, N.; Anderson, D. Early interactions of hepatitis A virus with cultured cells: Viral elution and the effect of pH and calcium ions. Arch. Virol. 1997, 142, 2161–2178. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.S.; de Mattia, F.; Van Dommelen, M.M.; Lanke, K.; Melchers, W.J.; Willems, P.H.; van Kuppeveld, F.J. Functional analysis of picornavirus 2B proteins: Effects on calcium homeostasis and intracellular protein trafficking. J. Virol. 2008, 82, 3782–3790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Frey, T.K.; Yang, J.J. Viral calciomics: Interplays between Ca2+ and virus. Cell Calcium 2009, 46, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gwack, Y.; Feske, S.; Srikanth, S.; Hogan, P.G.; Rao, A. Signalling to transcription: Store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 2007, 42, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Gladue, D.; Largo, E.; de la Arada, I.; Aguilella, V.; Alcaraz, A.; Arrondo, J.; Holinka, L.; Brocchi, E.; Ramirez-Medina, E.; Vuono, E. Molecular characterization of the viroporin function of foot-and-mouth disease virus nonstructural protein 2B. J. Virol. 2018, 92, e01360-18. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, S.Y.; Park, S.H.; Lee, G.; Jin, J.S.; Kim, D.; Park, J.H.; Jeong, S.-Y.; Ko, Y.J. Evaluation of foot-and-mouth disease (FMD) virus Asia1 genotype-V as an FMD vaccine candidate: Study on vaccine antigen production yield and inactivation kinetics. Vaccines 2024, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Zimmer, A.; Beer, M.; Eschbaumer, M. Targeted modification of the foot-and-mouth disease virus genome for quick cell culture adaptation. Vaccines 2020, 8, 583. [Google Scholar] [CrossRef]
- Lin, X.; Yang, Y.; Song, Y.; Li, S.; Zhang, X.; Su, Z.; Zhang, S. A Possible Action of Divalent Transition Metal Ions at the Interpentameric Interface of Inactivated Foot-and-Mouth Disease Virus Provides a Simple but Effective Approach To Enhance Stability. J. Virol. 2021, 95, e02431-20. [Google Scholar] [CrossRef]
- Acharya, R.; Fry, E.; Stuart, D.; Fox, G.; Rowlands, D.; Brown, F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 1989, 337, 709–716. [Google Scholar] [CrossRef]
- Belsham, G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog. Biophys. Mol. Biol. 1993, 60, 241–260. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Park, S.Y.; Lee, G.; Kim, E.-S.; Jin, J.-S.; Kim, J.Y.; Lee, S.; Park, J.-H.; Ko, Y.-J. Calcium Chloride Treatment Enhances Antigen Production in Foot-and-Mouth Disease Vaccines for Serotypes SAT1 and SAT3. Vaccines 2024, 12, 231. https://doi.org/10.3390/vaccines12030231
Kim D, Park SY, Lee G, Kim E-S, Jin J-S, Kim JY, Lee S, Park J-H, Ko Y-J. Calcium Chloride Treatment Enhances Antigen Production in Foot-and-Mouth Disease Vaccines for Serotypes SAT1 and SAT3. Vaccines. 2024; 12(3):231. https://doi.org/10.3390/vaccines12030231
Chicago/Turabian StyleKim, Dohyun, Sun Young Park, Gyeongmin Lee, Eun-Sol Kim, Jong-Sook Jin, Jae Young Kim, SooAh Lee, Jong-Hyeon Park, and Young-Joon Ko. 2024. "Calcium Chloride Treatment Enhances Antigen Production in Foot-and-Mouth Disease Vaccines for Serotypes SAT1 and SAT3" Vaccines 12, no. 3: 231. https://doi.org/10.3390/vaccines12030231
APA StyleKim, D., Park, S. Y., Lee, G., Kim, E. -S., Jin, J. -S., Kim, J. Y., Lee, S., Park, J. -H., & Ko, Y. -J. (2024). Calcium Chloride Treatment Enhances Antigen Production in Foot-and-Mouth Disease Vaccines for Serotypes SAT1 and SAT3. Vaccines, 12(3), 231. https://doi.org/10.3390/vaccines12030231