Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review
Abstract
:1. Introduction
2. Vaccination through Novel Administration Routes
2.1. Microneedle
2.1.1. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
2.1.2. Influenza Virus
2.1.3. Japanese Encephalitis Virus
2.1.4. Human Papillomavirus (HPV)
2.1.5. Clostridium Botulinum
2.2. Inhalation
2.2.1. SARS-CoV-2
2.2.2. Influenza Virus
2.2.3. Respiratory Syncytial Virus (RSV)
2.2.4. Mycobacterium Tuberculosis
3. Vaccines Based on Novel Vectors
3.1. Viruses
3.1.1. Zika Virus
3.1.2. Mycobacterium Tuberculosis
3.1.3. Plasmodium
3.2. Nanoparticles
3.2.1. Influenza Virus
3.2.2. Epstein–Barr Virus (EBV)
3.2.3. Borrelia burgdorferi
3.2.4. Respiratory Syncytial Virus (RSV)
4. Vaccines Used for Cancer Prevention
5. Vaccines Used for Pathogen Therapeutics
6. Vaccines Used for Cancer Therapeutics
6.1. Metastatic Melanoma Vaccine
6.2. HPV-Related Malignancy
6.3. Liver Cancer
7. Perspectives and Challenges
7.1. Vaccine Administration and Application Can Be Diversified with Biotechnologies
7.2. Vaccines Based on Biotechnologies Provide a Potential Cancer Therapy
7.3. mRNA Vaccines Based on Biotechnologies Are Promising for Cancer Therapy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S.-C.; Rai, C.-I.; Chen, Y.-C. Challenges and Recent Advancements in COVID-19 Vaccines. Microorganisms 2023, 11, 787. [Google Scholar] [CrossRef]
- Rad, Z.F.; Prewett, P.D.; Davies, G.J. An overview of microneedle applications, materials, and fabrication methods. Beilstein J. Nanotechnol. 2021, 12, 1034–1046. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Nguyen, C.N. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023, 15, 277. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Jin, Z.; Wan, W.; Bai, X.; Hu, C.; Li, Y.; Xin, W.; Kang, L.; Yang, H.; et al. Microneedle-based percutaneous immunity: A review. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2022, 38, 3301–3315. [Google Scholar] [CrossRef]
- Mansoor, I.; Mohammed, K.H.A.; El-Fattah, M.A.A.; Abdo, M.H.; Rashad, E.; Eassa, H.A.; Saleh, A.; Amin, O.M.; Nounou, M.I.; Ghoneim, O. Microneedle-Based Vaccine Delivery: Review of an Emerging Technology. AAPS Pharmscitech 2022, 23, 103. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wu, S.; Yi, L.; Peng, S.; Wang, F.; Si, W.; Hou, L.; Zhu, T. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg. Microbes Infect. 2022, 11, 439–442. [Google Scholar] [CrossRef]
- Xu, J.-W.; Wang, B.-S.; Gao, P.; Huang, H.-T.; Wang, F.-Y.; Qiu, W.; Zhang, Y.-Y.; Xu, Y.; Gou, J.-B.; Yu, L.-L.; et al. Safety and immunogenicity of heterologous boosting with orally administered aerosolized bivalent adenovirus type-5 vectored COVID-19 vaccine and B.1.1.529 variant adenovirus type-5 vectored COVID-19 vaccine in adults 18 years and older: A randomized, double blinded, parallel controlled trial. Emerg. Microbes Infect. 2024, 13, 2281355. [Google Scholar] [CrossRef]
- Heida, R.; Frijlink, H.W.; Hinrichs, W.L.J. Inhalation of vaccines and antiviral drugs to fight respiratory virus infections: Reasons to prioritize the pulmonary route of administration. mBio 2023, 14, e0129523. [Google Scholar] [CrossRef]
- Chan, H.W.; Chow, S.; Zhang, X.; Zhao, Y.; Tong, H.H.Y.; Chow, S.F. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023, 24, 98. [Google Scholar] [CrossRef]
- Carvalho, M.F.; Gill, D. Rotavirus vaccine efficacy: Current status and areas for improvement. Hum. Vaccines Immunother. 2019, 15, 1237–1250. [Google Scholar] [CrossRef]
- Quarleri, J. Poliomyelitis is a current challenge: Long-term sequelae and circulating vaccine-derived poliovirus. GeroScience 2023, 45, 707–717. [Google Scholar] [CrossRef]
- Shah, N.; Ghosh, A.; Kumar, K.; Dutta, T.; Mahajan, M. A review of safety and immunogenicity of a novel measles, mumps, rubella (MMR) vaccine. Hum. Vaccines Immunother. 2024, 20, 2302685. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. DTaP-IPV-HepB-Hib Vaccine (Hexyon®): An Updated Review of its Use in Primary and Booster Vaccination. Pediatr. Drugs 2019, 21, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, J.; Tan, H.; Zhang, C.; Chen, J.; Ni, L.; Yun, X.; Huang, Y.; Wang, W. Safety of pentavalent DTaP-IPV/Hib combination vaccine in post-marketing surveillance in Guangzhou, China, from 2011 to 2017. Int. J. Infect. Dis. 2020, 99, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Sfakianos, J.P.; Salome, B.; Daza, J.; Farkas, A.; Bhardwaj, N.; Horowitz, A. Bacillus Calmette-Guerin (BCG): Its fight against pathogens and cancer. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 121–129. [Google Scholar] [CrossRef]
- Rümke, H.C. BCG: An almost 100-year-old vaccine. Ned. Tijdschr. Geneeskd. 2020, 164, D5146. [Google Scholar]
- Pilapitiya, D.; Wheatley, A.K.; Tan, H.-X. Mucosal vaccines for SARS-CoV-2: Triumph of hope over experience. EBioMedicine 2023, 92, 104585. [Google Scholar] [CrossRef]
- Singh, C.; Verma, S.; Reddy, P.; Diamond, M.S.; Curiel, D.T.; Patel, C.; Jain, M.K.; Redkar, S.V.; Bhate, A.S.; Gundappa, V.; et al. Phase III Pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID 19 vaccine (Covaxin®). NPJ Vaccines 2023, 8, 125. [Google Scholar] [CrossRef]
- Hossain, K.; Ahmed, T.; Bhusal, P.; Subedi, R.K.; Salahshoori, I.; Soltani, M.; Hassanzadeganroudsari, M. Microneedle Systems for Vaccine Delivery: The story so far. Expert Rev. Vaccines 2020, 19, 1153–1166. [Google Scholar] [CrossRef]
- Jose, J.; Khot, K.B.; Shastry, P.; Gopan, G.; Bandiwadekar, A.; Thomas, S.P.; Muhammad, S.T.; Ugare, S.R.; Chopra, H.; Choudhary, O.P. Recent advancements in microneedle-based vaccine delivery. Int. J. Surg. 2022, 107, 106973. [Google Scholar] [CrossRef]
- Muralidharan, P.; Malapit, M.; Mallory, E.; Hayes, D., Jr.; Mansour, H.M. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine 2015, 11, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Straeten, A.V.; Sarmadi, M.; Daristotle, J.L.; Kanelli, M.; Tostanoski, L.H.; Collins, J.; Pardeshi, A.; Han, J.; Varshney, D.; Eshaghi, B.; et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 2024, 42, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.; Kim, M.; Lee, Y.; Yang, H.; Seong, B.-L.; Jung, H. Egg microneedles for transdermal vaccination of inactivated influenza virus. Biomater. Sci. 2024, 12, 907–918. [Google Scholar] [CrossRef]
- Iwata, H.; Kakita, K.; Imafuku, K.; Takashima, S.; Haga, N.; Yamaguchi, Y.; Taguchi, K.; Oyamada, T. Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): A randomised, partly blinded, active-controlled, phase 1 trial. Lancet Microbe 2022, 3, e96–e104. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Wirth, D.M.; Ortega-Rivera, O.A.; Steinmetz, N.F.; Pokorski, J.K. Dissolving Microneedle Delivery of a Prophylactic HPV Vaccine. Biomacromolecules 2022, 23, 903–912. [Google Scholar] [CrossRef]
- Zhao, B.; Jin, Z.; Yu, Y.; Li, Y.; Wang, J.; Wan, W.; Hu, C.; Li, X.; Li, Y.; Xin, W.; et al. A Thermostable Dissolving Microneedle Vaccine with Recombinant Protein of Botulinum Neurotoxin Serotype A. Toxins 2022, 14, 881. [Google Scholar] [CrossRef]
- Jeyanathan, M.; Afkhami, S.; Kang, A.; Xing, Z. Viral-vectored respiratory mucosal vaccine strategies. Curr. Opin. Immunol. 2023, 84, 102370. [Google Scholar] [CrossRef]
- Heida, R.; Hinrichs, W.L.; Frijlink, H.W. Inhaled vaccine delivery in the combat against respiratory viruses: A 2021 overview of recent developments and implications for COVID-19. Expert Rev. Vaccines 2022, 21, 957–974. [Google Scholar] [CrossRef]
- Mettelman, R.C.; Allen, E.K.; Thomas, P.G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022, 55, 749–780. [Google Scholar] [CrossRef]
- Vaccines, I. Drugs and Lactation Database (LactMed®) [Internet]; National Institute of Child Health and Human Development: Bethesda, MD, USA, 2006. [Google Scholar]
- Loo, C.-Y.; Lee, W.-H.; Zhou, Q.T. Recent Advances in Inhaled Nanoformulations of Vaccines and Therapeutics Targeting Respiratory Viral Infections. Pharm. Res. 2023, 40, 1015–1036. [Google Scholar] [CrossRef]
- Stylianou, E.; Satti, I.; Stylianou, E.; Satti, I. Inhaled aerosol viral-vectored vaccines against tuberculosis. Curr. Opin. Virol. 2024, 66, 101408. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Lei, L.R.; Zouzas, W.; April Si, X. Nasally inhaled therapeutics and vaccination for COVID-19: Developments and challenges. MedComm 2021, 2, 569–586. [Google Scholar] [CrossRef]
- Dovonan, M. Going All the Way: Scientists Prove Inhaled Vaccines Offer Better Protection than Nasal Sprays. McMaster University. Available online: https://brighterworld.mcmaster.ca/articles/going-all-the-way-scientists-prove-inhaled-vaccines-offer-better-protection-than-nasal-sprays/ (accessed on 10 June 2022).
- Jeyananthan, V.; Afkhami, S.; D’agostino, M.R.; Zganiacz, A.; Feng, X.; Miller, M.S.; Jeyanathan, M.; Thompson, M.R.; Xing, Z. Differential Biodistribution of Adenoviral-Vectored Vaccine Following Intranasal and Endotracheal Deliveries Leads to Different Immune Outcomes. Front. Immunol. 2022, 13, 860399. [Google Scholar] [CrossRef]
- Ye, T.; Jiao, Z.; Li, X.; He, Z.; Li, Y.; Yang, F.; Zhao, X.; Wang, Y.; Huang, W.; Qin, M.; et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 2023, 624, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Elder, E.; Revanna, C.B.; Johansson, C.; Wallin, R.P.; Sjödahl, J.; Winqvist, O.; Mirazimi, A. Protective immunity induced by an inhaled SARS-CoV-2 subunit vaccine. Vaccine 2023, 41, 4743–4751. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Lee, C.; Lee, J.; Lee, J.; Hwang, H.S.; Lee, M.; Na, K. Hemagglutinin Nanoparticulate Vaccine with Controlled Photochemical Immunomodulation for Pathogenic Influenza-Specific Immunity. Adv. Sci. 2021, 8, 2100118. [Google Scholar] [CrossRef]
- Eberlein, V.; Rosencrantz, S.; Finkensieper, J.; Besecke, J.K.; Mansuroglu, Y.; Kamp, J.-C.; Lange, F.; Dressman, J.; Schopf, S.; Hesse, C.; et al. Mucosal immunization with a low-energy electron inactivated respiratory syncytial virus vaccine protects mice without Th2 immune bias. Front. Immunol. 2024, 15, 1382318. [Google Scholar] [CrossRef]
- Gomez, M.; Ahmed, M.; Das, S.; McCollum, J.; Mellett, L.; Swanson, R.; Gupta, A.; Carrigy, N.B.; Wang, H.; Barona, D.; et al. Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Front. Pharmacol. 2022, 12, 799034. [Google Scholar] [CrossRef] [PubMed]
- Ura, T.; Okuda, K.; Shimada, M. Developments in Viral Vector-Based Vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef]
- Gebre, M.S.; Brito, L.A.; Tostanoski, L.H.; Edwards, D.K.; Carfi, A.; Barouch, D.H. Novel approaches for vaccine development. Cell 2021, 184, 1589–1603. [Google Scholar] [CrossRef]
- Chauhan, A.; Agarwal, A.; Jaiswal, N.; Singh, M. ChAdOx1 nCoV-19 vaccine for SARS-CoV-2. Lancet 2020, 396, 1485–1486. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.; Roy, P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet 2021, 397, 671. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.CoV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Guo, X.; Chen, W.; Ma, S.; Pan, H.; Dai, L.; Du, P.; Wang, L.; Jin, L.; Chen, Y.; et al. Safety and immunogenicity of heterologous boost immunization with an adenovirus type-5-vectored and protein-subunit-based COVID-19 vaccine (Convidecia/ZF2001): A randomized, observer-blinded, placebo-controlled trial. PLOS Med. 2022, 19, e1003953. [Google Scholar] [CrossRef] [PubMed]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Kallay, R.; Doshi, R.H.; Muhoza, P.; Choi, M.J.; Legand, A.; Aberle-Grasse, E.; Bagayoko, A.; Hyde, T.B.; Formenty, P.; Costa, A. Use of Ebola Vaccines—Worldwide, 2021–2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 360–364. [Google Scholar] [CrossRef]
- PREVAC Study Team; Kieh, M.; Richert, L.; Beavogui, A.H.; Grund, B.; Leigh, B.; D’Ortenzio, E.; Doumbia, S.; Lhomme, E.; Sow, S.; et al. Randomized Trial of Vaccines for Zaire Ebola Virus Disease. N. Engl. J. Med. 2022, 387, 2411–2424. [Google Scholar] [CrossRef]
- Bullard, B.L.; Corder, B.N.; Gordon, D.N.; Pierson, T.C.; Weaver, E.A. Characterization of a Species E Adenovirus Vector as a Zika virus vaccine. Sci. Rep. 2020, 10, 3613. [Google Scholar] [CrossRef]
- Jeyanathan, M.; Fritz, D.K.; Afkhami, S.; Aguirre, E.; Howie, K.J.; Zganiacz, A.; Dvorkin-Gheva, A.; Thompson, M.R.; Silver, R.F.; Cusack, R.P.; et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. J. Clin. Investig. 2022, 7, 155655. [Google Scholar] [CrossRef]
- Milicic, A.; Rollier, C.S.; Tang, C.K.; Longley, R.; Hill, A.V.S.; Reyes-Sandoval, A. Adjuvanting a viral vectored vaccine against pre-erythrocytic malaria. Sci. Rep. 2017, 7, 7284. [Google Scholar] [CrossRef]
- Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.-X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine 2014, 32, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Filipić, B.; Pantelić, I.; Nikolić, I.; Majhen, D.; Stojić-Vukanić, Z.; Savić, S.; Krajišnik, D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines 2023, 11, 1172. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Granados-Riveron, J.T.; Aquino-Jarquin, G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed. Pharmacother. 2021, 142, 111953. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Yang, R.S.; Traver, M.; Barefoot, N.; Stephens, T.; Alabanza, C.; Manzella-Lapeira, J.; Zou, G.; Wolff, J.; Li, Y.; Resto, M.; et al. Mosaic quadrivalent influenza vaccine single nanoparticle characterization. Sci. Rep. 2024, 14, 4534. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef]
- He, J.; Yu, L.; Lin, X.; Liu, X.; Zhang, Y.; Yang, F.; Deng, W. Virus-like Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses 2022, 14, 1905. [Google Scholar] [CrossRef]
- Hardenberg, G.; Brouwer, C.; van Gemerden, R.; Jones, N.J.; Marriott, A.C.; Rip, J. Polymeric nanoparticle-based mRNA vaccine is protective against influenza virus infection in ferrets. Mol. Ther. Nucleic Acids 2024, 35, 102159. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Q.; Qi, M.; Chen, J.; Wu, X.; Zhang, X.; Li, W.; Zhang, X.-E.; Cui, Z. An Intranasal Multivalent Epitope-Based Nanoparticle Vaccine Confers Broad Protection against Divergent Influenza Viruses. ACS Nano 2023, 17, 13474–13487. [Google Scholar] [CrossRef]
- Sun, C.; Kang, Y.-F.; Fang, X.-Y.; Liu, Y.-N.; Bu, G.-L.; Wang, A.-J.; Li, Y.; Zhu, Q.-Y.; Zhang, H.; Xie, C.; et al. A gB nanoparticle vaccine elicits a protective neutralizing antibody response against EBV. Cell Host Microbe 2023, 31, 1882–1897.e10. [Google Scholar] [CrossRef] [PubMed]
- Pine, M.; Arora, G.; Hart, T.M.; Bettini, E.; Gaudette, B.T.; Muramatsu, H.; Tombácz, I.; Kambayashi, T.; Tam, Y.K.; Brisson, D.; et al. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease. Mol. Ther. 2023, 31, 2702–2714. [Google Scholar] [CrossRef] [PubMed]
- Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; de van der Schueren, W.; Snijder, J.; Hodge, E.; Benhaim, M.; Ravichandran, R.; Carter, L.; et al. Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 2019, 176, 1420–1431.e17. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral vectored vaccines: Design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- McCann, N.; O’connor, D.; Lambe, T.; Pollard, A.J. Viral vector vaccines. Curr. Opin. Immunol. 2022, 77, 102210. [Google Scholar] [CrossRef]
- Deng, S.; Liang, H.; Chen, P.; Li, Y.; Li, Z.; Fan, S.; Wu, K.; Li, X.; Chen, W.; Qin, Y.; et al. Viral Vector Vaccine Development and Application during the COVID-19 Pandemic. Microorganisms 2022, 10, 1450. [Google Scholar] [CrossRef]
- Schrauf, S.; Tschismarov, R.; Tauber, E.; Ramsauer, K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front. Immunol. 2020, 11, 592. [Google Scholar] [CrossRef]
- Bezbaruah, R.; Chavda, V.P.; Nongrang, L.; Alom, S.; Deka, K.; Kalita, T.; Ali, F.; Bhattacharjee, B.; Vora, L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines 2022, 10, 1946. [Google Scholar] [CrossRef]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef]
- Driscoll, D.F. Lipid nanoparticle–based COVID-19 vaccines: Concerns about stability. Am. J. Health Pharm. 2022, 79, 1514–1515. [Google Scholar] [CrossRef] [PubMed]
- Le Poole, I.C.; Bommiasamy, H.; Bocchetta, M.; Kast, W.M. Advances in prophylactic cancer vaccine research. Expert Rev. Anticancer Ther. 2003, 3, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Lowy, D.R. An Introduction to Virus Infections and Human Cancer. Recent Results Cancer Res. 2021, 217, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Finn, O.J.; Forni, G. Prophylactic cancer vaccines. Curr. Opin. Immunol. 2002, 14, 172–177. [Google Scholar] [CrossRef]
- Tovar, J.M.; Bazaldua, O.V.; Vargas, L.; Reile, E. Human papillomavirus, cervical cancer, and the vaccines. Postgrad. Med. 2008, 120, 79–84. [Google Scholar] [CrossRef]
- Bencina, G.; Oliver, E.; Meiwald, A.; Hughes, R.; Morais, E.; Weston, G.; Sundström, K. Global burden and economic impact of vaccine-preventable cancer mortality. J. Med Econ. 2024, 27, 9–19. [Google Scholar] [CrossRef]
- Egawa, N. Papillomaviruses and cancer: Commonalities and differences in HPV carcinogenesis at different sites of the body. Int. J. Clin. Oncol. 2023, 28, 956–964. [Google Scholar] [CrossRef]
- Szymonowicz, K.A.; Chen, J. Biological and clinical aspects of HPV-related cancers. Cancer Biol. Med. 2020, 17, 864–878. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xia, H.; Wang, Z.; Zhang, X.; Song, T.; Li, J.; Xu, L.; Zhang, N.; Fan, S.; Li, Q.; et al. Intratumoral microbial heterogeneity affected tumor immune microenvironment and determined clinical outcome of HBV-related HCC. Hepatology 2023, 78, 1079–1091. [Google Scholar] [CrossRef]
- Blumberg, B.S. Primary and secondary prevention of liver cancer caused by HBV. Front. Biosci. 2010, 2, 756–763. [Google Scholar] [CrossRef]
- Shi, L.; Sings, H.L.; Bryan, J.T.; Wang, B.; Wang, Y.; Mach, H.; Kosinski, M.; Washabaugh, M.W.; Sitrin, R.; Barr, E. GARDASIL: Prophylactic human papillomavirus vaccine development--from bench top to bed-side. Clin. Pharmacol. Ther. 2007, 81, 259–264. [Google Scholar] [CrossRef]
- Goldstone, S.E. Human papillomavirus (HPV) vaccines in adults: Learnings from long-term follow-up of quadrivalent HPV vaccine clinical trials. Hum. Vaccines Immunother. 2023, 19, 2184760. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Tumban, E. Gardasil-9: A global survey of projected efficacy. Antivir. Res. 2016, 130, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Petrosky, E.; Bocchini, J.A., Jr.; Hariri, S.; Chesson, H.; Curtis, C.R.; Saraiya, M.; Unger, E.R.; Markowitz, L.E. Centers for Disease Control and Prevention (CDC). Use of 9-valent human papillomavirus (HPV) vaccine: Updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 300–304. [Google Scholar]
- Wong, G.L.; Hui, V.W.; Yip, T.C.; Liang, L.Y.; Zhang, X.; Tse, Y.; Lai, J.C.; Chan, H.L.; Wong, V.W. Universal HBV vaccination dramatically reduces the prevalence of HBV infection and incidence of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2022, 56, 869–877. [Google Scholar] [CrossRef]
- Cao, M.; Fan, J.; Lu, L.; Fan, C.; Wang, Y.; Chen, T.; Zhang, S.; Yu, Y.; Xia, C.; Lu, J.; et al. Long term outcome of prevention of liver cancer by hepatitis B vaccine: Results from an RCT with 37 years. Cancer Lett. 2022, 536, 215652. [Google Scholar] [CrossRef]
- Hemachudha, T.; Ugolini, G.; Wacharapluesadee, S.; Sungkarat, W.; Shuangshoti, S.; Laothamatas, J. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013, 12, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A. Rabies: A medical perspective. Rev. Sci. Tech. 2018, 37, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Brunker, K.; Mollentze, N. Rabies Virus. Trends Microbiol. 2018, 26, 886–887. [Google Scholar] [CrossRef]
- Fehlner-Gardiner, C. Rabies control in North America—Past, present and future. Rev. Sci. Tech. 2018, 37, 421–437. [Google Scholar] [CrossRef]
- DeMaria, P.J.; Bilusic, M. Cancer Vaccines. Hematol. Clin. N. Am. 2019, 33, 199–214. [Google Scholar] [CrossRef]
- D’Alise, A.M.; Leoni, G.; Cotugno, G.; Siani, L.; Vitale, R.; Ruzza, V.; Garzia, I.; Antonucci, L.; Micarelli, E.; Venafra, V.; et al. Phase I Trial of Viral Vector-Based Personalized Vaccination Elicits Robust Neoantigen-Specific Antitumor T-Cell Responses. Clin. Cancer Res. 2024, 30, 2412–2423. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Chen, Y.; Zhou, R.; Wang, Q.; Zhang, T.; Yi, D.; Liu, Q.; Zhang, Y.; Zhang, W.; et al. Immunogenicity and effectiveness of an mRNA therapeutic vaccine for HPV-related malignancies. Life Sci. Alliance 2024, 7, e202302448. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Kim, D.H.; Jang, J.; Kim, B.-J. A hepatitis B virus-derived peptide combined with HBsAg exerts an anti-HBV effect in an HBV transgenic mouse model as a therapeutic vaccine. Front. Immunol. 2023, 14, 1155637. [Google Scholar] [CrossRef] [PubMed]
- Poria, R.; Kala, D.; Nagraik, R.; Dhir, Y.; Dhir, S.; Singh, B.; Kaushik, N.K.; Noorani, S.; Kaushal, A.; Gupta, S. Vaccine development: Current trends and technologies. Life Sci. 2024, 336, 122331. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Sun, F.; Zhang, W.; Ren, J.; Liu, G.-H. Targeting aging and age-related diseases with vaccines. Nat. Aging 2024, 4, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Sellars, M.C.; Wu, C.J.; Fritsch, E.F. Cancer vaccines: Building a bridge over troubled waters. Cell 2022, 185, 2770–2788. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, P.; Yang, R.; Deng, H. mRNA Cancer Vaccines: Construction and Boosting Strategies. ACS Nano 2023, 17, 19550–19580. [Google Scholar] [CrossRef]
Administration Route | Traditional | Novel | |||
---|---|---|---|---|---|
Oral | Intramuscular | Subcutaneous | Microneedle | Inhalation | |
Advantages | Painless, self-administration, induction of mucosal immunity, herd immunity | Mildly contact with immune cells to induce immune responses | Long induction period by slow and sustained adsorption | Comfortable, minimal invasive delivery, self-administration, superior and rapid immunogenicity, longer induction period by slow and sustained adsorption, less reliance on cold-chain storage, dosage sparing effect [2,3,4,5] | Induction of triple immunity, including humoral, cellular, and mucosal immunity, intercepts pathogens at the first line when they invade, dosage sparing effect, self-administration [6,7,8,9] |
Disadvantages, risk or limitations | First pass effect, environmental pollution caused by feces | Pain, inflammation, anxiety, infection, contamination, professionals, and cold-chain requirement | Pain, anxiety, inflammation, infection, contamination, lower immune responses, professionals and cold-chain requirement | Skin allergy, breakage of microneedle tip, foreign substances remaining in the body, thermostability must be monitored, sterilization is challenging [2,3,4,5] | Only suitable for respiratory or gastrointestinal infectious diseases, local protection, induction of immunotolerance, inhalation rate is unstable, induced immunity is difficult to evaluate [6,7,8,9] |
Approved vaccine product example | Rotavirus vaccine: live attenuated vaccines Rotarix® and RotaTeq® [10], Poliovirus vaccine: Sabin, live attenuated oral polio vaccine (OPV) [11] | MMR (Measles, mumps, rubella), a live attenuated vaccine [12] Hexyon® (Diphtheria, pertussis, tetanus, hepatitis B, poliomyelitis, and Hemophilus influenzae type b (Hib)), an inactivated vaccine [13] Poliovirus vaccine: Salk, an inactivated poliovirus vaccine (IPV) [14] | Bacillus Calmette-Guérin (BCG) vaccine, a live attenuated vaccine [15,16] | Influenza vaccine: Intanza® and Fluzone® [5] | Coronavirus Disease 2019 (COVID-19) vaccine: Convidecia Air®, an oral recombinant vaccine with adenovirus type 5 vector [17] iNCOVACC, an intranasal live attenuated vaccine [17,18] |
Vaccine | COVID-19 | Ebola Viruses |
---|---|---|
Viral vector serotype | Oxford–AstraZeneca vaccine: An adenovirus vector vaccine with modified chimpanzee adenovirus ChAdOx 1 [43]. Sputnik V vaccine: An adenovirus vector vaccine with human adenovirus serotype 26 (Ad26) for the first shot and serotype 5 for the second [44]. Janssen vaccine: An adenovirus vector vaccine with human adenovirus serotype 26 (Ad26) [45]. Convidecia™ vaccine: An adenovirus vector vaccine with human adenovirus serotype 5 (Ad5) [46]. | Ervebo® vaccine: A recombinant vesicular stomatitis virus (VSV)–Zaire Ebola virus (rVSV-ZEBOV); a recombinant and replication-competent viral vector vaccine, consisting of the rice-derived recombinant human serum albumin and a live attenuated recombinant VSV [47,48]. Zabdeno/Mvabea vaccine: An adenovirus vaccine with human adenovirus serotype 26(Ad26), expressing the glycoprotein of the Ebola virus. Mayinga variant [48,49]: This vaccine is delivered in two dosesl Zabdeno is given first and Mvabea is administered about 8 weeks later as the second dose. |
Vaccine | COVID-19 | Influenza |
---|---|---|
nanoparticle type | Pfizer/BNT vaccine: mRNA encapsulated in lipid nanoparticles BNT162b2 mRNA [55]; the lipid components are the cationic lipid ALC-0315 combined with the phospholipid 1,2-distearoyl-sn-glycero-3- phosphocholine (DSPC), cholesterol, and a polyethylene glycol (PEG)–lipid [56]. Moderna vaccine: mRNA encapsulated in lipid nanoparticles mRNA-1273 [57]; the lipid components are SM-102 [Heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy) 8-oxooctyl)amino)octanoate)], PEG2000-DMG (1,2- dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000), cholesterol, and DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) [56]. | FluMos-v1 vaccine: A quadrivalent influenza nanoparticle vaccine offers long-lasting protection against multiple influenza virus strains and is composed of four strains of hemagglutinin trimer assembled around a pentamer core [58]. |
Vector | Virus Expression Vector | Virus Nanoparticle | Virus-Like Particle |
---|---|---|---|
Characteristics | Live and infectious microorganisms but lack some viral genes | Live and infectious microorganism | Lifeless and noninfectious agent |
Self assembly | Yes | Yes | Yes |
Replication in hosts | Yes | Yes | No |
Function for vaccine delivery | Delivery of DNA to encode specific antigens | Encapulation of antigens | Encapulation of antigens |
Induced immunity | Both innate and adaptive | Both innate and adaptive | Both innate and adaptive |
Vector | Virus | Nanoparticle |
---|---|---|
Characteristic | Living attenuated microorganisms, including virus expression vectors and virus particles Growth and replication in hosts | Specialized substance: non-living microorganisms including inorganic compounds, chemicals, liposomes, and virus-like particles (VLP), etc. Self-assembly without growth and replication in hosts |
Advantage | Induction of both innate immunity and adaptive immunity Immunogenicity, immunogenic stability Highly efficient gene transduction and specific gene delivery to target cells Induction of potent immune responses An adjuvant is not needed Relatively low costs | The adverse reaction is usually less and milder because it is not alive and only induces adaptive immunity, except VLP, which induces both innate and adaptive immunity Protection of antigens and adjuvants Extension of antigen stability duration Enhancement of the antigen uptake Activation of dendritic cells Promotion of cross-presentation Effective encapsulation of mRNA |
disadvantages, limitations or risks | Safety concern for viral reverse or spontaneous mutation Evaluation of the long-term duration of humoral and cellular responses is needed Understanding of the mechanism underlying antiviral immunity is critical, especially the following repeated dosing | Cytoxicity Evaluation of vaccine stability and delivery consistency is needed Development is difficult and expensive |
Reference | [41,67,68,69,70] | [53,54,71,72,73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, C.-I.; Kuo, T.-H.; Chen, Y.-C. Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review. Vaccines 2024, 12, 1002. https://doi.org/10.3390/vaccines12091002
Rai C-I, Kuo T-H, Chen Y-C. Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review. Vaccines. 2024; 12(9):1002. https://doi.org/10.3390/vaccines12091002
Chicago/Turabian StyleRai, Chung-I, Tsu-Hsiang Kuo, and Yuan-Chuan Chen. 2024. "Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review" Vaccines 12, no. 9: 1002. https://doi.org/10.3390/vaccines12091002
APA StyleRai, C. -I., Kuo, T. -H., & Chen, Y. -C. (2024). Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review. Vaccines, 12(9), 1002. https://doi.org/10.3390/vaccines12091002