Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recombinant Plasmid
2.2. Transfection of HEK293T Cells
2.3. Quantitative Real-Time PCR
2.4. Western Blot
2.5. Immunofluorescence Analysis
2.6. Prokaryotic Expression of MARV GP
2.7. Animals and Immunization
2.8. Enzyme-Linked Immunosorbent Assay (ELISA)
2.9. Serum Neutralization Test
2.10. Synthesis of GP Peptides
2.11. Enzyme-Linked Immunospot Assay (ELISpot)
2.12. Flow Cytometry
2.13. Transcriptome Analysis
2.14. Animal Behavior Analysis
2.15. Hematoxylin and Eosin (H&E) Staining
2.16. Statistical Analysis
3. Results
3.1. Construction and Verification of Plasmids
3.2. pVAX1-LAMP/GPMARV Induced a Stronger Humoral Immune Response
3.3. The LAMP Targeting Strategy Enhanced the Secretion of IFN-γ and IL-4
3.4. Flow Cytometry Revealed That LAMP1 Can Enhance the T-Cell Response
3.5. Transcriptome Analysis of Immune Response-Related Pathways
3.6. Preliminary Safety Assessment of Candidate Vaccines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuomo-Dannenburg, G.; McCain, K.; McCabe, R.; Unwin, H.J.T.; Doohan, P.; Nash, R.K.; Hicks, J.T.; Charniga, K.; Geismar, C.; Lambert, B.; et al. Marburg virus disease outbreaks, mathematical models, and disease parameters: A systematic review. Lancet Infect. Dis. 2024, 24, e307–e317. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Sharma, D.; Kumar, S.; Sharma, A.; Rijal, R.; Asija, A.; Adhikari, S.; Rustagi, S.; Sah, S.; Al-Qaim, Z.H.; et al. Emergence of Marburg virus: A global perspective on fatal outbreaks and clinical challenges. Front. Microbiol. 2023, 14, 1239079. [Google Scholar] [CrossRef]
- Abir, M.H.; Rahman, T.; Das, A.; Etu, S.N.; Nafiz, I.H.; Rakib, A.; Mitra, S.; Emran, T.B.; Dhama, K.; Islam, A.; et al. Pathogenicity and virulence of Marburg virus. Virulence 2022, 13, 609–633. [Google Scholar] [CrossRef] [PubMed]
- Althaus, C.L. Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Ezie, K.N.; Takoutsing, B.D.; Modeste, D.; Ines, M.Z.; Sybile, T.N.L.; Caleb, N.M.; Esene, I.N. Marburg Virus Outbreak in Equatorial Guinea: Need for Speed. Ann. Glob. Health 2024, 90, 5. [Google Scholar] [CrossRef]
- Samarasekera, U. Marburg virus outbreak in Equatorial Guinea. Lancet Infect. Dis. 2023, 23, 534. [Google Scholar] [CrossRef]
- Ashique, S.; Chaudhary, V.; Pal, S.; Panwar, J.; Kumar, M.; Pramanik, S.; Sinha, A.; Mukherjee, A. Marburg Virus- A Threat During SARS-CoV-2 Era: A Review. Infect. Disord. Drug Targets 2023, 23, e280223214111. [Google Scholar] [CrossRef]
- Mittler, E.; Kolesnikova, L.; Hartlieb, B.; Davey, R.; Becker, S. The cytoplasmic domain of Marburg virus GP modulates early steps of viral infection. J. Virol. 2011, 85, 8188–8196. [Google Scholar] [CrossRef]
- Hashiguchi, T.; Fusco, M.L.; Bornholdt, Z.A.; Lee, J.E.; Flyak, A.I.; Matsuoka, R.; Kohda, D.; Yanagi, Y.; Hammel, M.; Crowe, J.E., Jr.; et al. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 2015, 160, 904–912. [Google Scholar] [CrossRef]
- Liu, M.A. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines 2019, 7, 37. [Google Scholar] [CrossRef]
- Porter, K.R.; Raviprakash, K. DNA Vaccine Delivery and Improved Immunogenicity. Curr. Issues Mol. Biol. 2017, 22, 129–138. [Google Scholar] [CrossRef]
- Kibuuka, H.; Berkowitz, N.M.; Millard, M.; Enama, M.E.; Tindikahwa, A.; Sekiziyivu, A.B.; Costner, P.; Sitar, S.; Glover, D.; Hu, Z.; et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet 2015, 385, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Geisbert, T.W.; Bailey, M.; Geisbert, J.B.; Asiedu, C.; Roederer, M.; Grazia-Pau, M.; Custers, J.; Jahrling, P.; Goudsmit, J.; Koup, R.; et al. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J. Virol. 2010, 84, 10386–10394. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Asp. Med. 2006, 27, 495–502. [Google Scholar] [CrossRef]
- Jiang, D.B.; Zhang, J.P.; Cheng, L.F.; Zhang, G.W.; Li, Y.; Li, Z.C.; Lu, Z.H.; Zhang, Z.X.; Lu, Y.C.; Zheng, L.H.; et al. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy. Antivir. Res. 2018, 150, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, B.; Pan, J.; Feng, Y.; Ye, W.; Xu, J.; Lan, M.; Sun, H.; Zhang, X.; Sun, Y.; et al. Construction and evaluation of DNA vaccine encoding Ebola virus glycoprotein fused with lysosome-associated membrane protein. Antivir. Res. 2021, 193, 105141. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Shen, W.; Wang, Z.; Liu, Y.; Sun, Y.; Zhang, J.; Liu, R.; Wang, Y.; Bai, T.; et al. In Silico Analyses, Experimental Verification and Application in DNA Vaccines of Ebolavirus GP-Derived pan-MHC-II-Restricted Epitopes. Vaccines 2023, 11, 1620. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, B.; Wang, J.; Sun, H.; Lu, Z.; Chen, L.; Lan, M.; Xu, J.; Pan, J.; Shi, J.; et al. In silico analyses and experimental validation of the MHC class-I restricted epitopes of Ebolavirus GP. Int. Immunol. 2022, 34, 313–325. [Google Scholar] [CrossRef]
- Ding, J.Q.; Zhang, J.Q.; Zhao, S.J.; Jiang, D.B.; Lu, J.R.; Yang, S.Y.; Wang, J.; Sun, Y.J.; Huang, Y.N.; Hu, C.C.; et al. Follicular CD8(+) T cells promote immunoglobulin production and demyelination in multiple sclerosis and a murine model. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167303. [Google Scholar] [CrossRef]
- Kortepeter, M.G.; Dierberg, K.; Shenoy, E.S.; Cieslak, T.J. Marburg virus disease: A summary for clinicians. Int. J. Infect. Dis. 2020, 99, 233–242. [Google Scholar] [CrossRef]
- Dulin, N.; Spanier, A.; Merino, K.; Hutter, J.N.; Waterman, P.E.; Lee, C.; Hamer, M.J. Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine 2021, 39, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Tabiin, T.M.; Sun, K.; Chandrasekaran, A.; Anwar, A.; Yang, K.; Chikhlikar, P.; Salmon, J.; Brusic, V.; Marques, E.T.; et al. SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens. Virology 2006, 347, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Chikhlikar, P.; Barros de Arruda, L.; Maciel, M.; Silvera, P.; Lewis, M.G.; August, J.T.; Marques, E.T. DNA encoding an HIV-1 Gag/human lysosome-associated membrane protein-1 chimera elicits a broad cellular and humoral immune response in Rhesus macaques. PLoS ONE 2006, 1, e135. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Chandrasekaran, A.; Ng, M.L.; Marques, E.; August, J.T. West Nile premembrane-envelope genetic vaccine encoded as a chimera containing the transmembrane and cytoplasmic domains of a lysosome-associated membrane protein: Increased cellular concentration of the transgene product, targeting to the MHC II compartment, and enhanced neutralizing antibody response. Virology 2005, 332, 66–77. [Google Scholar] [CrossRef]
- Dhalia, R.; Maciel, M., Jr.; Cruz, F.S.; Viana, I.F.; Palma, M.L.; August, T.; Marques, E.T., Jr. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: A potential tool to develop DNA vaccines against flaviviruses. An. Acad. Bras. Cienc. 2009, 81, 663–669. [Google Scholar] [CrossRef]
- Su, Y.; Connolly, M.; Marketon, A.; Heiland, T. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model. J. Immunol. Res. 2016, 2016, 4857869. [Google Scholar] [CrossRef]
- Hollý, J.; Tomčíková, K.; Vozárová, M.; Fogelová, M.; Jakubcová, L.; Varečková, E.; Kostolanský, F. DNA vaccine targeting the ectodomain of influenza M2 protein to endolysosome pathway enhances anti-M2e protective antibody response in mice. Acta Virol. 2021, 65, 181–191. [Google Scholar] [CrossRef]
- Teixeira, F.M.E.; Oliveira, L.M.; Pietrobon, A.J.; Salles, É.M.D.; D’Império Lima, M.R.; Viana, I.F.T.; Lins, R.D.; Rigato, P.O.; Marques, E.T.A.; da Silva Duarte, A.J.; et al. LAMP-1 Chimeric to HIV-1 p55Gag in the Immunization of Neonate Mice Induces an Early Germinal Center Formation and AID Expression. Vaccines 2022, 10, 1246. [Google Scholar] [CrossRef]
- Jiang, D.B.; Sun, L.J.; Cheng, L.F.; Zhang, J.P.; Xiao, S.B.; Sun, Y.J.; Yang, S.Y.; Wang, J.; Zhang, F.L.; Yang, K. Recombinant DNA vaccine of Hantavirus Gn and LAMP1 induced long-term immune protection in mice. Antivir. Res. 2017, 138, 32–39. [Google Scholar] [CrossRef]
- Riemenschneider, J.; Garrison, A.; Geisbert, J.; Jahrling, P.; Hevey, M.; Negley, D.; Schmaljohn, A.; Lee, J.; Hart, M.K.; Vanderzanden, L.; et al. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine 2003, 21, 4071–4080. [Google Scholar] [CrossRef]
- Bukreyev, A.; Meyer, M.; Gunn, B.; Pietzsch, C.; Subramani, C.; Saphire, E.; Crowe, J.; Alter, G.; Himansu, S.; Carfi, A. Divergent antibody recognition profiles are generated by protective mRNA vaccines against Marburg and Ravn viruses. arXiv 2024. [Google Scholar] [CrossRef]
- Lu, Y.J.; Barreira-Silva, P.; Boyce, S.; Powers, J.; Cavallo, K.; Behar, S.M. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 2021, 36, 109696. [Google Scholar] [CrossRef] [PubMed]
- Hogg, A.; Sui, Y.; Ben-Sasson, S.Z.; Paul, W.E.; Berzofsky, J.A. Role of CD4 T cell helper subsets in immune response and deviation of CD8 T cells in mice. Eur. J. Immunol. 2017, 47, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, E.; Netti, G.S.; Gigante, M. CTL ELISPOT Assay and T Cell Detection. Methods Mol. Biol. 2021, 2325, 65–77. [Google Scholar] [CrossRef]
- Ozdilek, A.; Paschall, A.V.; Dookwah, M.; Tiemeyer, M.; Avci, F.Y. Host protein glycosylation in nucleic acid vaccines as a potential hurdle in vaccine design for nonviral pathogens. Proc. Natl. Acad. Sci. USA 2020, 117, 1280–1282. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, Y.; Zhang, J.; Wei, H.; Wang, J.; Hu, C.; Liu, Y.; Cai, S.; Yuan, Q.; Wang, Y.; et al. Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus. Vaccines 2024, 12, 1013. https://doi.org/10.3390/vaccines12091013
Zhang X, Sun Y, Zhang J, Wei H, Wang J, Hu C, Liu Y, Cai S, Yuan Q, Wang Y, et al. Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus. Vaccines. 2024; 12(9):1013. https://doi.org/10.3390/vaccines12091013
Chicago/Turabian StyleZhang, Xiyang, Yubo Sun, Junqi Zhang, Hengzheng Wei, Jing Wang, Chenchen Hu, Yang Liu, Sirui Cai, Qinghong Yuan, Yueyue Wang, and et al. 2024. "Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus" Vaccines 12, no. 9: 1013. https://doi.org/10.3390/vaccines12091013
APA StyleZhang, X., Sun, Y., Zhang, J., Wei, H., Wang, J., Hu, C., Liu, Y., Cai, S., Yuan, Q., Wang, Y., Sun, Y., Yang, S., Jiang, D., & Yang, K. (2024). Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus. Vaccines, 12(9), 1013. https://doi.org/10.3390/vaccines12091013