Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients, Study Design, and Study Assessments
2.2. Interpretations of the Tests
2.3. Statistical Analysis
2.4. Study Oversight
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. 2020, 26, 26–33. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Strati, P.; Varma, A.; Adkins, S.; Nastoupil, L.J.; Westin, J.; Hagemeister, F.B.; Fowler, N.H.; Lee, H.J.; Fayad, L.E.; Samaniego, F.; et al. Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma. Haematologica 2021, 106, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Wat, J.; Barmettler, S. Hypogammaglobulinemia After Chimeric Antigen Receptor (CAR) T-Cell Therapy: Characteristics, Management, and Future Directions. J. Allergy Clin. Immunol. Pract. 2022, 10, 460–466. [Google Scholar] [CrossRef]
- Walti, C.S.; Krantz, E.M.; Maalouf, J.; Boonyaratanakornkit, J.; Keane-Candib, J.; Joncas-Schronce, L.; Stevens-Ayers, T.; Dasgupta, S.; Taylor, J.J.; Hirayama, A.V.; et al. Antibodies against vaccine-preventable infections after CAR-T cell therapy for B cell malignancies. JCI Insight 2021, 6, e146743. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Shen, L.; He, L.; Tang, K. Immune response to vaccination against SARS-CoV-2 in hematopoietic stem cell transplantation and CAR T-cell therapy recipients. J. Hematol. Oncol. 2022, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.A.; Abid, M.B. SARS-CoV-2 vaccine response in CAR T-cell therapy recipients: A systematic review and preliminary observations. Hematol. Oncol. 2022, 40, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Mayo Clinic Laboratories. Tetanus Toxoid IgG Antibody, Serum. Available online: https://www.mayocliniclabs.com/test-catalog/overview/36667#Clinical-and-Interpretive (accessed on 1 September 2023).
- Mayo Clinic Laboratories. Streptococcus pneumoniae (Pneumococcus), Quantitative PCR. Available online: https://www.mayocliniclabs.com/test-catalog/overview/608969#Clinical-and-Interpretive (accessed on 30 June 2023).
- Parker, A.R.; Park, M.A.; Harding, S.; Abraham, R.S. The total IgM, IgA and IgG antibody responses to pneumococcal polysaccharide vaccination (Pneumovax®23) in a healthy adult population and patients diagnosed with primary immunodeficiencies. Vaccine 2019, 37, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Plikaytis, B.D.; Goldblatt, D.; Frasch, C.E.; Blondeau, C.; Bybel, M.J.; Giebink, G.S.; Jonsdottir, I.; Käyhty, H.; Konradsen, H.B.; Madore, D.V.; et al. An analytical model applied to a multicenter pneumococcal enzyme-linked immunosorbent assay study. J. Clin. Microbiol. 2000, 38, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Daly, T.M.; Hill, H.R. Use and clinical interpretation of pneumococcal antibody measurements in the evaluation of humoral immune function. Clin. Vaccine Immunol. 2015, 22, 148–152. [Google Scholar] [CrossRef]
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Garcia Garrido, H.M.; van Aalst, M.; Schinkel, J.; Koen, G.; Defoer, J.M.; Hazenberg, M.D.; Nur, E.; Grobusch, M.P.; Zeerleder, S.S.; Goorhuis, A.; et al. Early loss of immunity against measles following allogeneic hematopoietic stem cell transplantation. Am. J. Hematol. 2019, 94, E270–E272. [Google Scholar] [CrossRef]
- Ljungman, P.; Lewensohn-Fuchs, I.; Hammarström, V.; Aschan, J.; Brandt, L.; Bolme, P.; Lönnqvist, B.; Johansson, N.; Ringdén, O.; Gahrton, G. Long-term immunity to measles, mumps, and rubella after allogeneic bone marrow transplantation. Blood 1994, 84, 657–663. [Google Scholar] [CrossRef]
- Einarsdottir, S.; Sverrisdottir, I.; Vaht, K.; Bergström, T.; Brune, M.; Andersson, P.O.; Wenneras, C.; Ljungman, P. Long-Term Immunity against Tetanus and Diphtheria after Vaccination of Allogeneic Stem Cell Transplantation Recipients. Transplant. Cell Ther. 2023, 29, 275.e1–275.e5. [Google Scholar] [CrossRef] [PubMed]
- Walti, C.S.; Loes, A.N.; Shuey, K.; Krantz, E.M.; Boonyaratanakornkit, J.; Keane-Candib, J.; Loeffelholz, T.; Wolf, C.R.; Taylor, J.J.; Gardner, R.A.; et al. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy: A prospective observational study. J. Immunother. Cancer 2021, 9, e003428. [Google Scholar] [CrossRef]
- Løchen, A.; Croucher, N.J.; Anderson, R.M. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci. Rep. 2020, 10, 18977. [Google Scholar] [CrossRef]
- McQuillan, G.M.; Kruszon-Moran, D.; Deforest, A.; Chu, S.Y.; Wharton, M. Serologic immunity to diphtheria and tetanus in the United States. Ann. Intern. Med. 2002, 136, 660–666. [Google Scholar] [CrossRef]
- World Health Organization. Tetanus vaccines: WHO position paper, February 2017—Recommendations. Vaccine 2018, 36, 3573–3575. [Google Scholar] [CrossRef] [PubMed]
- Crone, N.E.; Reder, A.T. Severe tetanus in immunized patients with high anti-tetanus titers. Neurology 1992, 42, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Hammarlund, E.; Thomas, A.; Poore, E.A.; Amanna, I.J.; Rynko, A.E.; Mori, M.; Chen, Z.; Slifka, M.K. Durability of Vaccine-Induced Immunity Against Tetanus and Diphtheria Toxins: A Cross-sectional Analysis. Clin. Infect. Dis. 2016, 62, 1111–1118. [Google Scholar] [CrossRef]
- Le, T.V.; Nguyen, V.T.T.; Nguyen, Q.H.; Nguyen, T.T.T.; Duong, T.T.N.; Ly, T.T.T.; Pham, T.N.; Nguyen, V.L.; Vien, C.C. The evaluation of anti-diphtheria toxoid antibodies in healthy population in Kon Tum, Vietnam: A population-based study. IJID Reg. 2022, 3, 171–176. [Google Scholar] [CrossRef] [PubMed]
- McComb, J.A. The Prophylactic Dose of Homologous Tetanus Antitoxin. N. Engl. J. Med. 1964, 270, 175–178. [Google Scholar] [CrossRef]
- Deming, M.S.; Roungou, J.B.; Kristiansen, M.; Heron, I.; Yango, A.; Guenengafo, A.; Ndamobissi, R. Tetanus toxoid coverage as an indicator of serological protection against neonatal tetanus. Bull. World Health Organ. 2002, 80, 696–703. [Google Scholar]
- Caglar, K.; Karakus, R.; Aybay, C. Determination of tetanus antibodies by a double-antigen enzyme-linked immunosorbent assay in individuals of various age groups. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 523–528. [Google Scholar] [CrossRef]
- Gössi, S.; Bacher, U.; Haslebacher, C.; Nagler, M.; Suter, F.; Staehelin, C.; Novak, U.; Pabst, T. Humoral Responses to Repetitive Doses of COVID-19 mRNA Vaccines in Patients with CAR-T-Cell Therapy. Cancers 2022, 14, 3527. [Google Scholar] [CrossRef]
- Wiedmeier-Nutor, J.E.; Iqbal, M.; Rosenthal, A.C.; Bezerra, E.D.; Garcia-Robledo, J.E.; Bansal, R.; Johnston, P.B.; Hathcock, M.; Larsen, J.T.; Bergsagel, P.L.; et al. Response to COVID-19 Vaccination Post-CAR T Therapy in Patients With Non-Hodgkin Lymphoma and Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23, 456–462. [Google Scholar] [CrossRef] [PubMed]
- van Aalst, M.; Langedijk, A.C.; Spijker, R.; de Bree, G.J.; Grobusch, M.P.; Goorhuis, A. The effect of immunosuppressive agents on immunogenicity of pneumococcal vaccination: A systematic review and meta-analysis. Vaccine 2018, 36, 5832–5845. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Jordan, A.I.; Menges, M.A.; Lazaryan, A.; Nishihori, T.; Gaballa, S.R.; Shah, B.D.; Pinilla-Ibarz, J.; Baluch, A.; Klinkova, O.V.; et al. Pneumococcal Conjugate Vaccine Does Not Induce Humoral Response When Administrated within the Six Months after CD19 CAR T-Cell Therapy. Transplant. Cell Ther. 2023, 29, 277.e1–277.e9. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, G.; Hall, V.G.; Teh, B.W. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl. Infect. Dis. 2023, 25 (Suppl. S1), e14109. [Google Scholar] [CrossRef]
- Tamari, R.; Politikos, I.; Knorr, D.A.; Vardhana, S.A.; Young, J.C.; Marcello, L.T.; Doddi, S.; Devlin, S.M.; Ramanathan, L.V.; Pessin, M.S.; et al. Predictors of Humoral Response to SARS-CoV-2 Vaccination after Hematopoietic Cell Transplantation and CAR T-cell Therapy. Blood Cancer Discov. 2021, 2, 577–585. [Google Scholar] [CrossRef]
Characteristic | No. Patients (%) |
---|---|
Mean age (range), years | 57 (16–84) |
Sex | |
Female | 27 (39) |
Male | 42 (61) |
Comorbidities | |
Hypertension | 26 (38) |
Diabetes mellitus type 1 or 2 | 14 (20) |
Chronic obstructive pulmonary disease | 2 (3) |
Coronary artery disease | 1 (1) |
Chronic kidney disease stages 3–5 | 4 (6) |
Primary cancer diagnosis | |
Non-Hodgkin lymphoma | 49 (71) |
Multiple myeloma | 6 (9) |
Hodgkin lymphoma | 5 (7) |
Chronic lymphocytic leukemia | 1 (1) |
Acute myeloid leukemia | 2 (3) |
Acute lymphoblastic leukemia | 1 (1) |
Solid cancer 1 | 5 (7) |
History of hematopoietic cell transplant | 13 (19) |
Autologous | 11/13 (85) |
Allogeneic | 2 (15) |
Pneumococcal vaccination after hematopoietic cell transplant | 9/13 (69) |
Pneumococcal vaccination before enrollment on this study | 28 (41) |
Diphtheria and tetanus vaccination before enrollment | 69 (100) |
Lymphodepleting chemotherapy | |
Fludarabine, cyclophosphamide | 61 (88) |
Fludarabine, bendamustine | 4 (6) |
Fludarabine, cyclophosphamide, rituximab | 4 (6) |
Type of immune effector cell therapy | |
Anti-CD19 CAR T-cell therapy | 47 (68) |
BCMA CAR T-cell therapy | 5 (7) |
CAR natural killer cell therapy | 4 (6) |
Peptide-HLA T-cell receptor therapy | 5 (7) |
CD30 CAR T-cell therapy | 4 (6) |
CLL-1 CAR T-cell therapy | 2 (3) |
CD4 CAR T-cell therapy | 1 (1) |
CD70 CAR T-cell therapy | 1 (1) |
Cancer status within 1 year after immune effector cell therapy | |
Remission | 32 (46) |
Progression/relapse | 37 (54) |
Mean time to relapse (IQR), months | 4 (1–6) |
Death within 1 year after immune effector cell therapy | 26 (38) |
Laboratory Test 1 | Time Point | ||
---|---|---|---|
Before IECT | 1 Month after IECT | 3–6 Months after IECT | |
Tetanus antibodies, no. (%) | |||
Seroprotected | 68/69 (99) | 68/68 (100) | 56/56 (100) 2 |
Non-seroprotected | 1/69 (1) | - | - |
Diphtheria antibodies, no. (%) | |||
Seroprotected | 65/69 (94) | 65/65 (100) | 48/53 (91) 2 |
Non-seroprotected | 4/69 (6) | 0 (0) | 5/53 (9) 2 |
Pneumococcal antibodies, no. (%) | |||
Seroprotected | 24/67 (36) 3 | 21/23 (91) 4 | 15/19 (79) 5 |
Non-seroprotected | 43/67 (64) 3,6 | 2/23 (9) 4 | 4/19 (21) 5 |
Mean (IQR) CD4 count, cells/µL | 395 (146–605) | 180 (38–162) | 111 (45–169) |
Mean (IQR) IgG, mg/dL | 667 (411–768) | 532 (356–623) | 547 (391–665) |
Mean (IQR) white blood cell count, K/μL | 6.8 (3.5–8.0) | 3.0 (1.8–4.0) | 3.6 (1.9–4.4) |
Mean (IQR) absolute neutrophil count, K/μL | 4.2 (2.1–6.0) | 2.0 (0.9–2.6) | 2.3 (0.9–2.9) |
Mean (IQR) absolute lymphocyte count, K/μL | 1.6 (0.4–1.2) | 0.6 (0.2–0.7) | 0.7 (0.3–0.8) |
IVIG, no. | 1 7 | 6 8 | |
Median (IQR) CD19 absolute count, cells/μL | 0 (0–6.5) 9 | 0 10 | 0 (0–2.5) 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelidakis, G.; Chemaly, R.F.; Sahasrabhojane, P.V.; Morado-Aramburo, O.; Jiang, Y.; Bhatti, M.M.; Shpall, E.; Hosing, C.; Jain, P.; Mahadeo, K.M.; et al. Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study. Vaccines 2024, 12, 1070. https://doi.org/10.3390/vaccines12091070
Angelidakis G, Chemaly RF, Sahasrabhojane PV, Morado-Aramburo O, Jiang Y, Bhatti MM, Shpall E, Hosing C, Jain P, Mahadeo KM, et al. Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study. Vaccines. 2024; 12(9):1070. https://doi.org/10.3390/vaccines12091070
Chicago/Turabian StyleAngelidakis, Georgios, Roy F. Chemaly, Pranoti V. Sahasrabhojane, Oscar Morado-Aramburo, Ying Jiang, Micah M. Bhatti, Elizabeth Shpall, Chitra Hosing, Preetesh Jain, Kris Michael Mahadeo, and et al. 2024. "Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study" Vaccines 12, no. 9: 1070. https://doi.org/10.3390/vaccines12091070
APA StyleAngelidakis, G., Chemaly, R. F., Sahasrabhojane, P. V., Morado-Aramburo, O., Jiang, Y., Bhatti, M. M., Shpall, E., Hosing, C., Jain, P., Mahadeo, K. M., Khawaja, F., Elhajj, P., Wargo, J. A., Jenq, R. R., Ajami, N. J., Kebriaei, P., & Ariza-Heredia, E. J. (2024). Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study. Vaccines, 12(9), 1070. https://doi.org/10.3390/vaccines12091070