Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Transfection
2.2. Preparation of Peptide Gel
2.3. Peptide-Encapsulated Plasmid Transfection
2.4. Serum Suppression Transfection Assay
2.5. High-Content Imaging Assay
2.6. Plasmid Extraction and Purification
2.7. Mouse Immunization
2.8. IFN-γ ELISPOT Assay
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)
2.10. In Vivo Bioluminescence Imaging
2.11. Statistical Analysis
3. Results
3.1. Design of Cell-Penetrating Peptides and Formation of Cell-Penetrating Peptide–Plasmid Complexes
3.2. CCP–Plasmid Complexes Efficiently Promote Plasmid Transfection In Vitro
3.3. Effect of Serum on Transfection Efficiency
3.4. CCP–Plasmid Complexes Improve Entry of Plasmid into Cells by Anchoring to the Cell Surface
3.5. Improvement of Intracellular Expression of Antigens by S-Cr9T–Plasmid Complexes
3.6. S-Cr9T-pOVA Plasmid Complex Induces Robust Splenocyte IFN-γ Secretion and Antibody Responses Following Immunization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26–35. [Google Scholar] [CrossRef]
- van Bergen, J.; Camps, M.G.; Pardieck, I.N.; Veerkamp, D.; Leung, W.Y.; Leijs, A.A.; Myeni, S.K.; Kikkert, M.; Arens, R.; Zondag, G.C.; et al. Multiantigen pan-sarbecovirus DNA vaccines generate protective T cell immune responses. JCI Insight 2023, 8, e172488. [Google Scholar] [CrossRef]
- Personalized DNA Vaccine Immunogenic Against Melanoma. Cancer Discov. 2024, 14, 8–9. [CrossRef] [PubMed]
- Werninghaus, I.C.; Hinke, D.M.; Fossum, E.; Bogen, B.; Braathen, R. Neuraminidase delivered as an APC-targeted DNA vaccine induces protective antibodies against influenza. Mol. Ther. 2023, 31, 2188–2205. [Google Scholar] [CrossRef] [PubMed]
- Gary, E.N.; Weiner, D.B. DNA vaccines: Prime time is now. Curr. Opin. Immunol. 2020, 65, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.; et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020, 369, 806–811. [Google Scholar] [CrossRef]
- Smith, T.R.F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X.; Yan, J.; Gary, E.N.; Walker, S.N.; Schultheis, K.; Purwar, M.; et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020, 11, 2601. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yuan, F. A comprehensive comparison of DNA and RNA vaccines. Adv. Drug Deliv. Rev. 2024, 210, 115340. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Chen, M.; Wang, S.; Lin, G.; Huang, Y.; Yang, C.; Yang, Y.; Song, Y. Spatial Engineering of Heterotypic Antigens on a DNA Framework for the Preparation of Mosaic Nanoparticle Vaccines with Enhanced Immune Activation against SARS-CoV-2 Variants. Angew. Chem. Int. Ed. Engl. 2024, 63, e202412294. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, C.S.; Patel, A.; Barnes, E.; Willicombe, M.; Siebert, S.; de Silva, T.I.; Snowden, J.A.; Lim, S.H.; Bowden, S.J.; Billingham, L.; et al. Immunogenicity of third dose COVID-19 vaccine strategies in patients who are immunocompromised with suboptimal immunity following two doses (OCTAVE-DUO): An open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Rheumatol. 2024, 6, e339–e351. [Google Scholar] [CrossRef]
- Cagigi, A.; Douradinha, B. Have mRNA vaccines sentenced DNA vaccines to death? Expert. Rev. Vaccines 2023, 22, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Muthumani, K.; Block, P.; Flingai, S.; Muruganantham, N.; Chaaithanya, I.K.; Tingey, C.; Wise, M.; Reuschel, E.L.; Chung, C.; Muthumani, A.; et al. Rapid and Long-Term Immunity Elicited by DNA-Encoded Antibody Prophylaxis and DNA Vaccination Against Chikungunya Virus. J. Infect. Dis. 2016, 214, 369–378. [Google Scholar] [CrossRef]
- Kozak, M.; Hu, J. DNA Vaccines: Their For-mulations, Engineering and Delivery. Vaccines 2024, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Lu, S. Immunogenicity of DNA vaccines in humans: It takes two to tango. Hum. Vaccin. 2008, 4, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Bernelin-Cottet, C.; Urien, C.; McCaffrey, J.; Collins, D.; Donadei, A.; McDaid, D.; Jakob, V.; Barnier-Quer, C.; Collin, N.; Bouguyon, E.; et al. Electroporation of a nanoparticle-associated DNA vaccine induces higher inflammation and immunity compared to its delivery with microneedle patches in pigs. J. Control Release 2019, 308, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Hołubowicz, R.; Du, S.W.; Felgner, J.; Smidak, R.; Choi, E.H.; Palczewska, G.; Menezes, C.R.; Dong, Z.; Gao, F.; Medani, O.; et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat. Biomed. Eng. 2024. [Google Scholar] [CrossRef]
- Plénat, T.; Deshayes, S.; Boichot, S.; Milhiet, P.E.; Cole, R.B.; Heitz, F.; Le Grimellec, C. Interaction of primary amphipathic cell-penetrating peptides with phospholipid-supported monolayers. Langmuir 2004, 20, 9255–9261. [Google Scholar] [CrossRef]
- Stalmans, S.; Wynendaele, E.; Bracke, N.; Gevaert, B.; D’hondt, M.; Peremans, K.; Burvenich, C.; De Spiegeleer, B. Chemical-functional diversity in cell-penetrating peptides. PLoS ONE 2013, 8, e71752. [Google Scholar] [CrossRef]
- Howl, J.; Nicholl, I.D.; Jones, S. The many futures for cell-penetrating peptides: How soon is now? Biochem. Soc. Trans. 2007, 35 Pt 4, 767–769. [Google Scholar] [CrossRef]
- Wagstaff, K.M.; Jans, D.A. Protein transduction: Cell penetrating peptides and their therapeutic applications. Curr. Med. Chem. 2006, 13, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.H.; Binaymotlagh, R.; Fratoddi, I.; Chronopoulou, L.; Palocci, C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Nhàn, N.T.T.; Maidana, D.E.; Yamada, K.H. Ocular Delivery of Therapeutic Agents by Cell-Penetrating Peptides. Cells 2023, 12, 1071. [Google Scholar] [CrossRef] [PubMed]
- Bottens, R.A.; Yamada, T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers 2022, 14, 5546. [Google Scholar] [CrossRef]
- Zhang, P.; Cheetham, A.G.; Lin, Y.A.; Cui, H. Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano 2013, 7, 5965–5977. [Google Scholar] [CrossRef]
- Kardani, K.; Milani, A.; Shabani, S.H.; Bolhassani, A. Cell penetrating peptides: The potent multi-cargo intracellular carriers. Expert. Opin. Drug Deliv. 2019, 16, 1227–1258. [Google Scholar] [CrossRef] [PubMed]
- Khairkhah, N.; Namvar, A.; Bolhassani, A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol. Biotechnol. 2023, 65, 1387–1402. [Google Scholar] [CrossRef]
- Kristensen, M.; Birch, D.; Nielsen, H.M. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. Int. J. Mol. Sci. 2016, 17, 185. [Google Scholar] [CrossRef]
- Shin, M.C.; Zhang, J.; Min, K.A.; Lee, K.; Byun, Y.; David, A.E.; He, H.; Yang, V.C. Cell-penetrating peptides: Achievements and challenges in application for cancer treatment. J. Biomed. Mater. Res. A 2014, 102, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Szabó, I.; Yousef, M.; Soltész, D.; Bató, C.; Mező, G.; Bánóczi, Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022, 14, 907. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Yoo, J.; Lee, D.; Kim, Y.-C. A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection. Biomater. Res. 2016, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Zhong, Y.; Zhou, X.; Zhao, G.; Xie, X.; Pei, Y.; Liu, H.; Zhang, H.; Shi, Y.; Wang, B. Induced Regulatory T Cells Superimpose Their Suppressive Capacity with Effector T Cells in Lymph Nodes via Antigen-Specific S1p1-Dependent Egress Blockage. Front. Immunol. 2017, 8, 663. [Google Scholar] [CrossRef]
- Bechara, C.; Pallerla, M.; Burlina, F.; Illien, F.; Cribier, S.; Sagan, S. Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cell Mol. Life Sci. 2015, 72, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Tietz, O.; Cortezon-Tamarit, F.; Chalk, R.; Able, S.; Vallis, K.A. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 2022, 14, 284–293. [Google Scholar] [CrossRef]
- Chen, H.; Battalapalli, D.; Draz, M.S.; Zhang, P.; Ruan, Z. The application of cell-penetrating peptides in antibacterial agents. Curr. Med. Chem. 2021, 28, 5896–5925. [Google Scholar] [CrossRef] [PubMed]
- Berillo, D.; Yeskendir, A.; Zharkinbekov, Z.; Raziyeva, K.; Saparov, A. Peptide-based drug delivery systems. Medicina 2021, 57, 1209. [Google Scholar] [CrossRef] [PubMed]
Before Gel Formation | |||
---|---|---|---|
Mean ± SD | % Intensity | ||
Btat | Peak 1 | 0.6213 ± 0.2880 | 20.3 |
Peak 2 | 3.615 ± 3.137 | 34.9 | |
Peak 3 | 141.8 ± 447.0 | 44.8 | |
S-Btat | Peak 1 | 0.6213 ± 0.03785 | 0.2 |
Peak 2 | 1.294 ± 0.3040 | 11.5 | |
Peak 3 | 15.69 ± 5.891 | 37.8 | |
R9Tat | Peak 1 | 1.499 ± 0.9809 | 61.1 |
Peak 2 | 37.84 ± 34.6 | 20.9 | |
Peak 3 | 2669 ± 1400 | 18 | |
Cr9T | Peak 1 | 3.122 ± 2.639 | 60.9 |
Peak 2 | 32.67 ± 47.07 | 27.4 | |
Peak 3 | 1281 ± 1309 | 11.7 | |
S-Cr9T | Peak 1 | 43.82 ± 8.854 | 26.3 |
Peak 2 | 255 ± 51.46 | 73.7 | |
Peak 3 | 0 ± 0 | 0 | |
After Gel Formation(12 h) | |||
Mean ± SD | % Intensity | ||
Btat | Peak 1 | 4.849 ± 6.949 | 48.4 |
Peak 2 | 105.7 ± 11.2 | 24.8 | |
Peak 3 | 2669 ± 1430 | 26.8 | |
S-Btat | Peak 1 | 3.122 ± 0.6848 | 3.4 |
Peak 2 | 15.69 ± 6.931 | 39.1 | |
Peak 3 | 164.2 ± 118.7 | 49.1 | |
R9Tat | Peak 1 | 0.7195 ± 0.3133 | 31.3 |
Peak 2 | 58.77 ± 43.34 | 31.8 | |
Peak 3 | 5560 ± 1004 | 36.9 | |
Cr9T | Peak 1 | 5.615 ± 5.104 | 46.3 |
Peak 2 | 255 ± 314.1 | 53.7 | |
Peak 3 | 0 ± 0 | 0 | |
S-Cr9T | Peak 1 | 18.17 ± 8.625 | 62.8 |
Peak 2 | 255 ± 118.7 | 33.4 | |
Peak 3 | 5560 ± 770.7 | 3.8 |
Before Gel Formation | ||
---|---|---|
Repeats | Z Avg d.nm | |
Btat | 1 | 10.02 |
2 | 10.86 | |
3 | 20.91 | |
S-Btat | 1 | 21.48 |
2 | 81.03 | |
3 | 22.1 | |
R9Tat | 1 | 7.146 |
2 | 309.5 | |
3 | 6.423 | |
Cr9T | 1 | 6.857 |
2 | 6.739 | |
3 | 7.052 | |
S-Cr9T | 1 | 667.7 |
2 | 438 | |
3 | 491 | |
After Gel Formation (12 h) | ||
Repeats | Z Avg d.nm | |
Btat | 1 | 22.71 |
2 | 63.17 | |
3 | 20.97 | |
S-Btat | 1 | 30.8 |
2 | 31.13 | |
3 | 35.07 | |
R9Tat | 1 | 186.7 |
2 | 164.8 | |
3 | 163.8 | |
Cr9T | 1 | 16.59 |
2 | 98.26 | |
3 | 18.92 | |
S-Cr9T | 1 | 32.82 |
2 | 65.68 | |
3 | 51.25 |
CPP–Plasmid Complex | N/P | Mean ± SD | % Intensity | |
---|---|---|---|---|
S-Cr9T | 0.5 | Peak 1 | 15.69 ± 4.647 | 2.4 |
Peak 2 | 190.1 ± 190.7 | 97.6 | ||
Peak 3 | 0 ± 0 | 0 | ||
1 | Peak 1 | 164.2 ± 106.7 | 100 | |
Peak 2 | 0 ± 0 | 0 | ||
Peak 3 | 0 ± 0 | 0 | ||
2 | Peak 1 | 7.531 ± 1.924 | 7.4 | |
Peak 2 | 255 ± 190 | 92.6 | ||
Peak 3 | 0 ± 0 | 0 | ||
Btat | 0.5 | Peak 1 | 396.1 ± 206.6 | 100 |
Peak 2 | 0 ± 0 | 0 | ||
Peak 3 | 0 ± 0 | 0 | ||
1 | Peak 1 | 342 ± 113.2 | 100 | |
Peak 2 | 0 ± 0 | 0 | ||
Peak 3 | 0 ± 0 | 0 | ||
2 | Peak 1 | 10.10 ± 5.835 | 19.8 | |
Peak 2 | 190.1 ± 222.6 | 50.2 | ||
Peak 3 | 3580 ± 1379 | 30 | ||
S-Btat | 0.5 | Peak 1 | 393.76 ± 86.23 | 70.40 |
Peak 2 | 6.8 ± 1.39 | 29.60 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
1 | Peak 1 | 716.77 ± 186.39 | 75.43 | |
Peak 2 | 8.4 ± 0.52 | 24.57 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
2 | Peak 1 | 18.57 ± 1.13 | 77.13 | |
Peak 2 | 550.13 ± 63.85 | 21.90 | ||
Peak 3 | 0.79 ± 1.12 | 1.00 | ||
R9Tat | 0.5 | Peak 1 | 249.77 ± 76.37 | 91.73 |
Peak 2 | 1379.33 ± 261.7 | 8.27 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
1 | Peak 1 | 219.63 ± 88.92 | 90.43 | |
Peak 2 | 1609.62 ± 2271.5 | 9.57 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
2 | Peak 1 | 178.2 ± 37.43 | 83.97 | |
Peak 2 | 4290.33 ± 154.01 | 16.03 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
Cr9T | 0.5 | Peak 1 | 74.21 ± 10.61 | 100.00 |
Peak 2 | 0 ± 0 | 0.00 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
1 | Peak 1 | 270.66 ± 53.29 | 100.00 | |
Peak 2 | 0 ± 0 | 0.00 | ||
Peak 3 | 0 ± 0 | 0.00 | ||
2 | Peak 1 | 123.63 ± 16.33 | 100.00 | |
Peak 2 | 0 ± 0 | 0.00 | ||
Peak 3 | 0 ± 0 | 0.00 |
CCP–Plasmid Complex | N/P | Repeats | Z Avg d.nm |
---|---|---|---|
S-Cr9T | 0.5 | 1 | 143.6 |
2 | 138.9 | ||
3 | 137.3 | ||
1 | 1 | 131.2 | |
2 | 176.3 | ||
3 | 167.9 | ||
2 | 1 | 197.1 | |
2 | 255.5 | ||
3 | 260.8 | ||
S-Btat | 0.5 | 1 | 376.9 |
2 | 380 | ||
3 | 379.1 | ||
1 | 1 | 283.2 | |
2 | 234.5 | ||
3 | 217.5 | ||
2 | 1 | 113.4 | |
2 | 200.8 | ||
3 | 93.41 | ||
Btat | 0.5 | 1 | 714.2 |
2 | 773.2 | ||
3 | 856.2 | ||
1 | 1 | 594.3 | |
2 | 730.8 | ||
3 | 585.5 | ||
2 | 1 | 319.0 | |
2 | 417.2 | ||
3 | 416.9 | ||
R9Tat | 0.5 | 1 | 165.7 |
2 | 156.0 | ||
3 | 156.3 | ||
1 | 1 | 161.2 | |
2 | 265.6 | ||
3 | 151.1 | ||
2 | 1 | 224.3 | |
2 | 196.9 | ||
3 | 165.2 | ||
Cr9T | 0.5 | 1 | 1730.0 |
2 | 1893.0 | ||
3 | 940.2 | ||
1 | 1 | 479.9 | |
2 | 733.0 | ||
3 | 612.6 | ||
2 | 1 | 537.7 | |
2 | 441.7 | ||
3 | 623.8 | ||
Plasmid Only | 0 | 1 | 181.6 |
2 | 156.1 | ||
3 | 153.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Zu, C.; Wang, B.; Zhong, Y. Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines 2025, 13, 94. https://doi.org/10.3390/vaccines13010094
Jiang S, Zu C, Wang B, Zhong Y. Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines. 2025; 13(1):94. https://doi.org/10.3390/vaccines13010094
Chicago/Turabian StyleJiang, Sheng, Cheng Zu, Bin Wang, and Yiwei Zhong. 2025. "Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo" Vaccines 13, no. 1: 94. https://doi.org/10.3390/vaccines13010094
APA StyleJiang, S., Zu, C., Wang, B., & Zhong, Y. (2025). Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines, 13(1), 94. https://doi.org/10.3390/vaccines13010094