Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cell Types Used
2.2. Production of Rickettsia parkeri Mutant Library and Replacement of Transposon Cassette
2.3. Identification of Attenuated R. parkeri Mutants
2.4. Selection of Antigens and Production of Multi-Epitope Arrays
2.5. Expression of Epitope Arrays in E. coli
2.6. Epitope Antibody Production in Mice
2.7. Expression of Epitope Arrays in R. parkeri
2.8. Preparation of Rickettsiae for Inoculation of Mice
2.9. Mouse Challenge Experiments to Test Efficacy of Attenuated R. parkeri Mutant Expressing A. phagocytophilum Epitope Arrays
2.10. Quantification of Bacterial Load in Mouse Tissues
2.11. Immunofluorescence Assays
2.12. Enzyme-Linked Immunosorbent Assays
2.13. Statistics
3. Results
3.1. Production of R. parkeri Transposon Mutants
3.2. Mouse Infectivity of Transposon Mutants
3.3. Development of Anaplasma Epitope Arrays for Expression in R. parkeri
3.4. Testing Immunogenicity of Epitope Arrays In Vivo
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanton, L.S. The Rickettsioses: A Practical Update. Infect. Dis. Clin. N. Am. 2019, 33, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.M.; Nichols Heitman, K.; Drexler, N.A. Diagnostic Methods Used to Classify Confirmed and Probable Cases of Spotted Fever Rickettsioses—United States, 2010–2015. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, A. The Neglected Challenge: Vaccination against Rickettsiae. PLoS Negl. Trop. Dis. 2020, 14, e0008704. [Google Scholar] [CrossRef]
- Qin, A.; Tucker, A.M.; Hines, A.; Wood, D.O. Transposon Mutagenesis of the Obligate Intracellular Pathogen Rickettsia prowazekii. Appl. Environ. Microbiol. 2004, 70, 2816–2822. [Google Scholar] [CrossRef]
- Noriea, N.F.; Clark, T.R.; Hackstadt, T. Targeted Knockout of the Rickettsia rickettsii OmpA Surface Antigen Does Not Diminish Virulence in a Mammalian Model System. mBio 2015, 6, e00323-15. [Google Scholar] [CrossRef] [PubMed]
- Arroyave, E.; Hyseni, I.; Burkhardt, N.; Kuo, Y.-F.; Wang, T.; Munderloh, U.; Fang, R. Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens 2021, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, A. Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines 2021, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.H.; Blanton, L.S.; Laroche, M.; Fang, R.; Narra, H.P. A Vaccine for Canine Rocky Mountain Spotted Fever: An Unmet One Health Need. Vaccines 2022, 10, 1626. [Google Scholar] [CrossRef] [PubMed]
- O’Conor, M.C.; Herron, M.J.; Nelson, C.M.; Barbet, A.F.; Crosby, F.L.; Burkhardt, N.Y.; Price, L.D.; Brayton, K.A.; Kurtti, T.J.; Munderloh, U.G. Biostatistical Prediction of Genes Essential for Growth of Anaplasma phagocytophilum in a Human Promyelocytic Cell Line Using a Random Transposon Mutant Library. Pathog. Dis. 2021, 79, ftab029. [Google Scholar] [CrossRef]
- Lamason, R.L.; Bastounis, E.; Kafai, N.M.; Serrano, R.; del Álamo, J.C.; Theriot, J.A.; Welch, M.D. Rickettsia Sca4 Reduces Vinculin-Mediated Intercellular Tension to Promote Spread. Cell 2016, 167, 670–683.e10. [Google Scholar] [CrossRef]
- Blanton, L.S.; Mendell, N.L.; Walker, D.H.; Bouyer, D.H. “Rickettsia amblyommii” Induces Cross Protection Against Lethal Rocky Mountain Spotted Fever in a Guinea Pig Model. Vector-Borne Zoonotic Dis. 2014, 14, 557–562. [Google Scholar] [CrossRef]
- Feng, W.C.; Waner, J.L. Serological Cross-Reaction and Cross-Protection in Guinea Pigs Infected with Rickettsia rickettsii and Rickettsia montana. Infect. Immun. 1980, 28, 627. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Walker, D.H. Cross-Protection between Distantly Related Spotted Fever Group Rickettsiae. Vaccine 2003, 21, 3901–3905. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, N.Y.; Baldridge, G.D.; Williamson, P.C.; Billingsley, P.M.; Heu, C.C.; Felsheim, R.F.; Kurtti, T.J.; Munderloh, U.G. Development of Shuttle Vectors for Transformation of Diverse Rickettsia Species. PLoS ONE 2011, 6, e29511. [Google Scholar] [CrossRef]
- Araki, K. Site-Directed Integration of the Cre Gene Mediated by Cre Recombinase Using a Combination of Mutant Lox Sites. Nucleic Acids Res. 2002, 30, e103. [Google Scholar] [CrossRef] [PubMed]
- Schudel, S.; Gygax, L.; Kositz, C.; Kuenzli, E.; Neumayr, A. Human Granulocytotropic Anaplasmosis—A Systematic Review and Analysis of the Literature. PLoS Negl. Trop. Dis. 2024, 18, e0012313. [Google Scholar] [CrossRef]
- Dumler, J.S.; Barbet, A.F.; Bekker, C.P.; Dasch, G.A.; Palmer, G.H.; Ray, S.C.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of Genera in the Families Rickettsiaceae and Anaplasmataceae in the Order Rickettsiales: Unification of Some Species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, Descriptions of Six New Species Combinations and designation of Ehrlichia equi and ’HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar] [PubMed]
- Paddock, C.D.; Fournier, P.-E.; Sumner, J.W.; Goddard, J.; Elshenawy, Y.; Metcalfe, M.G.; Loftis, A.D.; Varela-Stokes, A. Isolation of Rickettsia parkeri and Identification of a Novel Spotted Fever Group Rickettsia Sp. from Gulf Coast Ticks (Amblyomma maculatum) in the United States. Appl. Environ. Microbiol. 2010, 76, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Burkhardt, N.Y.; Price, L.D.; Munderloh, U.G. An Electroporation Method to Transform Rickettsia Spp. with a Fluorescent Protein-Expressing Shuttle Vector in Tick Cell Lines. J. Vis. Exp. 2022, 2022, e64562. [Google Scholar] [CrossRef]
- Goodman, J.L.; Nelson, C.; Vitale, B.; Madigan, J.E.; Dumler, J.S.; Kurtti, T.J.; Munderloh, U.G. Direct Cultivation of the Causative Agent of Human Granulocytic Ehrlichiosis. N. Engl. J. Med. 1996, 334, 209–215. [Google Scholar] [CrossRef]
- Felsheim, R.F.; Herron, M.J.; Nelson, C.M.; Burkhardt, N.Y.; Barbet, A.F.; Kurtti, T.J.; Munderloh, U.G. Transformation of Anaplasma phagocytophilum. BMC Biotechnol. 2006, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Nair, A.D.S.; Indukuri, V.V.; Gong, S.; Felsheim, R.F.; Jaworski, D.; Munderloh, U.G.; Ganta, R.R. Targeted and Random Mutagenesis of Ehrlichia chaffeensis for the Identification of Genes Required for In Vivo Infection. PLoS Pathog. 2013, 9, e1003171. [Google Scholar] [CrossRef]
- Barbet, A.F.; Meeus, P.F.M.; Bélanger, M.; Bowie, M.V.; Yi, J.; Lundgren, A.M.; Alleman, A.R.; Wong, S.J.; Chu, F.K.; Munderloh, U.G.; et al. Expression of Multiple Outer Membrane Protein Sequence Variants from a Single Genomic Locus of Anaplasma phagocytophilum. Infect. Immun. 2003, 71, 1706–1718. [Google Scholar] [CrossRef]
- Liu, Z.-M.; Tucker, A.M.; Driskell, L.O.; Wood, D.O. Mariner-Based Transposon Mutagenesis of Rickettsia prowazekii. Appl. Environ. Microbiol. 2007, 73, 6644–6649. [Google Scholar] [CrossRef]
- Wang, J.; Dyachenko, V.; Munderloh, U.G.; Straubinger, R.K. Transmission of Anaplasma phagocytophilum from Endothelial Cells to Peripheral Granulocytes in Vitro under Shear Flow Conditions. Med. Microbiol. Immunol. 2015, 204, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Lynn, G.E.; Burkhardt, N.Y.; Felsheim, R.F.; Nelson, C.M.; Oliver, J.D.; Kurtti, T.J.; Cornax, I.; O’Sullivan, M.G.; Munderloh, U.G. Ehrlichia Isolate from a Minnesota Tick: Characterization and Genetic Transformation. Appl. Environ. Microbiol. 2019, 85, e00866-19. [Google Scholar] [CrossRef]
- Eisemann, C.S.; Nypaver, M.J.; Osterman, J.V. Susceptibility of Inbred Mice to Rickettsiae of the Spotted Fever Group. Infect. Immun. 1984, 43, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Grasperge, B.J.; Reif, K.E.; Morgan, T.D.; Sunyakumthorn, P.; Bynog, J.; Paddock, C.D.; Macaluso, K.R. Susceptibility of Inbred Mice to Rickettsia parkeri. Infect. Immun. 2012, 80, 1846–1852. [Google Scholar] [CrossRef]
- Hodzic, E.; IJdo, J.W.I.; Feng, S.; Katavolos, P.; Sun, W.; Maretzki, C.H.; Fish, D.; Fikrig, E.; Telford, S.R., III; Barthold, S.W. Granulocytic Ehrlichiosis in the Laboratory Mouse. J. Infect. Dis. 1998, 177, 737–745. [Google Scholar] [CrossRef]
- Martin, M.E.; Bunnell, J.E.; Dumler, J.S. Pathology, Immunohistology, and Cytokine Responses in Early Phases of Human Granulocytic Ehrlichiosis in a Murine Model. J. Infect. Dis. 2000, 181, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Stenos, J.; Graves, S.R.; Unsworth, N.B. A Highly Sensitive and Specific Real-Time PCR Assay for the Detection of Spotted Fever and Typhus Group Rickettsiae. Am. J. Trop. Med. Hyg. 2005, 73, 1083–1085. [Google Scholar] [CrossRef]
- Hagen, R.; Verhoeve, V.I.; Gillespie, J.J.; Driscoll, T.P. Conjugative Transposons and Their Cargo Genes Vary across Natural Populations of Rickettsia buchneri Infecting the Tick Ixodes scapularis. Genome Biol. Evol. 2018, 10, 3218–3229. [Google Scholar] [CrossRef]
- Sutten, E.L.; Norimine, J.; Beare, P.A.; Heinzen, R.A.; Lopez, J.E.; Morse, K.; Brayton, K.A.; Gillespie, J.J.; Brown, W.C. Anaplasma marginale Type IV Secretion System Proteins VirB2, VirB7, VirB11, and VirD4 Are Immunogenic Components of a Protective Bacterial Membrane Vaccine. Infect. Immun. 2010, 78, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Mahony, D.; Cavallaro, A.S.; Zhang, B.; Zhang, J.; Deringer, J.R.; Zhao, C.X.; Brown, W.C.; Yu, C.; Mitter, N.; et al. Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS ONE 2016, 11, e0154295. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Rikihisa, Y. Identification of Novel Surface Proteins of Anaplasma phagocytophilum by Affinity Purification and Proteomics. J. Bacteriol. 2007, 189, 7819–7828. [Google Scholar] [CrossRef]
- Al-Khedery, B.; Lundgren, A.M.; Stuen, S.; Granquist, E.G.; Munderloh, U.G.; Nelson, C.M.; Alleman, A.R.; Mahan, S.M.; Barbet, A.F. Structure of the Type IV Secretion System in Different Strains of Anaplasma phagocytophilum. BMC Genom. 2012, 13, 678. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.E.; Palmer, G.H.; Brayton, K.A.; Dark, M.J.; Leach, S.E.; Brown, W.C. Immunogenicity of Anaplasma marginale Type IV Secretion System Proteins in a Protective Outer Membrane Vaccine. Infect. Immun. 2007, 75, 2333–2342. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving Sequence-Based B-Cell Epitope Prediction Using Conformational Epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef]
- Parker, J.M.R.; Guo, D.; Hodges, R.S. New Hydrophilicity Scale Derived from High-Performance Liquid Chromatography Peptide Retention Data: Correlation of Predicted Surface Residues with Antigenicity and x-Ray-Derived Accessible Sites. Biochemistry 1986, 25, 5425–5432. [Google Scholar] [CrossRef]
- Kolaskar, A.S.; Tongaonkar, P.C. A Semi-empirical Method for Prediction of Antigenic Determinants on Protein Antigens. FEBS Lett. 1990, 276, 172–174. [Google Scholar] [CrossRef]
- Karplus, P.A.; Schulz, G.E. Prediction of Chain Flexibility in Proteins. Naturwissenschaften 1985, 72, 212–213. [Google Scholar] [CrossRef]
- Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of Hepatitis A Virus-Neutralizing Antibody by a Virus-Specific Synthetic Peptide. J. Virol. 1985, 55, 836–839. [Google Scholar] [CrossRef]
- Chou, P.Y.; Fasman, G.D. Prediction of the Secondary Structure of Proteins from Their Amino Acid Sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 1978, 47, 45–148. [Google Scholar] [CrossRef]
- ThermoFisher Scientific. Extract Proteins from Polyacrylamide Gels; ThermoFisher Scientific: Waltham, MA, USA, 2019. [Google Scholar]
- Bunnell, J.E.; Trigiani, E.R.; Srinivas, S.R.; Dumler, J.S. Development and Distribution of Pathologic Lesions Are Related to Immune Status and Tissue Deposition of Human Granulocytic Ehrlichiosis Agent–Infected Cells in a Murine Model System. J. Infect. Dis. 1999, 180, 546–550. [Google Scholar] [CrossRef]
- Oliva Chávez, A.S.; Fairman, J.W.; Felsheim, R.F.; Nelson, C.M.; Herron, M.J.; Higgins, L.A.; Burkhardt, N.Y.; Oliver, J.D.; Markowski, T.W.; Kurtti, T.J.; et al. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum. PLoS Pathog. 2015, 11, e1005248. [Google Scholar] [CrossRef] [PubMed]
- Carlyon, J.A. Laboratory Maintenance of Anaplasma phagocytophilum. In Current Protocols in Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; Volume 3, pp. 3A.2.1–3A.2.30. [Google Scholar]
- Laukaitis, H.J.; Cooper, T.T.; Suwanbongkot, C.; Verhoeve, V.I.; Kurtti, T.J.; Munderloh, U.G.; Macaluso, K.R. Transposon Mutagenesis of Rickettsia felis Sca1 Confers a Distinct Phenotype during Flea Infection. PLOS Pathog. 2022, 18, e1011045. [Google Scholar] [CrossRef]
- Wenk, M.; Ba, Q.; Erichsen, V.; MacInnes, K.; Wiese, H.; Warscheid, B.; Koch, H.G. A Universally Conserved ATPase Regulates the Oxidative Stress Response in Escherichia coli. J. Biol. Chem. 2012, 287, 43585–43598. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.E.; Chávez, A.S.O.; Shaw, D.K.; Carlyon, J.A.; Ganta, R.R.; Noh, S.M.; Wood, D.O.; Bavoil, P.M.; Brayton, K.A.; Martinez, J.J.; et al. Engineering of Obligate Intracellular Bacteria: Progress, Challenges and Paradigms. Nat. Rev. Microbiol. 2017, 15, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Crosby, F.L.; Wamsley, H.L.; Pate, M.G.; Lundgren, A.M.; Noh, S.M.; Munderloh, U.G.; Barbet, A.F. Knockout of an Outer Membrane Protein Operon of Anaplasma marginale by Transposon Mutagenesis. BMC Genom. 2014, 15, 278. [Google Scholar] [CrossRef]
- Lamason, R.L.; Kafai, N.M.; Welch, M.D. A Streamlined Method for Transposon Mutagenesis of Rickettsia parkeri Yields Numerous Mutations That Impact Infection. PLoS ONE 2018, 13, e0197012. [Google Scholar] [CrossRef] [PubMed]
- McGinn, J.; Wen, A.; Edwards, D.L.; Brinkley, D.M.; Lamason, R.L. An Expanded Genetic Toolkit for Inducible Expression and Targeted Gene Silencing in Rickettsia parkeri. J. Bacteriol. 2024, 206, e00091-24. [Google Scholar] [CrossRef] [PubMed]
- Nock, A.M.; Clark, T.R.; Hackstadt, T. Development of Inducible Promoter and CRISPRi Plasmids Functional in Rickettsia rickettsii. J. Bacteriol. 2024, 206, e00367-24. [Google Scholar] [CrossRef] [PubMed]
- Engström, P.; Burke, T.P.; Mitchell, G.; Ingabire, N.; Mark, K.G.; Golovkine, G.; Iavarone, A.T.; Rape, M.; Cox, J.S.; Welch, M.D. Evasion of Autophagy Mediated by Rickettsia Surface Protein OmpB Is Critical for Virulence. Nat. Microbiol. 2019, 4, 2538–2551. [Google Scholar] [CrossRef] [PubMed]
- Sarli, M.; Novoa, M.B.; Mazzucco, M.N.; Signorini, M.L.; Echaide, I.E.; de Echaide, S.T.; Primo, M.E. A Vaccine Using Anaplasma marginale Subdominant Type IV Secretion System Recombinant Proteins Was Not Protective against a Virulent Challenge. PLoS ONE 2020, 15, e0229301. [Google Scholar] [CrossRef]
- Crosby, F.L.; Lundgren, A.M.; Hoffman, C.; Pascual, D.W.; Barbet, A.F. VirB10 Vaccination for Protection against Anaplasma phagocytophilum. BMC Microbiol. 2018, 18, 217. [Google Scholar] [CrossRef]
- Khan, A.; Khanzada, M.H.; Khan, K.; Jalal, K.; Uddin, R. Integrating Core Subtractive Proteomics and Reverse Vaccinology for Multi-Epitope Vaccine Design against Rickettsia prowazekii Endemic Typhus. Immunol. Res. 2024, 72, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Cangussu, A.S.R.; Mariúba, L.A.M.; Lalwani, P.; Pereira, K.D.E.S.; Astolphi-Filho, S.; Orlandi, P.P.; Epiphanio, S.; Viana, K.F.; Ribeiro, M.F.B.; Silva, H.M.; et al. A Hybrid Protein Containing MSP1a Repeats and Omp7, Omp8 and Omp9 Epitopes Protect Immunized BALB/c Mice against Anaplasmosis. Vet. Res. 2018, 49, 6. [Google Scholar] [CrossRef]
- Ganini, D.; Leinisch, F.; Kumar, A.; Jiang, J.; Tokar, E.J.; Malone, C.C.; Petrovich, R.M.; Mason, R.P. Fluorescent Proteins Such as EGFP Lead to Catalytic Oxidative Stress in Cells. Redox Biol. 2017, 12, 462–468. [Google Scholar] [CrossRef]
- Barbier, M.; Damron, F.H. Rainbow Vectors for Broad-Range Bacterial Fluorescence Labeling. PLoS ONE 2016, 11, e0146827. [Google Scholar] [CrossRef] [PubMed]
- Winkler, H.H.; Wood, D.O. Codon Usage in Selected AT-Rich Bacteria. Biochimie 1988, 70, 977–986. [Google Scholar] [CrossRef]
- Zhang, J.; Rubio, V.; Lieberman, M.W.; Shi, Z.-Z. OLA1, an Obg-like ATPase, Suppresses Antioxidant Response via Nontranscriptional Mechanisms. Proc. Natl. Acad. Sci. USA 2009, 106, 15356–15361. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.-Y.; Li, X.; Miao, R.; Fong, Y.-H.; Li, K.-P.; Yung, Y.-L.; Yu, M.-H.; Wong, K.-B.; Chen, Z.; Lam, H.-M. ATP Binding by the P-Loop NTPase OsYchF1 (an Unconventional G Protein) Contributes to Biotic but Not Abiotic Stress Responses. Proc. Natl. Acad. Sci. USA 2016, 113, 2648–2653. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chung, Y.-T. A Conserved GTPase YchF of Vibrio vulnificus Is Involved in Macrophage Cytotoxicity, Iron Acquisition, and Mouse Virulence. Int. J. Med. Microbiol. 2011, 301, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Fernebro, J.; Blomberg, C.; Morfeldt, E.; Wolf-Watz, H.; Normark, S.; Normark, B.H. The Influence of in vitro Fitness Defects on Pneumococcal Ability to Colonize and to Cause Invasive Disease. BMC Microbiol. 2008, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Balasingam, N.; Brandon, H.E.; Ross, J.A.; Wieden, H.-J.; Thakor, N. Cellular Roles of the Human Obg-like ATPase 1 (HOLA1) and Its YchF Homologs. Biochem. Cell Biol. 2020, 98, 1–11. [Google Scholar] [CrossRef]
Antigen | Amino Acid Residues | Predicted Characteristics | Amino Acid Sequence |
---|---|---|---|
Asp55 | 467–528 | antigenic, surface, hydrophilic | VDGENTLKDLVVGVGYNLFSKGSTSLEVFLNCHMFSVQHKFNIHEYKVSTESKVSTESKVYT |
Asp62 | 111–148 | antigenic, beta-turn | EYLSDSGTAYGADFQVMVPEVNSAVEVGKAFINRGSRA |
virB9-1 | 98–145 | antigenic, beta-turn | EKEGHTNMLIETSKGRSYAFDLISTAIPLSGGAASSINKLGKTNSALA |
YchF | 134–221 | antigenic, surface-accessible | KVLGEDKPARVLNEALRVDNLKQLQLITSKPVLYICNVLEKDAAIGNEFTK |
Construct | Successfully Transformed into R. parkeri | Expression Confirmed by RT-PCR |
---|---|---|
Amtr promoter-[YchF-Asp55-Asp62-VirB9]-6His Tag | Yes | partly |
Amtr Promoter-[YchF]-6His Tag | No | - |
Amtr Promoter-[YchF-Asp62]-6His Tag | Yes | Yes |
Amtr Promoter-[YchF-Asp55]-6His Tag | Yes | Yes |
Amtr Promoter-[YchF-VirB9]-6His Tag | No | - |
Amtr Promoter-[Asp55-Asp62-VirB9]-6His Tag-OmpA terminator | No | - |
Amtr promoter-[VirB9]-6His Tag-OmpA terminator | No | - |
OmpA Promoter-[YchF-Asp55-Asp62-VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[YchF]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[YchF-Asp62]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[YchF-Asp55]-6His Tag-OmpA terminator | No | - |
OmpA Promoter-[YchF-VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[Asp55-Asp62-VirB9-mKate]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[VirB9-mKate]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[Asp55-Asp62-VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpB Promoter-[Asp55-Asp62-VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpB Promoter-[VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpB Promoter-[YchF-Asp55-Asp62-VirB9]-6His Tag-OmpA terminator | No | - |
OmpB Promoter-[YchF]-6His Tag-OmpA terminator | No | - |
OmpB Promoter-[YchF-Asp62]-6His Tag-OmpA terminator | Yes | Yes |
OmpB Promoter-[YchF-Asp55]-6His Tag-OmpA terminator | No | - |
OmpB Promoter-[YchF-VirB9]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[virB9-mKate]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-[Asp55-mKate]-6His Tag-OmpA terminator | Yes | No |
OmpA Promoter-[Asp55-Asp62-VirB9-mKate]-6His Tag-OmpA terminator | No | - |
OmpA Promoter-[Asp55-virB9-mKate]-6His Tag-OmpA terminator | Yes | No |
OmpA Promoter-[Asp55-Asp62-mKate]-6His Tag-OmpA terminator | Yes | Partly |
OmpA Promoter-[Asp62-virB9-mKate]-6His Tag-OmpA terminator | Yes | Partly |
OmpA Promoter-[Asp62-mKate]-6His Tag-OmpA terminator | Yes | Yes |
OmpA Promoter-6His Tag-[Asp62-mKate]-OmpA terminator | Yes | Yes |
OmpA Promoter-[Asp62-mKate]-8His Tag-OmpA terminator | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cull, B.; Burkhardt, N.Y.; Khoo, B.S.; Oliver, J.D.; Wang, X.-R.; Price, L.D.; Khanipov, K.; Fang, R.; Munderloh, U.G. Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia. Vaccines 2025, 13, 109. https://doi.org/10.3390/vaccines13020109
Cull B, Burkhardt NY, Khoo BS, Oliver JD, Wang X-R, Price LD, Khanipov K, Fang R, Munderloh UG. Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia. Vaccines. 2025; 13(2):109. https://doi.org/10.3390/vaccines13020109
Chicago/Turabian StyleCull, Benjamin, Nicole Y. Burkhardt, Benedict S. Khoo, Jonathan D. Oliver, Xin-Ru Wang, Lisa D. Price, Kamil Khanipov, Rong Fang, and Ulrike G. Munderloh. 2025. "Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia" Vaccines 13, no. 2: 109. https://doi.org/10.3390/vaccines13020109
APA StyleCull, B., Burkhardt, N. Y., Khoo, B. S., Oliver, J. D., Wang, X.-R., Price, L. D., Khanipov, K., Fang, R., & Munderloh, U. G. (2025). Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia. Vaccines, 13(2), 109. https://doi.org/10.3390/vaccines13020109