Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens
Abstract
:1. Introduction
2. Protein-Based Pneumococcal Vaccines
2.1. Rationale towards Protein-Based Pneumococcal Vaccines
2.2. Challenges Concerning the Licensure of Protein-Based Pneumococcal Vaccines
3. Distinct Antigenic Fragments within Pneumococcal Proteins as Vaccine Antigens
3.1. Rationale towards the Use of Distinct Protein Fragments as Vaccine Antigens
3.2. Discovery of Antigenic Regions within Pneumococcal Proteins
3.3. Potential Advantages of Antigenic Regions/Peptides within Pneumococcal Proteins Compared to Full-Length Proteins as Vaccine Candidates
3.4. Protein Fragments as Vaccine Antigens
3.5. The Combination of Whole Proteins with Protein Fragments Demonstrated Protective Efficacy against Multiple Diseases in Mice
3.6. Particular Adjuvants and Delivery Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ciapponi, A.; Elorriaga, N.; Rojas, J.I.; Romano, M.; Martí, S.G.; Bardach, A.; Ruvinsky, S. Epidemiology of pediatric pneumococcal meningitis and bacteremia in Latin America and the caribbean: A systematic review and meta-analysis. Pediatr. Infect. Dis. J. 2014, 33, 971–978. [Google Scholar] [CrossRef]
- O’Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M.; McCall, N.; Lee, E.; Mulholland, K.; Levine, O.S.; Cherian, T. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 2009, 374, 893–902. [Google Scholar] [CrossRef]
- Mook-Kanamori, B.B.; Geldhoff, M.; van der Poll, T.; van de Beek, D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin. Microbiol. Rev. 2011, 24, 557–591. [Google Scholar] [CrossRef]
- Aligholi, M.; Emaneini, M.; Jabalameli, F.; Shahsavan, S.; Abdolmaleki, Z.; Sedaghat, H.; Jonaidi, N. Antibiotic susceptibility pattern of gram-positive cocci cultured from patients in three university hospitals in Tehran, Iran during 2001–2005. Acta Med. Iran. 2009, 47, 329–334. [Google Scholar]
- Bentley, S.D.; Aanensen, D.M.; Mavroidi, A.; Saunders, D.; Rabbinowitsch, E.; Collins, M.; Donohoe, K.; Harris, D.; Murphy, L.; Quail, M.A.; et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2006, 2, 262–269. [Google Scholar] [CrossRef]
- Cadoz, M. Potential and limitations of polysaccharide vaccines in infancy. Vaccine 1998, 16, 1391–1395. [Google Scholar] [CrossRef]
- Poolman, J.T.; Peeters, C.C.; Van Den Dobbelsteen, G.P. The history of pneumococcal conjugate vaccine development: Dose selection. Expert Rev. Vaccines 2013, 12, 1379–1394. [Google Scholar] [CrossRef]
- Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Multidrug Resistance in Non-PCV13 Serotypes of Streptococcus pneumoniae in Northern Japan, 2014. Microb. Drug Resist. 2017, 23, 206–214. [Google Scholar] [CrossRef]
- McElligott, M.; Vickers, I.; Meehan, M.; Cafferkey, M.; Cunney, R.; Humphreys, H. Noninvasive pneumococcal clones associated with antimicrobial nonsusceptibility isolated from children in the era of conjugate vaccines. Antimicrob. Agents Chemother. 2015, 59, 5761–5767. [Google Scholar] [CrossRef]
- Weinberger, D.M.; Malley, R.; Lipsitch, M. Serotype replacement in disease following pneumococcal vaccination: A discussion of the evidence. Lancet 2011, 378, 1962–1973. [Google Scholar] [CrossRef]
- Kaur, R.; Casey, J.R.; Pichichero, M.E. Emerging Streptococcus pneumoniae strains colonizing the nasopharynx in children after 13-valent pneumococcal conjugate vaccination in comparison to the 7-valent era, 2006–2015. Pediatr. Infect. Dis. J. 2016, 35, 901–906. [Google Scholar] [CrossRef]
- Moraga-Llop, F.; Garcia-Garcia, J.J.; Díaz-Conradi, A.; Ciruela, P.; Martínez-Osorio, J.; González-Peris, S.; Hernández, S.; De Sevilla, M.F.; Uriona, S.; Izquierdo, C.; et al. Vaccine failures in patients properly vaccinated with 13-valent pneumococcal conjugate vaccine in Catalonia, a region with low vaccination coverage. Pediatr. Infect. Dis. J. 2016, 35, 460–463. [Google Scholar] [CrossRef]
- Mera, R.M.; Miller, L.A.; Daniels, J.J.; Weil, J.G.; White, A.R. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States over a 10-year period: Alexander Project. Diagn. Microbiol. Infect. Dis. 2005, 51, 195–200. [Google Scholar] [CrossRef]
- Johnson, H.L.; Deloria-Knoll, M.; Levine, O.S.; Stoszek, S.K.; Hance, L.F.; Reithinger, R.; Muenz, L.R.; O’Brien, K.L. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: The pneumococcal global serotype project. PLoS Med. 2010, 7. [Google Scholar] [CrossRef]
- Balsells, E.; Guillot, L.; Nair, H.; Kyaw, M.H. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0177113. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N. Direct and indirect effects of the 13-valent pneumococcal conjugate vaccine administered to infants and young children. Future Microbiol. 2015, 10, 1599–1607. [Google Scholar] [CrossRef]
- Kilpi, T.; Ahman, H.; Jokinen, J.; Lankinen, K.S.; Palmu, A.; Savolainen, H.; Grönholm, M.; Leinonen, M.; Hovi, T.; Eskola, J.; et al. Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: Randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate V. Clin. Infect. Dis. 2003, 37, 1155–1164. [Google Scholar] [CrossRef]
- Fireman, B.; Black, S.B.; Shinefield, H.R.; Lee, J.; Lewis, E.; Ray, P. Impact of the pneumococcal conjugate vaccine on otitis media. Pediatr. Infect. Dis. 2003, 22, 10–16. [Google Scholar] [CrossRef]
- Rodgers, G.L.; Klugman, K.P. Surveillance of the impact of pneumococcal conjugate vaccines in developing countries. Hum. Vaccines Immunother. 2016, 12, 417–420. [Google Scholar] [CrossRef]
- Papadatou, I.; Spoulou, V. Pneumococcal vaccination in high-risk individuals: Are we doing it right? Clin. Vaccine Immunol. 2016, 23, 388–395. [Google Scholar] [CrossRef]
- CDC Vaccine Price List. Available online: https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html#f5 (accessed on 21 November 2018).
- McFetridge, R.; ter Meulen, A.S.; Folkerth, S.D.; Hoekstra, J.A.; Dallas, M.; Hoover, P.A.; Marchese, R.D.; Zacholski, D.M.; Watson, W.J.; Stek, J.E.; et al. Safety, tolerability, and immunogenicity of 15-valent pneumococcal conjugate vaccine in healthy adults. Vaccine 2015, 33, 2793–2799. [Google Scholar] [CrossRef]
- Sobanjo-ter Meulen, A.; Vesikari, T.; Malacaman, E.A.; Shapiro, S.A.; Dallas, M.J.; Hoover, P.A.; McFetridge, R.; Stek, J.E.; Marchese, R.D.; Hartzel, J.; et al. Safety, tolerability and immunogenicity of 15-valent pneumococcal conjugate vaccine in toddlers previously vaccinated with 7-valent pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 2015, 34, 186–194. [Google Scholar] [CrossRef]
- Moffitt, K.L.; Yadav, P.; Weinberger, D.M.; Anderson, P.W.; Malley, R. Broad antibody and T-cell reactivity induced by a pneumococcal whole-cell vaccine. Vaccine 2012, 30, 4316–4322. [Google Scholar] [CrossRef]
- Xu, X.; Meng, J.; Wang, Y.; Zheng, J.; Wu, K.; Zhang, X.; Yin, Y.; Zhang, Q. Serotype-independent protection against pneumococcal infections elicited by intranasal immunization with ethanol-killed pneumococcal strain, SPY1. J. Microbiol. 2014, 52, 315–323. [Google Scholar] [CrossRef]
- Lu, Y.J.; Lelte, L.; Gonçalves, V.M.; Dias Wde, O.; Liberman, C.; Fratelli, F.; Alderson, M.; Anderson, P.; Malley, R. GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine 2010, 28, 7468–7475. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.J.; Gross, J.; Bogaert, D.; Finn, A.; Bagrade, L.; Zhang, Q.; Anderson, P.W.; Lipsitch, M.; Malley, E. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 2008, 4, e1000159. [Google Scholar] [CrossRef]
- Moffitt, K.; Malley, R. Rationale and prospects for novel pneumococcal vaccines. Hum. Vaccines Immunother. 2016, 12, 383–392. [Google Scholar] [CrossRef]
- Alderson, M.; Malley, R.; Anderson, P.; Thompson, C.; Morrison, R.; Briles, D.; King, J.; Goldblatt, D.; Green, N.; Hural, J. A phase 1 study to assess the safety, tolerability and immunogenicity of inactivated non-encapsulated Streptococcus pneumoniae whole cell vaccine. In Proceedings of the 9th International Symposium of Pneumococci and Pneumococcal Diseases, Hyderabad, India, 9–13 March 2014. [Google Scholar]
- Briles, D.; King, J.; Hale, Y.; Malley, R.; Anderson, P.; Keech, C.; Tate, A.; Maisonneuve, J.; Alderson, M. Immune sera from adults immunized with killed whole cell nonencapsulated vaccine protects mice from fatal infection with type 3 pneumococci. In Proceedings of the 9th International Symposium of Pneumococci and Pneumococcal Diseases, Hyderabad, India, 9–13 March 2014. [Google Scholar]
- Tai, S.S. Streptococcus pneumoniae protein vaccine candidates: Properties, activities and animal studies. Crit. Rev. Microbiol. 2006, 32, 139–153. [Google Scholar] [CrossRef]
- Feldman, C.; Anderson, R. Review: Current and new generation pneumococcal vaccines. J. Infect. 2014, 69, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Surendran, N.; Ochs, M.; Pichichero, M.E. Human antibodies to PhtD, PcpA, and ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae. Infect. Immun. 2014, 82, 5069–5075. [Google Scholar] [CrossRef]
- Robinson, K.A.; Baughman, W.; Rothrock, G. Active Bacterial Core Surveillance (ABCs)/Emerging Infections Program Network. Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995–1998: Opportunities for prevention in the conjugate vaccine era. JAMA 2001, 285, 1729–1735. [Google Scholar] [CrossRef]
- Lipsitch, M.; Whitney, C.G.; Zell, E.; Kaijalainen, T.; Dagan, R.; Malley, R. Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease? PLoS Med. 2005, 2, e15. [Google Scholar] [CrossRef]
- Malley, R.; Trzcinski, K.; Srivastava, A.; Thompson, C.M.; Anderson, P.W.; Lipsitch, M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc. Natl. Acad. Sci. USA 2005, 102, 4848–4853. [Google Scholar] [CrossRef] [Green Version]
- Milner, J.D.; Brenchley, J.M.; Laurence, A.; Freeman, A.F.; Hill, B.J.; Elias, K.M.; Kanno, Y.; Spalding, C.; Elloumi, H.Z.; Paulson, M.L.; et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 2010, 452, 773–776. [Google Scholar] [CrossRef]
- Li, Y.; Gierahn, T.; Thompson, C.M.; Trzciński, K.; Ford, C.B.; Croucher, N.; Gouveia, P.; Flechtner, J.B.; Malley, R.; Lipsitch, M. Distinct effects on diversifying selection by two mechanisms of immunity against Streptococcus pneumoniae. PLoS Pathog. 2012, 8. [Google Scholar] [CrossRef]
- Croucher, N.J.; Chewapreecha, C.; Hanage, W.P.; Harris, S.R.; McGee, L.; Van Der Linden, M.; Song, J.H.; Ko, K.S.; De Lencastre, H.; Turner, C.; et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol. Evol. 2014, 6, 1589–1602. [Google Scholar] [CrossRef]
- Croucher, N.J.; Harris, S.R.; Fraser, C.; Quail, M.A.; Burton, J.; Van Der Linden, M.; McGee, L.; Von Gottberg, A.; Song, J.H.; Ko, K.S.; et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011, 331, 430–434. [Google Scholar] [CrossRef]
- Leroux-Roels, G.; Maes, C.; De Boever, F.; Traskine, M.; Rüggeberg, J.U.; Borys, D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: A phase I/II randomized clinical study. Vaccine 2014, 32, 6838–6846. [Google Scholar] [CrossRef] [Green Version]
- Seiberling, M.; Bologa, M.; Brookes, R.; Ochs, M.; Go, K.; Neveu, D.; Kamtchoua, T.; Lashley, P.; Yuan, T.; Gurunathan, S. Safety and immunogenicity of a pneumococcal histidine triad protein D vaccine candidate in adults. Vaccine 2012, 30, 7455–7460. [Google Scholar] [CrossRef]
- Berglund, J.; Vink, P.; Da Silva, F.T.; Lestrate, P.; Boutriau, D. Safety, immunogenicity, and antibody persistence following an investigational Streptococcus pneumoniae and Haemophilus influenzae triple-protein vaccine in a phase 1 randomized controlled study in healthy adults. Clin. Vaccine Immunol. 2014, 21, 56–65. [Google Scholar] [CrossRef]
- Frey, S.E.; Lottenbach, K.R.; Hill, H.; Blevins, T.P.; Yu, Y.; Zhang, Y.; Brenneman, K.E.; Kelly-Aehle, S.M.; McDonald, C.; Jansen, A.; et al. A Phase, I.; dose-escalation trial in adults of three recombinant attenuated Salmonella Typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 2013, 31, 4874–4880. [Google Scholar] [CrossRef] [PubMed]
- Bologa, M.; Kamtchoua, T.; Hopfer, R.; Sheng, X.; Hicks, B.; Bixler, G.; Hou, V.; Pehlic, V.; Yuan, T.; Gurunathan, S. Safety and immunogenicity of pneumococcal protein vaccine candidates: Monovalent choline-binding protein A (PcpA) vaccine and bivalent PcpA-pneumococcal histidine triad protein D vaccine. Vaccine 2012, 30, 7461–7468. [Google Scholar] [CrossRef] [PubMed]
- Kamtchoua, T.; Bologa, M.; Hopfer, R.; Neveu, D.; Hu, B.; Sheng, X.; Corde, N.; Pouzet, C.; Zimmermann, G.; Gurunathan, S. Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD1 in a single-antigen protein vaccine candidate in adults. Vaccine 2013, 31, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Briles, D.E.; Hollingshead, S.K.; King, J.; Swift, A.; Braun, P.A.; Park, M.K.; Ferguson, L.M.; Nahm, M.H.; Nabors, G.S. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis. 2000, 182, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Briles, D.E.; Ades, E.; Paton, J.C.; Sampson, J.S.; Carlone, G.M.; Huebner, R.C.; Virolainen, A.; Swiatlo, E.; Hollingshead, S.K. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 2000, 68, 796–800. [Google Scholar] [CrossRef]
- Nabors, G.S.; Braun, P.A.; Herrmann, D.J.; Heise, M.L.; Pyle, D.J.; Gravenstein, S.; Schilling, M.; Ferguson, L.M.; Hollingshead, S.K.; Briles, D.E.; et al. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. Vaccine 2000, 18, 1743–1754. [Google Scholar] [CrossRef]
- Khan, M.N.; Pichichero, M.E. Vaccine candidates PhtD and PhtE of Streptococcus pneumoniae are adhesins that elicit functional antibodies in humans. Vaccine 2012, 30, 2900–2907. [Google Scholar] [CrossRef]
- Yun, K.W.; Choi, E.H.; Lee, H.J. Genetic diversity of pneumococcal surface protein A in invasive pneumococcal isolates from Korean children, 1991–2016. PLoS ONE 2017, 12, e0183968. [Google Scholar] [CrossRef]
- Gámez, G.; Castro, A.; Gómez-Mejia, A.; Gallego, M.; Bedoya, A.; Camargo, M.; Hammerschmidt, S. The variome of pneumococcal virulence factors and regulators. BMC Genom. 2018, 19, 10. [Google Scholar] [CrossRef]
- Song, J. Why do proteins aggregate_Intrinsically insoluble proteins and dark mediators revealed by studies on insoluble proteins solubilized in pure water. Version 1. F1000Research 2013, 2, 94. [Google Scholar] [CrossRef]
- Welsh, R.M.; Fujinami, R.S. Pathogenic epitopes, heterologous immunity and vaccine design. Nature 2007, 5, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Alhamdi, Y.; Neill, D.R.; Abrams, S.T.; Malak, H.A.; Kadioglu, A.; Toh, C.H. Circulating Pneumolysin is a potent inducer of cardiac injury during pneumococcal infection. PLoS Pathog. 2015, 11, e1004836. [Google Scholar] [CrossRef] [PubMed]
- Magyarics, Z.; Rouha, H.; Badarou, A.; Nielson, N.; Caccamo, M.; Weber, S.; Maierhofer, B.; Havlicek, K.; Dolezilkova, I.; Gross, K.; et al. Broadly cross-reactivity antibodies recognizing the proline-rich region of pneumococcal surface protein A variants show cross-reactivity with skeletal muscle. In Proceedings of the 12th European Meeting on the Molecular Biology of the Pneumococcus, Oxford, UK, 7–10 July 2015. [Google Scholar]
- Briles, D.; Hollingshead, S.K. Surface proteins of Streptococcus pneumoniae: Their roles in virulence and potential as vaccines. In Euroconference on Infections and Lung Diseases (Paris, France); Institut Pasteur: Paris, France, 2006. [Google Scholar]
- McDaniel, L.S.; Swiatlo, E. Should Pneumococcal Vaccines Eliminate Nasopharyngeal Colonization? MBio 2016, 7, e00545-16. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Lingappan, K. Whooping cough: The current scene. Chest 2006, 130, 1547–1553. [Google Scholar] [CrossRef]
- Cohen, J.M.; Khandavill, S.; Camberiein, E.; Hyams, C.; Baxendale, H.E.; Brown, J.S. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-cell responses to nasopharyngeal colonization. PLoS ONE 2011, 6, e25558. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.-J.; Mueller, S.N.; Wherry, E.J.; Barber, D.L.; Aubert, R.D.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Enhancing therapeutic vaccination by blocking PD-1–mediated inhibitory signals during chronic infection. J. Exp. Med. 2008, 205, 543–555. [Google Scholar] [CrossRef]
- Xu, Q.; Casey, J.R.; Pichichero, M.E. Higher levels of mucosal antibody to pneumococcal vaccine candidate proteins are associated with reduced acute otitis media caused by Streptococcus pneumoniae in young children. Mucosal Immunol. 2015, 8, 110–117. [Google Scholar] [CrossRef]
- Ren, D.; Almudevar, A.L.; Pichichero, M.E. Synchrony in serum antibody response to conserved proteins of Streptococcus pneumoniae in young children. Hum. Vaccines Immunother. 2015, 11, 489–497. [Google Scholar] [CrossRef]
- Tan, A.C.L.; Goubier, A.; Kohrt, H.E. A quantitative analysis of therapeutic cancer vaccines in phase 2 or phase 3 trial. J. Immunother. Cancer 2015, 3. [Google Scholar] [CrossRef]
- Rubinstein, N.D.; Mayrose, I.; Halperin, D.; Yekutieli, D.; Gershoni, J.M.; Pupko, T. Computational characterization of B-cell epitopes. Mol. Immunol. 2008, 45, 3477–3489. [Google Scholar] [CrossRef] [Green Version]
- Giefing, C.; Nagy, E.; von Gabain, A. The antigenome: From protein subunit vaccines to antibody treatments of bacterial infections? Adv. Exp. Med. Biol. 2009, 655, 90–117. [Google Scholar] [CrossRef] [PubMed]
- Giefing, C.; Meinke, A.L.; Hanner, M.; Henics, T.; Minh, D.B.; Gelbmann, D.; Lundberg, U.; Senn, B.M.; Schunn, M.; Habel, A.; et al. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J. Exp. Med. 2008, 205, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Beghetto, E.; Gargano, N.; Ricci, S.; Garufi, G.; Peppoloni, S.; Montagnani, F.; Oggioni, M.; Pozzi, G.; Felici, F. Discovery of novel Streptococcus pneumoniae antigens by screening a whole-genome λ-display library. FEMS Microbiol. Lett. 2006, 262, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Lagousi, T.; Routsias, J.; Piperi, C.; Tsakris, A.; Chrousos, G.; Theodoridou, M.; Spoulou, V. Discovery of immunodominant B cell epitopes within surface pneumococcal virulence proteins in pediatric patients with invasive pneumococcal disease. J. Biol. Chem. 2015, 290, 27500–27510. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Jahangiri, A.; Borna, H.; Ahmadi Zanoos, K.; Amani, J. Computational vaccinology and epitope vaccine design by immunoinformatics. Acta Microbiol. Immunol. Hung. 2014, 61, 285–307. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Rappuoli, R. Reverse vaccinology: Developing vaccines in the era of genomics. Immunity 2010, 33, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef] [Green Version]
- Rosalia, R.A.; Quakkelaar, E.D.; Redeker, A.; Khan, S.; Camps, M.; Drijfhout, J.W.; Silva, A.L.; Jiskoot, W.; van Hall, T.; van Veelen, P.A.; et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol. 2013, 43, 2554–2565. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hong, H.; Li, D.; Ma, S.; Di, Y.; Stoten, A.; Haig, N.; Di Gleria, K.; Yu, Z.; Xu, X.N.; et al. Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8+ and CD4+ T cells. J. Biol. Chem. 2009, 284, 9184–9191. [Google Scholar] [CrossRef]
- Ménager, J.; Ebstein, F.; Oger, R.; Hulin, P.; Nedellec, S.; Duverger, E.; Lehmann, A.; Kloetzel, P.M.; Jotereau, F.; Guilloux, Y. Cross-presentation of synthetic long peptides by human dendritic cells: A process dependent on ERAD component p97/VCP but not sec61 and/or Derlin-1. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Mukerji, R.; Mirza, S.; Roche, A.M.; Widener, R.W.; Croney, C.M.; Rhee, D.-K.; Weiser, J.N.; Szalai, A.J.; Briles, D.E. Pneumococcal Surface Protein A Inhibits Complement Deposition on the Pneumococcal Surface by Competing with the Binding of C-Reactive Protein to Cell-Surface Phosphocholine. J. Immunol. 2012, 189, 5327–5335. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Li, J.; Genschmer, K.; Hollingshead, S.K.; Briles, D.E. The absence of PspA or presence of antibody to PspA facilitates the complement-dependent phagocytosis of pneumococci In Vitro. Clin. Vaccine Immunol. 2012, 19, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.; Wilson, L.; Benjamin, W.H.; Novak, J.; Barnes, S.; Hollingshead, S.K.; Briles, D.E. Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin. Infect. Immun. 2011, 79, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Shaper, M.; Hollingshead, S.K.; Benjamin, W.H.; Briles, D.E. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect. Immun. 2004, 72, 5031–5040. [Google Scholar] [CrossRef]
- Lassing, I.; Schmitzberger, F.; Björnstedt, M.; Holmgren, A.; Nordlund, P.; Schutt, C.E.; Lindberg, U. Molecular and Structural Basis for Redox Regulation of β-Actin. J. Mol. Biol. 2007, 370, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Hollingshead, S.K.; Becker, R.; Briles, D.E. Diversity of PspA: Mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 2000, 68, 5889–5900. [Google Scholar] [CrossRef] [PubMed]
- Daniels, C.C.; Coan, P.; King, J.; Hale, J.; Benton, K.A.; Briles, D.E.; Hollingshead, S.K. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect. Immun. 2010, 78, 2163–2172. [Google Scholar] [CrossRef]
- Darrieux, M.; Miyaji, E.N.; Ferreira, D.M.; Lopes, M.; Lopes, A.P.; Ren, B.; Briles, D.E.; Hollingshead, S.K.; Leite, L.C. Fusion proteins containing family 1 and family 2 PspA fragments elicit protection against Streptococcus pneumoniae that correlates with antibody-mediated enhancement of complement deposition. Infect Immun. 2007, 75, 5930–5938. [Google Scholar] [CrossRef]
- Vadesilho, C.F.M.; Ferreira, D.M.; Gordon, S.B.; Briles, D.E.; Moreno, A.T.; Oliveira, M.L.S.; Ho, P.L.; Miyaji, E.N. Mapping of epitopes recognized by antibodies induced by immunization of mice with PspA and PspC. Clin. Vaccine Immunol. 2014, 21, 940–948. [Google Scholar] [CrossRef]
- Olsen, C.H. Review of the Use of Statistics in Infection and Immunity. Infect. Immun. 2003, 71, 6689–6692. [Google Scholar] [CrossRef] [Green Version]
- Kuipers, K.; Daleke-Schermerhorn, M.H.; Jong, W.S.P.; ten Hagen-Jongman, C.M.; van Opzeeland, F.; Simonetti, E.; Luirink, J.; de Jonge, M.I. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 2015, 33, 2022–2029. [Google Scholar] [CrossRef]
- Kuipers, K.; Jong, W.S.P.; van der Gaast-de Jongh, C.E.; Houben, D.; van Opzeeland, F.; Simonetti, E.; van Selm, S.; de Groot, R.; Koenders, M.I.; Azarian, T.; et al. Th17-mediated cross protection against pneumococcal carriage by vaccination with a variable antigen. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.T.; Oliveira, M.L.S.; Ferreira, D.M.; Ho, P.L.; Darrieux, M.; Leite, L.C.C.; Ferreira, J.M.C.; Pimenta, F.C.; Andrade, A.L.S.S.; Miyaji, E.N. Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin. Vaccine Immunol. 2010, 17, 439–446. [Google Scholar] [CrossRef] [PubMed]
- King, Q.O.; Lei, B.; Harmsen, A.G. Pneumococcal Surface Protein A Contributes to Secondary Streptococcus pneumoniae Infection after Influenza Virus Infection. J. Infect. Dis. 2009, 200, 537–545. [Google Scholar] [CrossRef]
- Tamborrini, M.; Geib, N.; Marrero-Nodarse, A.; Jud, M.; Hauser, J.; Aho, C.; Lamelas, A.; Zuniga, A.; Pluschke, G.; Ghasparian, A.; et al. A Synthetic Virus-Like Particle Streptococcal Vaccine Candidate Using B-Cell Epitopes from the Proline-Rich Region of Pneumococcal Surface Protein A. Vaccines 2015, 3, 850–874. [Google Scholar] [CrossRef] [Green Version]
- Rioux, S.; Neyt, C.; Di Paolo, E.; Turpin, L.; Charland, N.; Labbe, S.; Mortier, M.C.; Mitchell, T.J.; Feron, C.; Martin, D.; et al. Transcriptional regulation, occurrence and putative role of the Pht family of Streptococcus pneumoniae. Microbiology 2011, 157, 335–348. [Google Scholar] [CrossRef]
- Zhang, Y.; Masi, A.W.; Barniak, V.; Mountzouros, K.; Hostetter, M.K.; Green, B.A. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect. Immun. 2001, 69, 3827–3836. [Google Scholar] [CrossRef]
- Kallio, A.; Sepponen, K.; Hermand, P.; Denoël, P.; Godfroid, F.; Melin, M. Role of Pht proteins in attachment of Streptococcus pneumoniae to respiratory epithelial cells. Infect. Immun. 2014, 82, 1683–1691. [Google Scholar] [CrossRef]
- Godfroid, F.; Hermand, P.; Verlant, V.; Denoël, P.; Poolman, J.T. Preclinical evaluation of the Pht proteins as potential cross-protective pneumococcal vaccine antigens. Infect. Immun. 2011, 79, 238–245. [Google Scholar] [CrossRef]
- Plumptre, C.D.; Ogunniyi, A.D.; Paton, J.C. Vaccination against Streptococcus pneumoniae using truncated derivatives of polyhistidine triad protein D. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Papastamatiou, T.; Routsias, J.G.; Koutsoni, O.; Dotsika, E.; Tsakris, A.; Spoulou, V. Evaluation of protective efficacy of selected immunodominant B-cell epitopes within virulent surface proteins of Streptococcus pneumonia. Infect. Immun. 2018, 86. [Google Scholar] [CrossRef]
- Kausmally, L.; Johnsborg, O.; Lunde, M.; Knutsen, E.; Håvarstein, L.S. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 2005, 187, 4338–4345. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Xu, W.; Cui, Y.; Zhang, X.; Yao, R.; Li, D.; Wang, H.; He, Y.; Cao, J.; Yin, Y. Immunization with a ZmpB-based protein vaccine could protect against pneumococcal diseases in mice. Infect. Immun. 2011, 79, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Zeiler, J.L.; Smithson, S.L.; Carlone, G.M.; Ades, E.W.; Sampson, J.S.; Johnson, S.E.; Kieber-Emmons, T.; Westerink, M.A. Selection of an immunogenic and protective epitope of the PsaA protein of Streptococcus pneumoniae using a phage display library. Hybridoma 2000, 19, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Cardaci, A.; Papasergi, S.; Midiri, A.; Mancuso, G.; Domina, M.; Cariccio, V.L.; Mandanici, F.; Galbo, R.; Lo Passo, C.; Pernice, I.; et al. Protective activity of Streptococcus pneumoniae Spr1875 protein fragments identified using a phage displayed genomic library. PLoS ONE 2012, 7, e36588. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sun, T.; Wang, D.; Dong, Y.; Xu, M.; Hou, H.; Kong, F.T.; Liang, C.; Gu, T.; Chen, P.; et al. Protective immune responses elicited by fusion protein containing PsaA and PspA fragments. Immunol. Investig. 2015, 44, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Mann, B.; Thornton, J.; Heath, R.; Wade, K.R.; Tweten, R.K.; Gao, G.; El Kasmi, K.; Jordan, J.B.; Mitrea, D.M.; Kriwacki, R.; et al. Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein. J. Infect. Dis. 2014, 209, 1116–1125. [Google Scholar] [CrossRef]
- Goulart, C.; Rodriguez, D.; Kanno, A.I.; Lu, Y.J.; Malley, R.; Leite, L.C.C. Recombinant BCG expressing a PspA-PdT fusion protein protects mice against pneumococcal lethal challenge in a prime-boost strategy. Vaccine 2017, 35, 1683–1691. [Google Scholar] [CrossRef]
- Converso, T.R.; Goulart, C.; Darrieux, M.; Leite, L.C.C. A protein chimera including PspA in fusion with PhtD is protective against invasive pneumococcal infection and reduces nasopharyngeal colonization in mice. Vaccine 2017, 35, 5140–5147. [Google Scholar] [CrossRef]
- Chen, A.; Mann, B.; Gao, G.; Heath, R.; King, J.; Maissoneuve, J.; Alderson, M.; Tate, A.; Hollingshead, S.K.; Tweten, R.K.; et al. Multivalent pneumococcal protein vaccines comprising pneumolysoid with epitopes/fragments of CbpA and/or PspA elicit strong and broad protection. Clin. Vaccine Immunol. 2015, 22, 1079–1089. [Google Scholar] [CrossRef]
- Magiri, R.; Mutwiri, G.; Wilson, H.L. Recent advances in experimental polyphosphazene adjuvants and their mechanisms of action. Cell Tissue Res. 2018, 374, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Apostólico, J.D.S.; Alves, V.; Lunardelli, S.; Coirada, F.C.; Boscardin, S.B.; Rosa, D.S. Adjuvants: Classification, Modus Operandi, and Licensing. J. Immunol. Res. 2016, 2016, 1459394. [Google Scholar] [CrossRef] [PubMed]
- Blander, J.M.; Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006, 440, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Bijker, M.S.; Weterings, J.J.; Tanke, H.J.; Adema, G.J.; Van Hall, T.; Drijfhout, J.W.; Melief, C.J.M.; Overkleeft, H.S.; Van Der Marel, G.A.; et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem. 2007, 282, 21145–21159. [Google Scholar] [CrossRef] [PubMed]
- Zom, G.G.; Welters, M.J.P.; Loof, N.M.; Goedemans, R.; Lougheed, S.; Valentijn, R.R.P.M.; Zandvliet, M.L.; Meeuwenoord, N.J.; Melief, C.J.M.; de Gruijl, T.D.; et al. TLR2 ligand-synthetic long peptide conjugates effectively stimulate tumor-draining lymph node T cells of cervical cancer patients. Oncotarget 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Zom, G.G.; Khan, S.; Britten, C.M.; Sommandas, V.; Camps, M.G.M.; Loof, N.M.; Budden, C.F.; Meeuwenoord, N.J.; Filippov, D.V.; van der Marel, G.A.; et al. Efficient Induction of Antitumor Immunity by Synthetic Toll-like Receptor Ligand-Peptide Conjugates. Cancer Immunol. Res. 2014, 2, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Oma, K.; Zhao, J.; Ezoe, H.; Akeda, Y.; Koyama, S.; Ishii, K.J.; Kataoka, K.; Oishi, K. Intranasal immunization with a mixture of PspA and a Toll-like receptor agonist induces specific antibodies and enhances bacterial clearance in the airways of mice. Vaccine 2009, 27, 3181–3188. [Google Scholar] [CrossRef]
- Moffitt, K.; Skoberne, M.; Howard, A.; Gavrilescu, L.C.; Gierahn, T.; Munzer, S.; Dixit, B.; Giannasca, P.; Flechtner, J.B.; Malley, R. Toll-like receptor 2-dependent protection against pneumococcal carriage by immunization with lipidated pneumococcal proteins. Infect. Immun. 2014, 82, 2079–2086. [Google Scholar] [CrossRef]
- Perrie, Y.; Kirby, D.; Bramwell, V.W.; Mohammed, A.R. Recent Developments in Particulate-Based Vaccines. Recent Pat. Drug Deliv. Formul. 2007, 1, 117–129. [Google Scholar] [CrossRef]
- Aikins, M.E.; Bazzill, J.; Moon, J.J. Vaccine nanoparticles for protection against HIV infection. Nanomedicine 2017, 12, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Dowling, D.J.; Scott, E.A.; Scheid, A.; Bergelson, I.; Joshi, S.; Pietrasanta, C.; Brightman, S.; Sanchez-Schmitz, G.; Van Haren, S.D.; Ninković, J.; et al. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J. Allergy Clin. Immunol. 2017, 140, 1339–1350. [Google Scholar] [CrossRef] [PubMed]
- Zughaier, S.M. Analysis of novel meningococcal vaccine formulations. Hum. Vaccines Immunother. 2017, 13, 1728–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, K.; Mann, B.J.; Qin, A.; Barry, E.M.; Ernst, R.K.; Vogel, S.N. Monophosphoryl lipid a enhances efficacy of a Francisella tularensis LVS-catanionic nanoparticle subunit vaccine against F. tularensis Schu S4 challenge by augmenting both humoral and cellular immunity. Clin. Vaccine Immunol. 2017, 24. [Google Scholar] [CrossRef] [PubMed]
- Frietze, K.M.; Peabody, D.S.; Chackerian, B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016, 18, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Szarewski, A. Drug Evaluation HPV vaccine: Cervarix. Expert Opin. Biol. Ther. 2010, 10, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.M.; DeMars, L.R. HPV vaccines—A review of the first decade. Gynecol. Oncol. 2017, 146, 196–204. [Google Scholar] [CrossRef]
- Wilby, K.J.; Lau, T.T.Y.; Gilchrist, S.E.; Ensom, M.H.H. Mosquirix (RTS,S): A novel vaccine for the prevention of Plasmodium falciparum malaria. Ann. Pharmacother. 2012, 46, 384–393. [Google Scholar] [CrossRef]
- Holst, J.; Oster, P.; Arnold, R.; Tatley, M.V.; Næss, L.M.; Aaberge, I.S.; Galloway, Y.; Mcnicholas, A.; Hallahan, J.O.; Rosenqvist, E.; et al. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV) Lessons from past programs and implications for the future. Hum. Vaccines Immunother. 2013, 9, 1241–1253. [Google Scholar] [CrossRef]
- Roche, H.; Håkansson, A.; Hollingshead, S.K.; Briles, D.E. Regions of PspA/EF3296 best able to elicit protection against Streptococcus pneumoniae in a murine infection model. Infect. Immun. 2003, 71, 1033–1041. [Google Scholar] [CrossRef]
Vaccine | Assignee | Current Status | References |
---|---|---|---|
PhtD monovalent | GSK | Phase 2 completed | Leroux-Roels et al., 2014 [41] Seiberling et al., 2012 [42] |
PhtD monovalent | Sanofi Pasteur | Phase 1 completed | Leroux-Roels et al., 2014 [41] |
PhtD+dPly | GSK | Phase 2 completed | Seiberling et al., 2012 [42] |
Protein D+PhtD+dPly trivalent | GSK | Phase 1 completed | Berglund et al., 2014 [43] |
PhtD+dPly+PCV8 | GSK | Phase 1 completed | Seiberling et al., 2012 [42] |
PhtD+dPly+PCV10 | GSK | Phase 2 completed | Seiberling et al., 2012 [42] |
dPly, PhtD+dPly+PCV10 | GSK | Phase 1 completed | Seiberling et al., 2012 [42] |
PspA | Sanofi Pasteur | Phase 1 completed | Frey et al., 2013 [44] |
PlyD1 monovalent | Sanofi Pasteur | Phase 1 completed | Bologa et al., 2012 [45] Kamtchoua et al., 2013 [46] |
PspA+PsaA | Sanofi-Pasteur/CDC | Phase 1 completed | Briles et al., 2000 [47,48] Nabors et al., 2000 [49] |
PcpA | Sanofi Pasteur | Phase 1 completed | Bologa et al., 2012 [45] |
PcpA+PhtD | Sanofi Pasteur | Phase 1 completed | Khan et al., 2012 [50] Bologa et al., 2012 [45] |
PhtD+PcpA+PlyD1 | Sanofi Pasteur | Phase 1 completed | Bologa et al., 2012 [45] |
PcsB, StkP, PsaA (IC-47) | Intercell AG/Novartis | Phase 1 completed | Kamtchoua et al., 2013 [46] |
Protein Name | Function | Virulence Factor | Location | 3-D structure of the Full Length Proteins |
---|---|---|---|---|
Pneumococcal surface protein A (PspA) | Cellular Metabolism and Immune Evasion | Choline-Binding Proteins (CBPs) | Bound to the cell wall via PCho moiety | |
Pneumococcal Choline-Binding Protein A (PcpA) | Protection Against Lung Infection and Sepsis | Choline-Binding Proteins (CBPs) | Bound to the cell wall via PCho moiety | |
Secreted 45-KDa Protein, Usp45-Hydrolase (PcsB) | Virulence | Non-Classical Surface-Exposed Proteins | Membrane | |
Serine/Threonine Protein Kinase (StkP) | Cellular Metabolism and Fitness | Non-Classical Surface-Exposed Proteins | Membrane | |
Peptide Permease Enzyme, Manganese ABC Transporter (PsaA) | Immune Evasion | Lipoproteins | Surface of the cell wall | |
Pneumolysin D (PlyD) | Cytolytic Toxin, Adherence, Immune Evasion, Invasion, Dissemination and Complement Activation | Non-Classical Surface-Exposed Proteins | Cytoplasmic toxin | |
Pneumolysin toxoid (dPly) | Toxoid | Non-Classical Surface-Exposed Proteins | Toxoid | N.A. * |
Choline-binding protein D (CbpD) | Colonization | Choline-Binding Proteins (CBPs) | Bound to the cell wall via PCho moiety | |
Histidine triad protein D (PhtD) | Adherence and Immune Evasion | Lipoproteins | Surface of the cell wall | |
Histidine triad protein E (PhtE) | Adherence and Immune Evasion | Lipoproteins | Surface of the cell wall | |
Histidine triad protein A (PhtA) | Adherence and Immune Evasion | Lipoproteins | Surface of the cell wall | N.A. * |
Histidine triad protein B (PhtB) | Adherence and Immune Evasion | Lipoproteins | Surface of the cell wall | N.A. * |
Plasmin and Fibronectin-Binding Protein A (PfbB) | Adherence, Immune Evasion and Antiphagocytosis | LPxTG—Proteins | Anchored to well wall by the enzyme sortase A | |
Zinc metalloproteinase B (ZmpB) | Immune Evasion and Colonization | LPxTG—Proteins | Anchored to well wall by the enzyme sortase A |
Protein | Fragment | Adjuvant | Reference |
---|---|---|---|
Pneumococcal surface proteins: CbpD, PhtD, PhtE, ZmpB | CbpD_pep4, PhtD_pep19, PhtE_pep40, ZmpB_pep125 and | Freund’s adjuvant | Papastamatiou et al., 2018 [96] |
PspA | α1α2 fragment | OMVs (Salmonella Outer Membrane Vesicles) | Kuipers et al., 2017 [87] |
PspA, PdT | PspA-PdT fusion protein | BCG (Bacillus Calmette-Guérin) | Goulart et al., 2017 [103] |
PspA, PotD | PspA-PotD fusion protein | Al(OH)3 | Converso et al., 2017 [104] |
PspA | linear peptides from the PRR or the NPB | SVLPs (synthetic Virus-Like Particles) | Tamborrini et al., 2015 [90] |
PspA, Ply | N-terminal fragments of PspA, N-terminal & C-terminal fragments of Ply, fused to an Hbp-carrier | OMVs (Salmonella Outer Membrane Vesicles) | Kuipers et al., 2015 [86] |
Ply, CbpA, PspA | combination of full-length or peptide regions of Ply, CbpA, or PspA | Alum | Chen et al., 2015 [105] |
PspA, | PspA epitopes from the N-terminal region | Aluminum hydroxide | Vadesilho et al., 2014 [84] |
SP_2108 and SP_0148 lipoproteins | 2108- 1912 (fusion construct of SP_2108 and SP_0148) | Cholera Toxin (CT)Aluminum hydroxide | Moffitt et al., 2014 [113] |
PhtD | full length PhtD and truncated derivatives (PhtD, PhtD C1, PhtD N2 etc.) | E. coli labile toxin B subunit (LTB) | Plumptre et al., 2013 [95] |
Protein encoded by the spr1875 of R6 strain genome | R4-GST fusion protein (glutathione S-transferase) (R4: 161 amino acid-long fragment) | Freund’s adjuvant | Cardaci et al., 2012 [100] |
ZmpB, Ply, Dnal | rZmpB, rPly, rDnaJ, rZmpB + rPly, rZmpB + rDnaJ, rPly + rDnaJ, rZmpB + rPly + rDnaJ, | Freund’s adjuvant | Gong et al., 2011 [98] |
PspA | N-terminal regions of clades 1,3 and 4 +PRR, N-terminal-PRR, N-terminal+ first block of PRR | Al(OH)3 | Darrieux et al, 2007 [83] |
PspA | PR regions and NPB regions (PR+NPB _C, PR+NPB _N, PR+NPB, PR-NPB, or NPB) | Alum | Daniels et al., 2010 [82] |
PspA | recombinant N-terminal His- tagged PspA protein | cholera toxin B subunit (CTB) | King et al., 2009 [89] |
PspA | Recombinant PspAs | TLR-agonists: Pam3 Ultra Pure Escherichia coli K12 LPS, CSK4, Poly(I:C) and | Oma et al., 2009 [112] |
Several proteins (i.e., PspA, PscB, StkP, PhtD etc) | N-terminal two thirds of PcsB, C-terminal half of StkP | Alum | Giefing et al., 2008 [67] |
PspA | Six overlapping recombinant fragments of family 2, clade 3 PspA/EF3296 | AlOH3 | Roche et al., 2003 [125] |
PhpA | Recombinant PhpA-79 | AlPO4 | Zhang et al., 2001 [92] |
PsaA | peptide 43 (palmitoyl residue at the N-terminal end), 46 (same peptide without any ligands, nonlipidated), and PsaA | Aluminum hydroxide | Srivastava et al., 2000 [99] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagousi, T.; Basdeki, P.; Routsias, J.; Spoulou, V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines 2019, 7, 9. https://doi.org/10.3390/vaccines7010009
Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines. 2019; 7(1):9. https://doi.org/10.3390/vaccines7010009
Chicago/Turabian StyleLagousi, Theano, Paraskevi Basdeki, John Routsias, and Vana Spoulou. 2019. "Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens" Vaccines 7, no. 1: 9. https://doi.org/10.3390/vaccines7010009
APA StyleLagousi, T., Basdeki, P., Routsias, J., & Spoulou, V. (2019). Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines, 7(1), 9. https://doi.org/10.3390/vaccines7010009