Vaccines for Pneumococcal Infections

A special issue of Vaccines (ISSN 2076-393X).

Deadline for manuscript submissions: closed (30 November 2018) | Viewed by 39982

Special Issue Editors


E-Mail Website
Guest Editor
Infection and Immunity, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
Interests: human papillomavirus vaccines; immunogenicity; correlates of protection
Special Issues, Collections and Topics in MDPI journals

E-Mail
Co-Guest Editor
School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
Interests: immunology of infectious diseases; clinical immunology; conjugate vaccines; vaccines; immunity; immunogenicity; B cells

Special Issue Information

Dear Colleagues,

Infections with the bacterium Streptococcus pneumoniae are one of the most common causes of morbidity and mortality in children less than five years of age, worldwide; mostly in low- and middle-income countries (LMICs). Pneumococcal conjugate vaccines (PCVs) have had a tremendous effect on reducing pneumococcal carriage and invasive disease, due to a combination of direct protection, as well as powerful indirect protection or ‘herd immunity’. Despite the success of PCVs, a number of important issues remain, including the impact of serotype replacement following PCV use, transmission of pneumococci in high burden settings as well as understanding the immunological markers of long-term protection against carriage. New generation vaccines including protein-based vaccines and whole cell vaccines may alleviate some of these issues but more studies are needed. This Special Issue focuses on the current state-of-play in relation to the use of pneumococcal vaccines in preventing infections with S. pneumoniae. Contributions in the areas of immunology, microbiology and clinical epidemiology are welcome, particularly those related to novel pneumococcal vaccines.

Dr. Paul Licciardi
Dr. Joanna Papadatou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Pneumococcal
  • vaccination
  • carriage
  • immunogenicity
  • transmission
  • herd immunity
  • serotype replacement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 134 KiB  
Editorial
Pneumococcal Vaccines: Challenges and Prospects
by Paul Licciardi and Ioanna Papadatou
Vaccines 2019, 7(1), 25; https://doi.org/10.3390/vaccines7010025 - 27 Feb 2019
Cited by 5 | Viewed by 3238
Abstract
Infections with the bacterium Streptococcus pneumoniae are one of the most common causes of morbidity and mortality in children less than five years of age worldwide, mostly in low- and middle-income countries (LMICs) [...] Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)

Research

Jump to: Editorial, Review

14 pages, 2002 KiB  
Article
Immunogenicity and Immune Memory after a Pneumococcal Polysaccharide Vaccine Booster in a High-Risk Population Primed with 10-Valent or 13-Valent Pneumococcal Conjugate Vaccine: A Randomized Controlled Trial in Papua New Guinean Children
by Anita H. J. van den Biggelaar, William S. Pomat, Geraldine Masiria, Sandra Wana, Birunu Nivio, Jacinta Francis, Rebecca Ford, Megan Passey, Lea-Ann Kirkham, Peter Jacoby, Deborah Lehmann, Peter Richmond and the 10v13v PCV Trial Team
Vaccines 2019, 7(1), 17; https://doi.org/10.3390/vaccines7010017 - 4 Feb 2019
Cited by 7 | Viewed by 4251
Abstract
We investigated the immunogenicity, seroprotection rates and persistence of immune memory in young children at high risk of pneumococcal disease in Papua New Guinea (PNG). Children were primed with 10-valent (PCV10) or 13-valent pneumococcal conjugate vaccines (PCV13) at 1, 2 and 3 months [...] Read more.
We investigated the immunogenicity, seroprotection rates and persistence of immune memory in young children at high risk of pneumococcal disease in Papua New Guinea (PNG). Children were primed with 10-valent (PCV10) or 13-valent pneumococcal conjugate vaccines (PCV13) at 1, 2 and 3 months of age and randomized at 9 months to receive PPV (PCV10/PPV-vaccinated, n = 51; PCV13/PPV-vaccinated, n = 52) or no PPV (PCV10/PPV-naive, n = 57; PCV13/PPV-naive, n = 48). All children received a micro-dose of PPV at 23 months of age to study the capacity to respond to a pneumococcal challenge. PPV vaccination resulted in significantly increased IgG responses (1.4 to 10.5-fold change) at 10 months of age for all PPV-serotypes tested. Both PPV-vaccinated and PPV-naive children responded to the 23-month challenge and post-challenge seroprotection rates (IgG ≥ 0.35 μg/mL) were similar in the two groups (80–100% for 12 of 14 tested vaccine serotypes). These findings show that PPV is immunogenic in 9-month-old children at high risk of pneumococcal infections and does not affect the capacity to produce protective immune responses. Priming with currently available PCVs followed by a PPV booster in later infancy could offer improved protection to young children at high risk of severe pneumococcal infections caused by a broad range of serotypes. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Show Figures

Figure 1

14 pages, 1581 KiB  
Article
PCV7- and PCV10-Vaccinated Otitis-Prone Children in New Zealand Have Similar Pneumococcal and Haemophilus influenzae Densities in Their Nasopharynx and Middle Ear
by Camilla de Gier, Caitlyn M. Granland, Janessa L. Pickering, Tony Walls, Mejbah Bhuiyan, Nikki Mills, Peter C. Richmond, Emma J. Best, Ruth B. Thornton and Lea-Ann S. Kirkham
Vaccines 2019, 7(1), 14; https://doi.org/10.3390/vaccines7010014 - 31 Jan 2019
Cited by 11 | Viewed by 4378
Abstract
Otitis media (OM) is a major reason for antibiotic consumption and surgery in children. Nasopharyngeal carriage of otopathogens, Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi), is a prerequisite for development of OM, and increased nasopharyngeal otopathogen density correlates with disease onset. Vaccines can [...] Read more.
Otitis media (OM) is a major reason for antibiotic consumption and surgery in children. Nasopharyngeal carriage of otopathogens, Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi), is a prerequisite for development of OM, and increased nasopharyngeal otopathogen density correlates with disease onset. Vaccines can reduce or eliminate otopathogen carriage, as demonstrated for pneumococcal serotypes included in pneumococcal conjugate vaccines (PCV). The 10-valent PCV (PCV10) includes an NTHi carrier protein, and in 2011 superseded 7-valent PCV on the New Zealand Immunisation Program. Data are conflicting on whether PCV10 provides protection against NTHi carriage or disease. Assessing this in otitis-prone cohorts is important for OM prevention. We compared otopathogen density in the nasopharynx and middle ear of New Zealand PCV7-vaccinated and PCV10-vaccinated otitis-prone and non-otitis-prone children to determine PCV10 impact on NTHi and S. pneumoniae carriage. We applied qPCR to specimens collected from 217 PCV7-vaccinated children (147 otitis-prone and 70 non-otitis-prone) and 240 PCV10-vaccinated children (178 otitis-prone and 62 non-otitis-prone). After correcting for age and day-care attendance, no difference was observed between NTHi density in the nasopharynx of PCV7-vaccinated versus PCV10-vaccinated otitis-prone (p = 0.563) or non-otitis-prone (p = 0.513) children. In contrast, pneumococcal nasopharyngeal density was higher in PCV10-vaccinated otitis-prone children than PCV7-vaccinated otitis-prone children (p = 0.003). There was no difference in otopathogen density in middle ear effusion from PCV7-vaccinated versus PCV10-vaccinated otitis-prone children (NTHi p = 0.918; S. pneumoniae p = 0.415). When pneumococcal carriage was assessed by vaccine serotypes (VT) and non-vaccine serotypes (NVT), there was no difference in VT density (p = 0.546) or NVT density (p = 0.315) between all PCV7-vaccinated versus all PCV10-vaccinated children. In summary, PCV10 did not reduce NTHi density in the nasopharynx or middle ear, and was associated with increased pneumococcal nasopharyngeal density in otitis-prone children in New Zealand. Development of therapies that prevent or reduce otopathogen colonisation density in the nasopharynx are warranted to reduce the burden of OM. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Show Figures

Figure 1

10 pages, 909 KiB  
Communication
Should Pneumococcal Serotype 3 Be Included in Serotype-Specific Immunoassays?
by Ezra Linley, Abigail Bell, Jenna F. Gritzfeld and Ray Borrow
Vaccines 2019, 7(1), 4; https://doi.org/10.3390/vaccines7010004 - 3 Jan 2019
Cited by 29 | Viewed by 4596
Abstract
Since the introduction of the 13-valent pneumococcal conjugate vaccine, a number of studies have demonstrated the limited efficacy of the pneumococcal serotype 3 component of this vaccine. Evidence from seven countries (Denmark, France, Greece, Portugal, Sweden, UK, US) shows limited or no effectiveness [...] Read more.
Since the introduction of the 13-valent pneumococcal conjugate vaccine, a number of studies have demonstrated the limited efficacy of the pneumococcal serotype 3 component of this vaccine. Evidence from seven countries (Denmark, France, Greece, Portugal, Sweden, UK, US) shows limited or no effectiveness of the 13-valent pneumococcal conjugate vaccine against serotype 3 invasive pneumococcal disease and carriage. The serotype 3 capsule has some unique characteristics that may serve to explain this lack of efficacy—capsular polysaccharide is abundantly expressed, leading to a greater thickness of capsule, and free capsular polysaccharide may be released during growth. The serotype 3 component of the Luminex multiplex assay demonstrates inferior inter-laboratory reproducibility than other components and results may not be reliable. This communication outlines this evidence and discusses whether it is necessary to include serotype 3 in the assay in the future. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Show Figures

Figure 1

10 pages, 903 KiB  
Article
Serotype-Specific IgG Antibody Waning after Pneumococcal Conjugate Primary Series Vaccinations with either the 10-Valent or the 13-Valent Vaccine
by Els Van Westen, Mirjam J. Knol, Alienke J. Wijmenga-Monsuur, Irina Tcherniaeva, Leo M. Schouls, Elisabeth A. M. Sanders, Cecile A. C. M. Van Els, Guy A. M. Berbers and Nynke Y. Rots
Vaccines 2018, 6(4), 82; https://doi.org/10.3390/vaccines6040082 - 11 Dec 2018
Cited by 14 | Viewed by 4431
Abstract
The two currently available ten- and thirteen-valent pneumococcal conjugate vaccines (PCV10 and PCV13) both induce serotype-specific IgG anti-polysaccharide antibodies and are effective in preventing vaccine serotype induced invasive pneumococcal disease (IPD) as well as in reducing overall vaccine-serotype carriage and transmission and thereby [...] Read more.
The two currently available ten- and thirteen-valent pneumococcal conjugate vaccines (PCV10 and PCV13) both induce serotype-specific IgG anti-polysaccharide antibodies and are effective in preventing vaccine serotype induced invasive pneumococcal disease (IPD) as well as in reducing overall vaccine-serotype carriage and transmission and thereby inducing herd protection in the whole population. IgG levels decline after vaccination and could become too low to prevent carriage acquisition and/or pneumococcal disease. We compared the levels of 10-valent (PCV10) and 13-valent (PCV13) pneumococcal vaccine induced serum IgG antibodies at multiple time points after primary vaccinations. Data from two separate studies both performed in the Netherlands in infants vaccinated at 2, 3, and 4 months of age with either PCV10 or PCV13 were compared. Antibody levels were measured at 5, 8, and 11 months of age, during the interval between the primary immunization series and the 11-months booster dose. Serotype-specific IgG levels were determined by multiplex immunoassay. Although antibody kinetics showed significant variation between serotypes and between vaccines for the majority of the 10 shared serotypes, i.e., 1, 5, 7F, 9V, 14, 18C, and 23F, antibody concentrations were sufficiently high for both vaccines, immediately after the primary series and throughout the whole period until the booster dose. In contrast, for serotypes 4 and 19F in the PCV10 group and for serotypes 4 and 6B in the PCV13 group, IgG antibody concentrations already come within reach of the frequently used seroprotection level of 0.35 μg/mL immediately after the primary series at the five month time point and/or at eight months. This paper addresses the importance of revealing differences in serotype-specific and pneumococcal vaccine-dependent IgG antibody patterns during the interval between the primary series and the booster dose, an age period with a high IPD incidence. Trial registration: www.trialregister.nl NTR3069 and NTR2316. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Show Figures

Figure 1

12 pages, 1531 KiB  
Article
Relative Clinical and Cost Burden of Community-Acquired Pneumonia Hospitalizations in Older Adults in the United States—A Cross-Sectional Analysis
by Omotola Olasupo, Hong Xiao and Joshua D. Brown
Vaccines 2018, 6(3), 59; https://doi.org/10.3390/vaccines6030059 - 31 Aug 2018
Cited by 34 | Viewed by 4736
Abstract
The relative burden of community-acquired pneumonia (CAP) in older adults (≥65 years old) compared to other serious diseases is important to prioritize preventive treatment. A retrospective analysis was conducted using the 2014 National Readmission Database to evaluate the length of stay, inpatient mortality, [...] Read more.
The relative burden of community-acquired pneumonia (CAP) in older adults (≥65 years old) compared to other serious diseases is important to prioritize preventive treatment. A retrospective analysis was conducted using the 2014 National Readmission Database to evaluate the length of stay, inpatient mortality, 30-day readmissions, and costs of CAP compared to diabetes mellitus (DM), myocardial infarction (MI), and stroke. 275,790 hospitalizations were analyzed and represented a national estimate of 616,300 hospitalizations, including 269,961 for CAP, 71,284 for DM, 126,946 for MI, and 148,109 for stroke. The mean length of stay in CAP was 5.2 days, which was higher than DM (4.6) and MI (4.3) but similar to stroke (5.6). The inpatient mortality risk was lower for DM (RR: 0.37, 95% CI: 0.29–0.46) but higher for MI (RR: 1.67, 95% CI: 1.50–1.85) and stroke (RR: 1.67, 95% CI: 1.51–1.83). The median costs for CAP ($7282) were higher compared to DM ($6217) but lower compared to MI ($14,802) and stroke ($8772). The 30-day readmission rate was 17% in CAP, which was higher compared to MI (15%) and stroke (11.5%) and lower compared to DM (20.3%). In patients with CAP, disease burden is on par with other serious diseases. CAP should be prioritized for prevention in older adults with strategies such as vaccination and smoking cessation. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

15 pages, 1330 KiB  
Review
The Role of Serotype-Specific Immunological Memory in Pneumococcal Vaccination: Current Knowledge and Future Prospects
by Ioanna Papadatou, Irene Tzovara and Paul V. Licciardi
Vaccines 2019, 7(1), 13; https://doi.org/10.3390/vaccines7010013 - 29 Jan 2019
Cited by 33 | Viewed by 7792
Abstract
Streptococcus pneumoniae (S. pneumoniae, pneumococcus) is a major cause of morbidity and mortality worldwide. Achieving long-term immunity against S. pneumoniae through immunization is an important public health priority. Long-term protection after immunization is thought to rely both on protective serum antibody [...] Read more.
Streptococcus pneumoniae (S. pneumoniae, pneumococcus) is a major cause of morbidity and mortality worldwide. Achieving long-term immunity against S. pneumoniae through immunization is an important public health priority. Long-term protection after immunization is thought to rely both on protective serum antibody levels and immunological memory in the form of antigen-specific memory B cells (MBCs). Although the ability to achieve protective antibody levels shortly after pneumococcal vaccination has been well documented for the various infant immunization schedules currently in use worldwide, the examination of immunological memory in the form of antigen-specific MBCs has been much more limited. Such responses are critical for long-term protection against pneumococcal colonization and disease. This review summarizes the published literature on the MBC response to primary or booster immunization with either pneumococcal polysaccharide vaccine (PPV23) or pneumococcal conjugate vaccines (PCVs), aiming to elucidate the immunological mechanisms that determine the magnitude and longevity of vaccine protection against pneumococcus. There is evidence that PCVs induce the production of antigen-specific MBCs, whereas immunization with PPV23 does not result in the formation of MBCs. Increased understanding of the immunological factors that facilitate the induction, maintenance and recall of MBCs in response to pneumococcal vaccination could enable the use of MBC enumeration as novel correlates of protection against S. pneumoniae. Ongoing studies that examine MBC response to pneumococcal vaccination in high burden settings will be extremely important in our understanding of long-term protection induced by pneumococcal conjugate vaccines. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Show Figures

Figure 1

18 pages, 3525 KiB  
Review
Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens
by Theano Lagousi, Paraskevi Basdeki, John Routsias and Vana Spoulou
Vaccines 2019, 7(1), 9; https://doi.org/10.3390/vaccines7010009 - 19 Jan 2019
Cited by 51 | Viewed by 5701
Abstract
Non-serotype-specific protein-based pneumococcal vaccines have received extensive research focus due to the limitations of polysaccharide-based vaccines. Pneumococcal proteins (PnPs), universally expressed among serotypes, may induce broader immune responses, stimulating humoral and cellular immunity, while being easier to manufacture and less expensive. Such an [...] Read more.
Non-serotype-specific protein-based pneumococcal vaccines have received extensive research focus due to the limitations of polysaccharide-based vaccines. Pneumococcal proteins (PnPs), universally expressed among serotypes, may induce broader immune responses, stimulating humoral and cellular immunity, while being easier to manufacture and less expensive. Such an approach has raised issues mainly associated with sequence/level of expression variability, chemical instability, as well as possible undesirable reactogenicity and autoimmune properties. A step forward employs the identification of highly-conserved antigenic regions within PnPs with the potential to retain the benefits of protein antigens. Besides, their low-cost and stable construction facilitates the combination of several antigenic regions or peptides that may impair different stages of pneumococcal disease offering even wider serotype coverage and more efficient protection. This review discusses the up-to-date progress on PnPs that are currently under clinical evaluation and the challenges for their licensure. Focus is given on the progress on the identification of antigenic regions/peptides within PnPs and their evaluation as vaccine candidates, accessing their potential to overcome the issues associated with full-length protein antigens. Particular mention is given of the use of newer delivery system technologies including conjugation to Toll-like receptors (TLRs) and reformulation into nanoparticles to enhance the poor immunogenicity of such antigens. Full article
(This article belongs to the Special Issue Vaccines for Pneumococcal Infections)
Back to TopTop