Role of Opsonophagocytosis in Immune Protection against Malaria
Abstract
:1. Introduction
2. Classes of Immunoglobulins
3. Fc Receptors
4. Biological Consequence of Antibody Binding to Antigen
4.1. Antagonistic Antibodies
4.1.1. Neutralization of the Pathogen by Interfering with the Binding to Host Cells and Preventing the Further Spread of the Infection
4.1.2. Mediation of Opsonization/Phagocytosis
4.2. Agonistic Antibodies
4.3. Autoreactive Antibodies
4.4. Tagging Antibodies
5. Phagocytosis
5.1. Escaping Immune Recognition and Phagocytosis as a Means of Pathogen Survival
5.2. Hijacking Phagocytosis by Parasitic Protozoa
5.3. Phagocytosis as a Functional Readout Method
6. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Mazliah, D.; Nguyen, M.P.; Hosking, C.; McLaughlin, S.; Lewis, M.D.; Tumwine, I.; Levy, P.; Langhorne, J. Follicular helper T Cells are essential for the elimination of plasmodium infection. EBioMedicine 2017, 24, 216–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Luo, X.; Wu, Q.; Huang, J.; Xiao, G.; Wang, L.; Yang, B.; Li, H.; Wu, C. A subset of CXCR5(+)CD8(+) T Cells in the germinal centers from human tonsils and lymph nodes help B Cells produce immunoglobulins. Front. Immunol. 2018, 9, 2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinuesa, C.G.; Chang, P.-P. Innate B cell helpers reveal novel types of antibody responses. Nat. Immunol. 2013, 14, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Obukhanych, T.; Nussenzweig, M.C. T-independent type II immune responses generate memory B cells. J. Exp. Med. 2006, 203, 305–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, J.S.; Chaudhury, S.; Dutta, S.; Gregory, S.; Locke, E.; Pierson, T.; Bergmann-Leitner, E.S. Comparison of ELISA with electro-chemiluminescence technology for the qualitative and quantitative assessment of serological responses to vaccination. Malar. J. 2020, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Vesely, M.C.A. B-cell responses during protozoan parasite infections. J. Parasitol. Res. 2011, 2012, e362131. [Google Scholar]
- Collins, A.M.; Jackson, K.J. A temporal model of human IgE and IgG antibody function. Front. Immunol. 2013, 4, 235. [Google Scholar] [CrossRef] [Green Version]
- Rénia, L.; Goh, Y.S. Malaria parasites: The great escape. Front. Immunol. 2016, 7, 463. [Google Scholar] [CrossRef] [Green Version]
- Anders, R.F. Multiple cross-reactivities among antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunol. 1986, 8, 529–539. [Google Scholar] [CrossRef]
- Chaudhury, S.; Ockenhouse, C.F.; Regules, J.A.; Dutta, S.; Wallqvist, A.; Jongert, E.; Waters, N.C.; Lemiale, F.; Bergmann-Leitner, E. The biological function of antibodies induced by the RTS,S/AS01 malaria vaccine candidate is determined by their fine specificity. Malar. J. 2016, 15, 301. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, S.; Regules, J.A.; Darko, C.A.; Dutta, S.; Wallqvist, A.; Waters, N.C.; Jongert, E.; Lemiale, F.; Bergmann-Leitner, E.S. Delayed fractional dose regimen of the RTS,S/AS01 malaria vaccine candidate enhances an IgG4 response that inhibits serum opsonophagocytosis. Sci. Rep. 2017, 7, e7998. [Google Scholar] [CrossRef]
- Abrahams, V.M.; Cambridge, G.; Lydyard, P.M.; Edwards, J.C. Induction of tumor necrosis factor alpha production by adhered human monocytes: A key role for Fcgamma receptor type IIIa in rheumatoid arthritis. Arthritis Rheum. 2000, 43, 608–616. [Google Scholar] [CrossRef]
- Fernandez, N.; Renedo, M.; Garcia-Rodriguez, C.; Sanchez Crespo, M. Activation of monocytic cells through Fc gamma receptors induces the expression of macrophage-inflammatory protein (MIP)-1 alpha, MIP-1 beta, and RANTES. J. Immunol. 2002, 169, 331–332. [Google Scholar] [CrossRef] [Green Version]
- Gallo, P.; Goncalves, R.; Mosser, D.M. The influence of IgG density and macrophage Fc (gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunol. Lett. 2010, 133, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuboi, N.; Asano, K.; Lauterbach, M.; Mayadas, T.N. Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity 2008, 28, 833–846. [Google Scholar] [CrossRef] [Green Version]
- Regnault, A.; Lankar, D.; Lacabanne, V.; Rodriguez, A.; Thery, C.; Rescigno, M.; Saito, T.; Verbeek, S.; Bonnerot, C.; Ricciardi-Castagnoli, P.; et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 1999, 189, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Nimmerjahn, F.; Ravetch, J.V. Fcg receptors as regulators of immune responses. Nature 2008, 8, 34–47. [Google Scholar]
- Pincetic, A.; Bournazos, S.; DiLillo, D.J.; Maamary, J.; Wang, T.T.; Dahan, R.; Fiebiger, B.M.; Ravetch, J.V. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014, 15, 707–716. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Alter, G. The immunoregulatory roles of antibody glycosylation. Trends Immunol. 2017, 2, 1471. [Google Scholar] [CrossRef]
- Bergmann-Leitner, E.S.; Leitner, W.W. Adjuvants in the Driver’s Seat: How magnitude, type, fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators. Vaccines (Basel) 2014, 2, 252–296. [Google Scholar] [CrossRef] [Green Version]
- Bolad, A.; Farouk, S.E.; Israelsson, E.; Dolo, A.; Doumbo, O.K.; Nebié, I.; Maiga, B.; Kouriba, B.; Luoni, G.; Sirima, B.S.; et al. Differences in immunoglobulin G Class/Subclass and immunoglobulin M antibodyresponses to malaria antigens but not inimmunoglobulin G responses to nonmalarial antigensin sympatric tribes living in West Africa. Scand. J. Immunol. 2005, 61, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, E.H.; Alemu, A.; Rogerson, S.J. Neutrophils and malaria. Front. Immunol. 2018, 9, 3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyke, K.E.; Diallo, D.A.; Dicko, A.; Kone, A.; Coulibaly, D.; Guindo, A.; Cissoko, Y.; Sangare, L.; Coulibaly, S.; Dakouo, B.; et al. Association of intraleukocytic Plasmodium falciparum malaria pigment with disease severity, clinical manifestations, and prognosis in severe malaria. Am. J. Trop. Med. Hyg. 2003, 69, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Bergmann-Leitner, E.S.; Duncan, E.H.; Angov, E. The impact of immune responses on the asexual erythrocytic stages of plasmodium and the implication for vaccine development. In Malaria Parasites; InTech: London, UK, 2012. [Google Scholar]
- Healer, J.; McGuinness, D.; Hopcroft, P.; Haley, S.; Carter, R.; Riley, E. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infect. Immun. 1997, 65, 3017–3023. [Google Scholar] [CrossRef] [Green Version]
- Douglas, A.D.; Williams, A.R.; Illingworth, J.J.; Kamuyu, G.; Biswas, S.; Goodman, A.L.; Wyllie, D.H.; Crosnier, C.; Miura, K.; Wright, G.J.; et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2011, 2, 601. [Google Scholar] [CrossRef] [Green Version]
- Bergmann-Leitner, E.S.; Duncan, E.H.; Angov, E. MSP-1p42 specific antibodies affect growth and development of intra-erythrocytic parasites of Plasmodium falciparum. Malar. J. 2009, 8, e183. [Google Scholar] [CrossRef] [Green Version]
- Dluzewski, A.R.; Ling, I.T.; Hopkins, J.M.; Grainger, M.; Margos, G.; Mitchell, G.H.; Holder, A.A.; Bannister, L.H. Formation of the food vacuole in Plasmodium falcriparum: A potential role for the 19kDa fragment of merozoite surface protein 1 (MSP119). PLoS ONE 2008, 3, e3085. [Google Scholar] [CrossRef]
- Holder, A.A. The carboxy-terminus of merozoite surface protein 1: Structure, specific antibodies and immunity to malaria. Parasitology 2009, 136, 1445–1456. [Google Scholar] [CrossRef]
- Rodriguez, M.; Lustigman, S.; Montero, E.; Oksov, Y.; Lobo, C.A. PfRH5: A novel reticulocyte-binding family homolog of plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PLoS ONE 2008, 3, e3300. [Google Scholar] [CrossRef]
- Excler, J.-L.; Ake, J.; Robb, M.L.; Kim, J.H.; Plotkin, S.A. Nonneutralzing functional antibodies: A new "old" paradigm for HIV vaccines. Clin. Vaccine Immunol. 2014, 21, 1023–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, M.J.; Reiling, L.; Feng, G.; Langer, C.; Osier, F.H.; Aspeling-Jones, H.; Cheng, Y.S.; Stubbs, J.; Tetteh, K.K.; Conway, D.J.; et al. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 2015, 42, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, A.T.; Schmidt, C.Q.; Thompson, J.K.; Weiss, G.E.; Taechalertpaisarn, T.; Gilson, P.R.; Barlow, P.N.; Crabb, B.S.; Cowman, A.F.; Tham, W.H. Recruitment of factor H as a novel complement evasion strategy for blood-stage plasmodium falciparum infection. J. Immunol. 2016, 196, 1239–1248. [Google Scholar] [CrossRef] [Green Version]
- Vanderberg, J.P.; Chew, S.; Stewart, M.J. Plasmodium sporozoite interactions with macrophages in vitro: A videomicroscopic analysis. J. Protozool 1990, 37, 528–536. [Google Scholar] [CrossRef]
- Kurtovic, L.; Atre, T.; Feng, G.; Wines, B.D.; Chan, J.A.; Boyle, M.J.; Drew, D.R.; Hogarth, P.M.; Fowkes, F.J.I.; Bergmann-Leitner, E.S.; et al. Multi-functional antibodies are induced by the RTS,S malaria vaccine and associated with protection in a phase I/IIa trial. J. Infect. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Druilhe, P.; Khusmith, S. Epidemiological correlation between levels of antibodies promoting merozoite phagocytosis of plasmodium falciparum and malaria-immune status. Infect. Immun. 1987, 55, 888–891. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.L.; Eriksson, E.M.; Li Wai Suen, C.S.; Chiu, C.Y.; Ryg-Cornejo, V.; Robinson, L.J.; Siba, P.M.; Mueller, I.; Hansen, D.S.; Schofield, L. Opsonising antibodies to P. falciparum merozoites associated with immunity to clinical malaria. PLoS ONE 2013, 8, e74627. [Google Scholar] [CrossRef]
- Osier, F.H.A.; Feng, G.; Boyle, M.J.; Langer, C.; Zhou, J.; Richards, J.S.; McCallum, F.J.; Reiling, L.; Jaworowski, A.; Ander, R.F.; et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: Mechanism in human immunity and a correlate of protection against malaria. BMC Med. 2014, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Bansal, G.P.; Weinstein, C.S.; Kumar, N. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line. Acta Trop. 2016, 157, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Healer, J.; Graszynski, A.; Riley, E. Phagocytosis does not play a major role in naturally acquired transmission-blocking immunity to plasmodium falciparum malaria. Infect. Immun. 1999, 67, 2334–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, F.; Bergmann-Leitner, E.S. Immune escape mechanisms are plasmodium’s secret weapons foiling the success of potent and persistently efficacious malaria vaccines. Clin. Immunol. 2015, 161, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Hollingdale, M.R.; Appiah, A.; Leland, P.; do Rosario, V.E.; Mazier, D.; Pied, S.; Herrington, D.A.; Chulay, J.D.; Ballou, W.R.; Derks, T. Activity of human volunteer sera to candidate Plasmodium falciparum circumsporozoite protein vaccines in the inhibition of sporozoite invasion assay of human hepatoma cells and hepatocytes. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 325–329. [Google Scholar] [CrossRef]
- Nudelman, S.; Renia, L.; Charoenvit, Y.; Yan, L.; Miltgen, E.; Beaudoin, R.L.; Mazier, D. Dual action of anti-sporozoite antibodies in vitro. J. Immunol. 1989, 143, 996–1000. [Google Scholar] [PubMed]
- Rénia, L.; Mattei, D.; Goma, J.; Pied, S.; Dubois, P.; Miltgen, F.; Nüssler, A.; Matile, H.; Menégaux, F.; Gentilini, M.; et al. A malaria heat shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell mediated cytotoxic mechanisms by nonparenchymal liver cells. Eur. J. Immunol. 1990, 20, 1445–1449. [Google Scholar] [CrossRef]
- Biryukov, S.; Angov, E.; Landmesser, M.E.; Spring, M.D.; Ockenhouse, C.F.; Stoute, J.A. Complement and antibody-mediated enhancement of red blood cell invasion and growth of malaria parasites. EBioMedicine 2016, 9, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Franzén, L.; Wåhlin, B.; Wahlgren, M.; Aslund, L.; Perlmann, P.; Wigzell, H.; Pettersson, U. Enhancement or inhibition of Plasmodium falciparum erythrocyte reinvasion in vitro by antibodies to an asparagine rich protein. Mol. Biochem. Parasitol. 1989, 32, 201–211. [Google Scholar] [CrossRef]
- Miura, K.; Perera, S.; Brockley, S.; Zhou, H.; Aebig, J.A.; Moretz, S.E.; Miller, L.H.; Doumbo, O.K.; Sagara, I.; Dicko, A.; et al. Non-apical membrane antigen 1 (AMA1) IgGs from Malian children interfere with functional activity of AMA1 IgGs as judged by growth inhibition assay. PLoS ONE 2011, 6, e20947. [Google Scholar] [CrossRef]
- Eslava, I.; Payares, G.; Pernia, B.M.; Holder, A.A.; Spencer, L.M. Suppressive and additive effects in protection mediated by combinations of monoclonal antibodies specific for merozoite surface protein 1 of Plasmodium yoelii. Malar. J. 2010, 9, e46. [Google Scholar] [CrossRef] [Green Version]
- Guevara Patiño, J.A.; Holder, A.A.; McBride, J.S.; Blackman, M.J. Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J. Exp. Med. 1997, 186, 1689–1699. [Google Scholar] [CrossRef]
- Uthaipibull, C.; Aufiero, B.; Syed, S.E.; Hansen, B.; Guevara Patiño, J.A.; Angov, E.; Ling, I.T.; Fegeding, K.; Morgan, W.D.; Ockenhouse, C.; et al. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 2001, 307, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Ercolini, A.M.; Miller, S.D. The role of infections in autoimmune disease. Clin. Exp. Immunol. 2009, 155, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Daniel-Ribeiro, C.T.; Zanini, G. Autoimmunity and malaria: What are they doing together? Acta Trop. 2000, 76, 205–221. [Google Scholar] [CrossRef]
- Fernandez-Arias, C.; Rivera-Correa, J.; Gallego-Delgado, J.; Buffet, P.; Ndour, P.A.; Rodriguez, A. Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia. Cell Host Microbe 2016, 19, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Correa, J.; Mackroth, M.S.; Jacobs, T.; Schulze Zur Wiesch, J.; Rolling, T.; Rodriguez, A. Atypical memory B-cells are associated with Plasmodium falciparum anemia through anti-phosphatidylserine antibodies. Elife 2019, 8, 8. [Google Scholar] [CrossRef]
- Hart, G.T.; Akkaya, M.; Chida, A.S.; Wei, C.; Jenks, S.A.; Tipton, C.; He, C.; Wendel, B.S.; Skinner, J.; Arora, G.; et al. The regulation of inherently autoreactive VH4-34-expressing B Cells in individuals living in a malaria-endemic area of West Africa. J. Immunol. 2016, 197, 3841–3849. [Google Scholar] [CrossRef] [Green Version]
- Werling, D.; Jungi, T.W. TOLL-like receptors linking innate and adaptive immune response. Vet. Immunol. Immunopathol. 2003, 91, 1–12. [Google Scholar] [CrossRef]
- Bergmann-Leitner, E.S.; Leitner, W.W.; Tsokos, G.C. Complement 3d: From molecular adjuvant to target of immune escape mechanisms. Clin. Immunol. 2006, 121, 177–185. [Google Scholar] [CrossRef]
- Finley, B.B.; McFadden, G. Anti-immunology: Evasion of th ehost immune system by bacterial and viral pathogens. Cell 2006, 124, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Boomiker, J.M.; de Lej, L.F.M.H.L.; The, T.H.; Harmsen, M. Viral chemokine modulatory proteins; tools and targets. Cytokine Growth Factor Rev. 2005, 16, 91–103. [Google Scholar] [CrossRef]
- Lau, E.K.; Allen, S.; Hsu, A.R.; Handel, T.M. Chemokine -receptor interactions: GPCR, glycosaminoglycans and viral chemokine binding proteins. Adv. Protein Chem. 2004, 68, 351–391. [Google Scholar] [PubMed]
- Baxt, L.A.; Baker, R.P.; Singh, U.; Urban, S. An Entamoeba histolytica rhomboid protease with atypical specficity cleaves a surface lectin involved in phagocytosis and immune evasion. Genes Dev. 2017, 22, 1636–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaratilake, L.M.; Ferrante, A.; Jaeger, T.; Rzepczyk, C.M. Effects of cytokines, complement, and antibody on the neutrophil respiratory burst and phagocytic response to Plasmodium falciparum merozoites. Infect. Immun. 1992, 60, 3731–3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajishengallis, G.; Lambris, J.D. Microbial manipulation of receptor crosstalk in innate immunity. Nat. Rev. Immunol. 2011, 11, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolino, P.; Bowen, D.G. Malaria and the liver: Immunological hide-and-seek or subversion of immunity from within? Front. Microbiol. 2015, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Leitner, W.W.; Krzych, U. Plasmodium falciparum malaria blood stage parasites preferentially inhibit macrophages with high phagocytic activity. Parasite Immunol. 1997, 19, 103–110. [Google Scholar] [CrossRef]
- Sacks, D.; Sher, A. Evasion of inante immunity byb parasitic protozoa. Nat. Immunol. 2002, 3, 10411047. [Google Scholar] [CrossRef]
- Akhouri, R.R.; Goel, S.; Furusho, H.; Skoglund, U.; Wahlgren, M. Architecture of human IgM in complex with P. falciparum erythrocyte membrane protein. Cell Rep. 2016, 14, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Villa, S.; Rosales-Borjas, D.; Carrero, J.C.; Ortiz-Ortiz, L. How protozoan parasites evade the immune response. Trends Parasitol. 2002, 18, 272–278. [Google Scholar] [CrossRef]
- Olivier, M.; Gregory, D.J.; Forget, G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: A signaling point of view. Clin. Microbiol. Rev. 2005, 18, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Amino, R.; Thiberge, S.; Martin, B.; Celli, S.; Shorte, S.; Frischknecht, F.; Ménard, R. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat. Med. 2006, 12, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Pradel, G.; Frevert, U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 2001, 33, 1154–1165. [Google Scholar] [CrossRef]
- Ishino, T.; Chinzei, Y.; Yuda, M. A plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell Microbiol. 2005, 7, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Bergmann-Leitner, E.S.; Legler, P.M.; Savransky, T.; Ockenhouse, C.; Angov, E. Cellular and humoral immune effector mechanisms required for sterile protection against sporozoite challenge induced with the novel malaria vaccine candidate CelTOS. Vaccine 2011, 29, 5940–5949. [Google Scholar] [CrossRef]
- Bergmann-Leitner, E.S.; Mease, R.M.; De La Vega, P.; Savransky, T.; Polhemus, M.; Ockenhouse, C.; Angov, E. Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLoS ONE 2010, 5, e12294. [Google Scholar] [CrossRef] [Green Version]
- Usynin, I.; Klotz, C.; Frevert, U. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell Microbiol. 2007, 9, 2610–2628. [Google Scholar] [CrossRef]
- Klotz, C.; Frevert, U. Plasmodium yoelii sporozoites modulate cytokine profile and induce apoptosis in murine Kupffer cells. Int. J. Parasitol. 2008, 38, 1639–1650. [Google Scholar] [CrossRef] [Green Version]
- Graewe, S.; Rankin, K.E.; Lehmann, C.; Deschermeier, C.; Hecht, L.; Froehlke, U.; Stanway, R.R.; Heussler, V. Hostile takeover by Plasmodium: Reorganization of parasite and host cell membranes during liver stage egress. PLoS Pathog. 2011, 7, e1002224. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Tan, Z.; Xu, W. Immune evasion strategies of pre-erythrocytic malaria parasites. Mediat. Inflamm. 2015, 2014, e362605. [Google Scholar] [CrossRef]
- Skorokhod, O.A.; Alessio, M.; Mordmulle, R.B.; Arese, P.; Schwarzer, E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: A peroxisome proliferator-activated receptor-gamma-mediated effect. J. Immunol. 2004, 173, 4066–4074. [Google Scholar] [CrossRef]
- Schwarzer, E.; Alessio, M.; Ulliers, D.; Arese, P. Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect. Immun. 1998, 66, 1601–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millington, O.R.; Di Lorenzo, C.; Phillips, R.S.; Garside, P.; Brewer, J.M. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic-cell function. J. Biol. 2006, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbagwu, S.I.; Lannes, N.; Walch, M.; Filgueira, L.; Mantel, P.Y. Human microglia respond to malaria-induced extracellular vesicles. Pathogens 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, S.K.; Dalko, E.; Delcroix-Genete, D.; Herbert, F.; Cazenave, P.A.; Pied, S. Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. GLIA 2016, 65, 75–92. [Google Scholar] [CrossRef]
- Prado, M.; Eickel, N.; De Niz, M.; Heitmann, A.; Agop-Nersesian, C.; Wacker, R.; Schmuckli-Maurer, J.; Caldelari, R.; Janse, C.J.; Khan, S.M.; et al. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms. Autophagy 2015, 11, 1561–1579. [Google Scholar] [CrossRef] [Green Version]
- Steel, R.W.; Sack, B.K.; Tsuji, M.; Navarro, M.; Betz, W.; Fishbaugher, M.E.; Flannery, E.L.; Kappe, S.H. An opsonic phagocytosis assay for Plasmodium falciparum sporozoites. Clin. Vaccine Immunol. 2017, 24, e00445-16. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitner, W.W.; Haraway, M.; Pierson, T.; Bergmann-Leitner, E.S. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines 2020, 8, 264. https://doi.org/10.3390/vaccines8020264
Leitner WW, Haraway M, Pierson T, Bergmann-Leitner ES. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines. 2020; 8(2):264. https://doi.org/10.3390/vaccines8020264
Chicago/Turabian StyleLeitner, Wolfgang W., Megan Haraway, Tony Pierson, and Elke S. Bergmann-Leitner. 2020. "Role of Opsonophagocytosis in Immune Protection against Malaria" Vaccines 8, no. 2: 264. https://doi.org/10.3390/vaccines8020264
APA StyleLeitner, W. W., Haraway, M., Pierson, T., & Bergmann-Leitner, E. S. (2020). Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines, 8(2), 264. https://doi.org/10.3390/vaccines8020264