Non-Tuberculous Mycobacteria Interference with BCG-Current Controversies and Future Directions
Abstract
:1. Introduction
2. Epidemiological and Clinical Aspects of Non-tuberculosis Mycobacterial Infection and Disease
3. Host Immune Defects in NTM Infection and Progressive Disease
4. Evidence for NTM Interference with BCG Efficacy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanner, R.; Villarreal-Ramos, B.; Vordermeier, H.M.; McShane, H. The Humoral Immune Response to BCG Vaccination. Front Immunol. 2019, 10, 1317. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Feldman, N.E.; Chmura, K.; Ovrutsky, A.R.; Su, W.-L.; Griffin, L.; Pyeon, D.; McGibney, M.T.; Strand, M.J.; Numata, M.; et al. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages. PLoS ONE 2013, 8, e61925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brighenti, S.; Ordway, D.J. Regulation of Immunity to Tuberculosis. Microbiol. Spectr. 2016, 4, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.D.; Verma, D.; Ordway, D.J. Animal Models of Mycobacteria Infection. Curr. Protoc. Immunol. 2020, 129, e98. [Google Scholar] [CrossRef] [PubMed]
- Dharmadhikari, A.S.; Nardell, E.A. What animal models teach humans about tuberculosis. Am. J. Respir. Cell Mol. Biol. 2008, 39, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Silveira, H.; Ordway, D.; Dockrell, H.; Jackson, M.; Ventura, F. Cell-mediated immune responses to mycobacterial antigens in patients with pulmonary tuberculosis and HIV infection. Clin. Exp. Immunol. 1997, 110, 26–34. [Google Scholar] [CrossRef]
- McGrath, E.E.; Blades, Z.; McCabe, J.; Jarry, H.; Anderson, P.B. Nontuberculous Mycobacteria and the Lung: From Suspicion to Treatment. Lung 2010, 188, 269–282. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Inderlied, C.B.; Young, L.S. Mycobacterium avium complex in AIDS. Curr. Clin. Top Infect Dis. 1992, 12, 257–281. [Google Scholar]
- Shafran, S.D.; Singer, J.; Zarowny, D.P.; Phillips, P.; Salit, I.; Walmsley, S.L.; Fong, I.W.; Gill, M.J.; Rachlis, A.R.; LaLonde, R.G.; et al. A comparison of two regimens for the treatment of Mycobacterium avium complex bacteremia in AIDS: Rifabutin, ethambutol, and clarithromycin versus rifampin, ethambutol, clofazimine, and ciprofloxacin. Canadian HIV Trials Network Protocol 010 Study Group. N. Engl. J. Med. 1996, 335, 377–383. [Google Scholar] [CrossRef]
- Henao-Tamayo, M.I.; Obregón-Henao, A.; Arnett, K.; Shanley, C.A.; Podell, B.; Orme, I.M.; Ordway, D.J. Effect of bacillus Calmette-Guérin vaccination on CD4+Foxp3+ T cells during acquired immune response to Mycobacterium tuberculosis infection. J. Leukoc. Biol. 2016, 99, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Ordway, D.J.; Henao-Tamayo, M.; Harton, M.; Palanisamy, G.; Troudt, J.; Shanley, C.; Basaraba, R.J.; Orme, I.M. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J. Immunol. 2007, 179, 522–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banaschewski, B.; Verma, D.; Pennings, L.J.; Zimmerman, M.; Ye, Q.; Gadawa, J.; Dartois, V.; Ordway, D.; Van Ingen, J.; Ufer, S.; et al. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J. Cyst. Fibros. 2019, 18, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Lahat, N.; Rivlin, J.; Iancu, T.C. Functional immunoregulatory T-cell abnormalities in cystic fibrosis patients. J. Clin. Immunol. 1989, 9, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Dockrell, H.M.; Ottenhoff, T.H.; Evans, T.G.; Zhang, Y. Tuberculosis vaccines: Opportunities and challenges. Respirology 2018, 23, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Brandt, L.; Cunha, J.F.; Olsen, A.W.; Chilima, B.; Hirsch, P.; Appelberg, R.; Andersen, P. Failure of the Mycobacterium bovis BCG vaccine: Some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun. 2002, 70, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Davenne, T.; McShane, H. Why don’t we have an effective tuberculosis vaccine yet? Expert Rev. Vaccines 2016, 15, 1009–1013. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, P.; Finn, A.; Curtis, N. Does BCG Vaccination Protect Against Nontuberculous Mycobacterial Infection? A Systematic Review and Meta-Analysis. J. Infect Dis. 2018, 218, 679–687. [Google Scholar] [CrossRef]
- Fine, P.; Ponnighaus, J.; Warndorff, D.; Gruer, P.; Oxborrow, S.; Pharoah, P.; Lucas, S.; McDougall, A.; Jenkins, P.; Chavula, D.; et al. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Lancet 1996, 348, 17–24. [Google Scholar]
- Warndorff, D.K. Tuberculosis prevention: Where do we go from here? Afr. Health 1996, 19, 21–22. [Google Scholar]
- Rowland, R.; Pathan, A.A.; Satti, I.; Poulton, I.D.; Matsumiya, M.M.L.; Whittaker, M.; Minassian, A.M.; O’Hara, G.A.; Hamill, M.; Scott, J.T.; et al. Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: A phase I clinical trial. Hum. Vaccin. Immunother. 2013, 9, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Dockrell, H.M.; Smith, S.G. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front. Immunol. 2017, 8, 1134. [Google Scholar] [CrossRef] [PubMed]
- Hoefsloot, W.; Van Ingen, J.; Andrejak, C.; Ängeby, K.; Bauriaud, R.; Bemer, P.; Beylis, N.; Boeree, M.J.; Cacho, J.; Chihota, V.; et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013, 42, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Mangtani, P.; Nguipdop-Djomo, P.; Keogh, R.H.; Sterne, J.A.C.; Abubakar, I.; Smith, P.G.; Fine, P.E.M.; Vynnycky, E.; Watson, J.M.; Elliman, D.; et al. The duration of protection of school-aged BCG vaccination in England: A population-based case-control study. Int. J. Epidemiol. 2018, 47, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.S.; Husain, A.A.; Morey, S.H.; Panchbhai, M.S.; Deshpande, P.S.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Assessment of immune response to repeat stimulation with BCG vaccine using in vitro PBMC model. J. Immune Based Ther. Vaccines 2010, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darrah, P.A.; Zeppa, J.J.; Maiello, P.; Hackney, J.A.; Wadsworth, M.H., II; Hughes, T.K.; Pokkali, S.; Swanson, P.A., II; Grant, N.L.; Rodgers, M.A.; et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020, 577, 95–102. [Google Scholar] [CrossRef]
- Prevots, D.R.; Marras, T.K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epson, E.; Cassidy, M.; Marshall-Olson, A.; Hedberg, K.; Winthrop, K.L. Patients with nontuberculous mycobacteria: Comparison of updated and previous diagnostic criteria for lung disease. Diagn. Microbiol. Infect. Dis. 2012, 74, 98–100. [Google Scholar] [CrossRef]
- Padilla, E.; Manterola, J.M.; Rasmussen, O.F.; Lonca, J.; Domínguez, J.; Matas, L.; Hernández, A.; Ausina, V. Evaluation of a Fluorescence Hybridisation Assay Using Peptide Nucleic Acid Probes for Identification and Differentiation of Tuberculous and Non-Tuberculous Mycobacteria in Liquid Cultures. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 140–145. [Google Scholar] [CrossRef]
- Lai, C.-C.; Tan, C.-K.; Chou, C.-H.; Hsu, H.-L.; Liao, C.-H.; Huang, Y.-T.; Yang, P.-C.; Luh, K.-T.; Hsueh, P.-R. Increasing Incidence of Nontuberculous Mycobacteria, Taiwan 2000–2008. Emerg. Infect. Dis. J. 2010, 16, 294. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, H.-Y.; Chou, C.-H.; Huang, C.-T.; Lai, C.-C.; Hsueh, P.-R. Pulmonary infection caused by nontuberculous mycobacteria in a medical center in Taiwan 2005–2008. Diagn. Microbiol. Infect. Dis. 2012, 72, 47–51. [Google Scholar] [CrossRef]
- Kurahara, Y.; Tachibana, K.; Tsuyuguchi, K.; Suzuki, K. Mixed Pulmonary Infection with Three Types of Nontuberculous Mycobacteria. Intern. Med. 2013, 52, 507–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Primm, T.; Lucero, C.A.; Falkinham, J.O., III. Health impacts of environmental mycobacteria. Clin. Microbiol. Rev. 2004, 17, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouhan, D.; Devi, T.B.; Chattopadhyay, S.; Dharmaseelan, S.; Nair, G.B.; Devadas, K.; Pillai, R.M. Mycobacterium abscessus infection in the stomach of patients with various gastric symptoms. PLoS Negl. Trop. Dis. 2019, 13, e0007799. [Google Scholar] [CrossRef] [PubMed]
- Orme, I.M.; Furney, S.K.; Roberts, A.D. Dissemination of enteric Mycobacterium avium infections in mice rendered immunodeficient by thymectomy and CD4 depletion or by prior infection with murine AIDS retroviruses. Infect Immun. 1992, 60, 4747–4753. [Google Scholar] [CrossRef] [Green Version]
- Soybel, D.I. Anatomy and physiology of the stomach. Surg. Clin. N. Am. 2005, 85, 875–894. [Google Scholar] [CrossRef]
- Winthrop, K.L.; McNelley, E.; Kendall, B.; Marshall-Olson, A.; Morris, C.; Cassidy, M.; Saulson, A.; Hedberg, K. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: An emerging public health disease. Am. J. Respir. Crit. Care Med. 2010, 182, 977–982. [Google Scholar] [CrossRef]
- Chan, E.D.; Bai, X.; Kartalija, M.; Orme, I.M.; Ordway, D.J. Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am. J. Respir. Cell Mol. Biol. 2010, 43, 387–393. [Google Scholar] [CrossRef]
- Kartalija, M.; Ovrutsky, A.R.; Bryan, C.L.; Pott, G.B.; Fantuzzi, G.; Thomas, J.; Strand, M.; Bai, X.; Ramamoorthy, P.; Rothman, M.S.; et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am. J. Respir. Crit. Care Med. 2013, 187, 197–205. [Google Scholar] [CrossRef] [Green Version]
- McShane, P.J.; Glassroth, J. Pulmonary Disease Due to Nontuberculous Mycobacteria: Current State and New Insights. Chest 2015, 148, 1517–1527. [Google Scholar] [CrossRef] [Green Version]
- Gadkowski, L.B.; Stout, J.E. Cavitary pulmonary disease. Clin. Microbiol. Rev. 2008, 21, 305–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamo, N.; Kaido, T.; Hamaguchi, Y.; Okumura, S.; Kobayashi, A.; Shirai, H.; Yao, S.; Yagi, S.; Uemoto, S. Impact of sarcopenic obesity on outcomes in patients undergoing living donor liver transplantation. Clin. Nutr. 2019, 38, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Gibbs, S.; Henao-Tamayo, M.; Shanley, C.A.; McDonnell, G.; Duarte, R.S.; Ordway, D.J.; Jackson, M. Increased virulence of an epidemic strain of Mycobacterium massiliense in mice. PLoS ONE 2011, 6, e24726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sable, S.B.; Posey, J.E.; Scriba, T.J. Tuberculosis Vaccine Development: Progress in Clinical Evaluation. Clin. Microbiol. Rev. 2019, 33. [Google Scholar] [CrossRef]
- Baird-Parker, A.C. 1993 Fred Griffith Review Lecture. Foods and microbiological risks. Microbiology (Read.) 1994, 140, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Blair, R.V.; Wakamatsu, N.; Pucheu-Haston, C. Pathology in practice. Pemphigus vulgaris. J. Am. Vet. Med. Assoc. 2015, 246, 419–421. [Google Scholar] [CrossRef]
- Adzick, N.S.; De Leon, D.D.; States, L.J.; Lord, K.; Bhatti, T.R.; Becker, S.A.; Stanley, C.A. Surgical treatment of congenital hyperinsulinism: Results from 500 pancreatectomies in neonates and children. J. Pediatr. Surg. 2019, 54, 27–32. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yaegashi, N.; Iwata, T.; Yamamoto, K.; Aoki, Y.; Okadome, M.; Ushijima, K.; Kamiura, S.; Takehara, K.; Horie, K.; et al. Reduction in HPV16/18 prevalence among young women with high-grade cervical lesions following the Japanese HPV vaccination program. Cancer Sci. 2019, 110, 3811–3820. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Erba, P.-A.; Sadeghpour, A.; Meshaal, M.; Sambola, A.; Furnaz, S.; Citro, R.; Ternacle, J.; Donal, E.; et al. The ESC-EORP EURO-ENDO (European Infective Endocarditis) registry. Eur. Heart J. Qual. Care Clin. Outcomes 2019, 5, 202–207. [Google Scholar] [CrossRef]
- Uhl, W.; Panicker, S. Gerd Becker (1940–2017). Angew. Chem. Int. Ed. Engl. 2017, 56, 6374. [Google Scholar] [CrossRef]
- Christakis, N.A.; Fowler, J.H. Social contagion theory: Examining dynamic social networks and human behavior. Stat Med. 2013, 32, 556–577. [Google Scholar] [CrossRef] [Green Version]
- Greinert, U.; Lepp, U.; Becker, W. Bird Keeper’s lung without bird keepinge. Eur. J. Med. Res. 2000, 5, 124. [Google Scholar]
- Sarrafzadeh, S.A.; Nourizadeh, M.; Mahloojirad, M.; Fazlollahi, M.R.; Shoormasti, R.S.; Badalzadeh, M.; Deswarte, C.; Casanova, J.-L.; Pourpak, Z.; Bustamante, J.; et al. Immunological, and Clinical Features of 16 Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J. Clin. Immunol. 2019, 39, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.G.; Chalmers, J.; Heerspink, H.J.L.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 2012, 380, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Landewé, R.; Breedveld, F.C.; Buch, M.; Burmester, G.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gossec, L.; Nam, J.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 2014, 73, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Chen, S.-Y.; Lai, J.-S.; Wong, A.M.-K. Tai chi chuan in medicine and health promotion. Evid. Based Complement. Altern. Med. 2013, 2013, 502131. [Google Scholar] [CrossRef]
- Obregón-Henao, A.; Arnett, K.A.; Henao-Tamayo, M.; Massoudi, L.; Creissen, E.; Andries, K.; Lenaerts, A.J.; Ordway, D. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob. Agents Chemother. 2015, 59, 6904–6912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-Y.; Chung, F.; Lo, C.-Y.; Lin, H.-C.; Huang, Y.-T.; Yeh, C.-H.; Lin, C.-W.; Huang, Y.-C.; Wang, C.-H. Etiology and characteristics of patients with bronchiectasis in Taiwan: A cohort study from 2002 to 2016. BMC Pulm. Med. 2020, 20, 45. [Google Scholar] [CrossRef] [Green Version]
- Honda, J.R.; Knight, V.; Chan, E.D. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin. Chest Med. 2015, 36, 1–11. [Google Scholar] [CrossRef]
- Honda, J.R.; Alper, S.; Bai, X.; Chan, E.D. Acquired and genetic host susceptibility factors and microbial pathogenic factors that predispose to nontuberculous mycobacterial infections. Curr. Opin. Immunol. 2018, 54, 66–73. [Google Scholar] [CrossRef]
- Gundavda, M.K.; Patil, H.G.; Agashe, V.M.; Soman, R.; Rodriques, C.; Deshpande, R.B. Nontuberculous mycobacterial infection of the musculoskeletal system in immunocompetent hosts. Indian J. Orthop. 2017, 51, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Oberley-Deegan, R.E.; Regan, E.A.; Kinnula, V.L.; Crapo, J.D. Extracellular superoxide dismutase and risk of COPD. COPD 2009, 6, 307–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meoli, A.; Deolmi, M.; Iannarella, R.; Esposito, S. Non-Tuberculous Mycobacterial Diseases in Children. Pathogens 2020, 9, 553. [Google Scholar] [CrossRef]
- Fletcher, H.; Snowden, M.A.; Landry, B.; Rida, W.; Satti, I.; Harris, S.A.; Matsumiya, M.; Tanner, R.; O’Shea, M.K.; Dheenadhayalan, V.; et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat. Commun. 2016, 7, 11290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, J.-J.; Wang, Y.-C.; Sung, F.-C.; Kao, C.-H. Rheumatoid arthritis increases the risk of nontuberculosis mycobacterial disease and active pulmonary tuberculosis. PLoS ONE 2014, 9, e110922. [Google Scholar] [CrossRef]
- Falkinham, J.O., 3rd. Current Epidemiologic Trends of the Nontuberculous Mycobacteria (NTM). Curr. Environ. Health Rep. 2016, 3, 161–167. [Google Scholar]
- Young, S.L.; Slobbe, L.; Wilson, R.; Buddle, B.M.; De Lisle, G.W.; Buchan, G. Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination. Infect Immun. 2007, 75, 2833–2840. [Google Scholar] [CrossRef] [Green Version]
- Young, L.S.; Bermudez, L.E. Perspective on Animal Models: Chronic Intracellular Infections. Clin. Infect. Dis. 2001, 33 (Suppl. 3), S221–S226. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Petrofsky, M.; Kolonoski, P.; Young, L.S. An Animal Model of Mycobacterium avium Complex Disseminated Infection after Colonization of the Intestinal Tract. J. Infect. Dis. 1992, 165, 75–79. [Google Scholar] [CrossRef]
- Abate, G.; Hamzabegovic, F.; Eickhoff, C.S.; Hoft, D.F. BCG Vaccination Induces M. avium and M. abscessus Cross-Protective Immunity. Front. Immunol. 2019, 19, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.Y.; Reddy, T.B.K.; Arend, S.M.; Friggen, A.H.; Franken, K.L.; van Meijgaarden, K.E.; Verduyn, M.J.C.; Schoolnik, G.K.; Klein, M.R.; Ottenhoff, T.H.M. Cross-Reactive Immunity to Mycobacterium tuberculosis DosR Regulon-Encoded Antigens in Individuals Infected with Environmental, Nontuberculous Mycobacteria. Infect. Immun. 2009, 77, 5071–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.S.; Flórido, M.; Cordeiro, J.; Teixeira, C.M.; Takeuchi, O.; Akira, S.; Appelberg, R. Limited role of the Toll-like receptor-2 in resistance to Mycobacterium avium. Immunology 2004, 111, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.A.W.; Adams, V.; Palmer, R.; Brunet, L.R.; Hunt, J.; Martinelli, R. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin. Immunopathol. 2004, 25, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Flórido, M.; Pearl, J.E.; Solache, A.; Borges, M.; Haynes, L.; Cooper, A.M.; Appelberg, R. Gamma Interferon-Induced T-Cell Loss in Virulent Mycobacterium avium Infection. Infect. Immun. 2005, 73, 3577–3586. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, D.; Chan, E.D.; Ordway, D.J. Non-Tuberculous Mycobacteria Interference with BCG-Current Controversies and Future Directions. Vaccines 2020, 8, 688. https://doi.org/10.3390/vaccines8040688
Verma D, Chan ED, Ordway DJ. Non-Tuberculous Mycobacteria Interference with BCG-Current Controversies and Future Directions. Vaccines. 2020; 8(4):688. https://doi.org/10.3390/vaccines8040688
Chicago/Turabian StyleVerma, Deepshikha, Edward D. Chan, and Diane J. Ordway. 2020. "Non-Tuberculous Mycobacteria Interference with BCG-Current Controversies and Future Directions" Vaccines 8, no. 4: 688. https://doi.org/10.3390/vaccines8040688
APA StyleVerma, D., Chan, E. D., & Ordway, D. J. (2020). Non-Tuberculous Mycobacteria Interference with BCG-Current Controversies and Future Directions. Vaccines, 8(4), 688. https://doi.org/10.3390/vaccines8040688