Validity of the Spanish Version of the Vaccination Attitudes Examination Scale
Abstract
:1. Introduction
2. Study 1: Factorial Validity
2.1. Materials and Methods
2.2. Results
2.3. Discussion
3. Study 2: Concurrent and Predictive Validity
3.1. Materials and Methods
3.2. Independent Variables
3.3. Dependent Variables
3.4. Results
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Items of the Scale
1. Me siento seguro después de vacunarme. 2. Confío en las vacunas frente a enfermedades infecciosas graves. 3. Me siento protegido después de vacunarme. 4. Aunque la mayoría de las vacunas parecen seguras, puede haber problemas que aún no hemos descubierto. 5. Las vacunas pueden causar problemas imprevistos en los niños. 6. Me preocupan los efectos desconocidos de las vacunas en el futuro. 7. Las vacunas generan mucho dinero para las empresas farmacéuticas, pero no son realmente útiles para la gente normal. 8. Las autoridades promueven la vacunación para obtener beneficios económicos, no por la salud de las personas. 9. Los programas de vacunación son una gran estafa. 10. La inmunidad propia dura más que una vacuna 11. La exposición natural a virus y gérmenes es la protección más segura 12. Estar expuesto a enfermedades de manera natural es más seguro para el sistema inmunológico que hacerlo mediante vacunas |
Factor1: 1,2,3. Factor2: 4,5,6. Factor3: 7,8,9. Factor4: 10,11,12. |
References
- Andre, F.E.; Booy, R.; Bock, H.L.; Clemens, J.; Datta, S.K.; John, T.J.; Lee, B.W.; Lolekha, S.; Peltola, H.; Ruff, T.A.; et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140–146. [Google Scholar] [CrossRef]
- Fusick, A.J.; Gunther, S.; Sullivan, G. The anti-vaccination movement: When does a belief become delusional? J. Public Health 2020, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.D. Epidemic pertussis in 2012—The resurgence of a vaccine-preventable disease. N. Engl. J. Med. 2012, 367, 785–787. [Google Scholar] [CrossRef]
- Randolph, H.E.; Barreiro, L.B. Herd immunity: Understanding COVID-19. Immunity 2020, 52, 737–741. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Harris, E.A.; Fielding, K.S. The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychol. 2018, 37, 307. [Google Scholar] [CrossRef]
- WHO Vaccine-Preventable Diseases: Monitoring System. 2020 Global Summary. Available online: https://apps.who.int/immunization_monitoring/globalsummary (accessed on 14 March 2021).
- Sallam, M. COVID-19 vaccine hesitancy worldwide: A concise systematic review of vaccine acceptance rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- López-Rico, C.M.; González-Esteban, J.L.; Hernández-Martínez, A. Consumo de información en redes sociales durante la crisis de la COVID-19 en España. Rev. Comun. Salud 2020, 10, 461–481. [Google Scholar] [CrossRef]
- Conlledo, P.P.; De Marchis, G.; Díaz, V.C. Análisis del contenido publicado en YouTube, Facebook e internet sobre vacunas y anti vacunas. Rev. Comun. Salud RCyS 2020, 10, 67–90. [Google Scholar] [CrossRef]
- Pullan, S.; Dey, M. Vaccine hesitancy and anti-vaccination in the time of COVID-19: A Google Trends analysis. Vaccine 2021, 39, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Cambra, U.; Martínez, L.M.; Niño-González, J.I. An análisis of pro-vaccine and anti-vaccine information on socia networks and the internet: Visual and emotional patterns. Prof. Inf. 2019, 28, 67–83. [Google Scholar]
- Spiliotopoulos, N.; Spiliotopoulou, M. The anti-vaccination movement: A serious threat to public health. HAPSc Policy Briefs Ser. 2021, 2, 208–213. [Google Scholar] [CrossRef]
- Martin, L.R.; Petrie, K.J. Understanding the dimensions of anti-vaccination attitudes: The vaccination attitudes examination (VAX) Scale. Ann. Behav. Med. 2017, 51, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Steptoe, A.; Fancourt, D. Attitudes towards vaccines and intention to vaccinate against COVID-19: Implications for public health communications. Lancet Reg. Health Eur. 2021, 1, 100012. [Google Scholar] [CrossRef]
- Wood, L.; Smith, M.; Miller, C.B.; O’Carroll, R.E. The internal consistency and validity of the Vaccination Attitudes Examination Scale: A replication study. Ann. Behav. Med. 2019, 53, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, E.; Gungormus, Z.; Dayapoglu, N. Assessment of validity and reliability of the turkish version of the vaccination attitudes examination (VAX) scale. Int. J. Caring Sci. 2021, 14, 261–268. [Google Scholar]
- Cervantes.es. Available online: https://www.cervantes.es/sobre_instituto_cervantes/prensa/2018/noticias/np_presentacion-anuario.htm (accessed on 17 April 2021).
- Guzman-Holst, A.; DeAntonio, R.; Prado-Cohrs, D.; Juliao, P. Barriers to vaccination in Latin America: A systematic literature review. Vaccine 2020, 38, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Eguia, H.; Vinciarelli, F.; Bosque-Prous, M.; Kristensen, T.; Saigí-Rubió, F. Spain’s hesitation at the gates of a COVID-19 vaccine. Vaccines 2021, 9, 170. [Google Scholar] [CrossRef]
- Evers, A.; Muñiz, J.; Hagemeister, C.; Høstmaelingen, A.; Lindley, P.; Sjöberg, A.; Bartram, D. Assessing the quality of tests: Revision of the EFPA review model. Psicothema 2013, 25, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balluerka, N.; Gorostiaga, A.; Alonso-Arbiol, I.; Haranburu, M. Test adaptation to other cultures: A practical approach. Psicothema 2007, 19, 124–133. [Google Scholar]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Ritter, N. Understanding a widely misunderstood statistic: Cronbach’s “Alpha”. In Proceedings of the SERA, Montreal, QC, Canada, 17–20 February 2010; pp. 1–17. [Google Scholar]
- Schmidt, F.L.; Le, H.; Ilies, R. Beyond alpha: An empirical examination of the effects of different sources of measurement error on reliability estimates for measures of individual-differences constructs. Psychol. Methods 2003, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijtsma, K. Reliability beyond theory and into practice. Psychometrika 2009, 74, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, J.L. Amos (Version 21.0) [Computer Program]; IBM SPSS: Chicago, IL, USA, 2014. [Google Scholar]
- Flora, D.B.; Curran, P.J. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychol. Methods 2004, 9, 466–491. [Google Scholar] [CrossRef] [Green Version]
- Wirth, R.J.; Edwards, M.C. Item factor analysis: Current approaches and future directions. Psychol. Methods 2007, 12, 58–79. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bozdogan, H. Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika 1987, 52, 345–370. [Google Scholar] [CrossRef]
- Cortina, J.M. What is coefficient alpha? An examination of theory and applications. J. Appl. Psychol. 1993, 78, 98. [Google Scholar] [CrossRef]
- Horne, R.; Weinman, J.; Hankins, M. The beliefs about medicines questionnaire: The development and evaluation of a new method for assessing the cognitive representation of medication. Psychol. Health 1999, 14, 1–24. [Google Scholar] [CrossRef]
- LaVeist, T.A.; Isaac, L.A.; Williams, K.P. Mistrust of health care organizations is associated with underutilization of health services. Health Serv. Res. 2009, 44, 2093–2105. [Google Scholar] [CrossRef]
- Fridman, A.; Gershon, R.; Gneezy, A. COVID-19 and vaccine hesitancy: A longitudinal study. PLoS ONE 2021, 16, e0250123. [Google Scholar] [CrossRef] [PubMed]
- Latkin, C.A.; Dayton, L.; Yi, G.; Colon, B.; Kong, X. Mask usage, social distancing, racial, and gender correlates of COVID-19 vaccine intentions among adults in the US. PLoS ONE 2021, 16, e0246970. [Google Scholar] [CrossRef] [PubMed]
- Cowan, S.K.; Mark, N.; Reich, J.A. COVID-19 vaccine hesitancy is the new terrain for political division among Americans. Socius 2021, 7, 23780231211023657. [Google Scholar] [CrossRef]
- Soares, P.; Rocha, J.; Moniz, M.; Gama, A.; Laires, P.; Pedro, A.; Dias, S.; Leite, A.; Nunes, C. Factors associated with COVID-19 vaccine hesitancy. Vaccines 2021, 9, 300. [Google Scholar] [CrossRef] [PubMed]
Variable | Eigenvalue | Proportion of Variance |
---|---|---|
1 | 7.480 | 0.62330 |
2 | 0.968 | 0.08069 |
3 | 0.764 | 0.06347 |
4 | 0.565 | 0.04712 |
5 | 0.444 | 0.03704 |
6 | 0.383 | 0.02697 |
7 | 0.324 | 0.02521 |
Item | Model 1 |
---|---|
AV | |
1 | 0.78 |
2 | 0.75 |
3 | 0.58 |
4 | −0.82 |
5 | −0.78 |
6 | −0.82 |
7 | 0.39 |
8 | 0.68 |
9 | 0.58 |
10 | 0.62 |
11 | 0.75 |
12 | 0.76 |
Item | Model 2 | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
1 | 0.91 | - | - | - |
2 | 0.78 | - | - | - |
3 | 0.92 | - | - | - |
4 | - | 0.556 | - | - |
5 | - | 0.80 | - | - |
6 | - | 0.69 | - | - |
7 | - | - | 0.82 | - |
8 | - | - | 0.80 | - |
9 | - | - | 0.83 | - |
10 | - | - | - | 0.68 |
11 | - | - | - | 0.87 |
12 | - | - | - | 0.84 |
F1 | 1 | −0.72 | −0.83 | −0.70 |
F2 | 1 | 0.76 | 0.71 | |
F3 | 1 | 0.84 | ||
F4 | 1 |
Model Study 1 | χ2 | df | χ2/df | CFI | NFI | TLI | RMSEA | AIC |
---|---|---|---|---|---|---|---|---|
1. One factor | 397.23 | 56 | 7.093 | 0.85 | 0.83 | 0.82 | 0.14 | 465.23 |
2. Four correlated factors | 109.78 | 48 | 2.287 | 0.97 | 0.95 | 0.96 | 0.06 | 193.78 |
All χ2: p < 0.01. |
Standardized Residuals | Statistics |
---|---|
Smallest Standardized Residual | −1.568 |
Median Standardized Residual | 0.000 |
Largest Standardized Residual | 1.860 |
Error Correlation | Modification Index |
E1–E3 | 111.71 |
E11–E12 | 61.08 |
E4–E6 | 39.36 |
Standardized Residuals | Statistics |
---|---|
Smallest Standardized Residual | −1.714 |
Median Standardized Residual | 0.000 |
Largest Standardized Residual | 4.44 |
Error Correlation | Modification Index |
E4–E6 | 12.42 |
E1–E10 | 10.92 |
E2–F1 | 9.89 |
Variables | 1 | 2 | 3 | 4 | M | SD |
---|---|---|---|---|---|---|
1. VAX | 3.70 | 1.52 | ||||
2. BMQ | 0.655 * | 2.72 | 0.75 | |||
3. MMI | 0.693 * | 0.645 * | 2.03 | 0.61 | ||
4. Vaccination Intentions | −0.791 * | −0.566 * | −0.608 * | 4.45 | 3.70 |
Step 1 | Step 2 | Step 3 | ||||
---|---|---|---|---|---|---|
Measure | β | t | β | t | β | t |
Intercept | 7.86 * | 45.41 * | 8.22 * | 37.13 * | 7.94 * | 31.70 * |
VAX | −0.92 * | −21.24 * | 0.81 * | −13.82 * | −0.83 * | −14.04 * |
MMI | - | - | 0.36 * | −2.51 * | −0.36 * | −2.56 * |
BMQ | - | - | - | - | - | - |
Sex | - | - | - | - | - | - |
Age | - | - | - | - | 0.01 * | 2.31 * |
Left-Right | - | - | - | - | - | - |
Education | - | - | - | - | - | - |
Step 1 | Step 2 | Step 3 | |||||||
Measure | Exp(β) | LCI | HCI | Exp(β) | LCI | HCI | Exp(β) | LCI | HCI |
Intercept | 1657.8 | - | - | 1139.9 | - | - | 1187.9 | - | - |
VAX | 0.228 * | 0.146 | 0.356 | 0.230 * | 0.148 | 0.357 | 0.231 * | 0.149 | 0.359 |
MMI | 0.751 | 0.336 | 1.680 | 0.748 | 0.335 | 1.672 | 0.748 | 0.334 | 1.671 |
BMQ | 1.213 | 0.631 | 2.335 | 1.213 | 0.630 | 2.335 | 1.203 | 0.626 | 2.313 |
Sex | 1.216 | 0.584 | 2.533 | 1.208 | 0.580 | 2.513 | - | - | - |
Age | 1.014 | 0.989 | 1.040 | 1.014 | 0.989 | 1.040 | 1.015 | 0.990 | 1.041 |
Left-Right | 0.773 * | 0.609 | 0.981 | 0.774 * | 0.610 | 0.981 | 0.776 * | 0.612 | 0.982 |
Education | 0.919 | 0.535 | 1.588 | - | - | - | - | - | - |
Step 4 | Step 5 | Step 6 | |||||||
Measure | Exp(β) | LCI | HCI | Exp(β) | LCI | HCI | Exp(β) | LCI | HCI |
Intercept | 1533.7 | - | - | 1240.1 | - | - | 1938.7 | - | - |
VAX | 0.240 * | 0.158 | 0.364 | 0.227 * | 0.156 | 0.330 | 0.229 * | 0.157 | 0.333 |
MMI | 0.815 | 0.388 | 1.713 | - | - | - | - | - | - |
BMQ | - | - | - | - | - | - | - | - | - |
Sex | - | - | - | - | - | - | - | - | - |
Age | 1.015 | 0.990 | 1.040 | 1.015 | 0.990 | 1.040 | - | - | - |
Left-Right | 0.766 * | 0.607 | 0.967 | 0.766 * | 0.607 | 0.965 | 0.761 * | 0.603 | 0.960 |
Education | - | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes, B.; Cárdaba, M.Á.; Cuesta, U.; Martinez, L. Validity of the Spanish Version of the Vaccination Attitudes Examination Scale. Vaccines 2021, 9, 1237. https://doi.org/10.3390/vaccines9111237
Paredes B, Cárdaba MÁ, Cuesta U, Martinez L. Validity of the Spanish Version of the Vaccination Attitudes Examination Scale. Vaccines. 2021; 9(11):1237. https://doi.org/10.3390/vaccines9111237
Chicago/Turabian StyleParedes, Borja, Miguel Ángel Cárdaba, Ubaldo Cuesta, and Luz Martinez. 2021. "Validity of the Spanish Version of the Vaccination Attitudes Examination Scale" Vaccines 9, no. 11: 1237. https://doi.org/10.3390/vaccines9111237
APA StyleParedes, B., Cárdaba, M. Á., Cuesta, U., & Martinez, L. (2021). Validity of the Spanish Version of the Vaccination Attitudes Examination Scale. Vaccines, 9(11), 1237. https://doi.org/10.3390/vaccines9111237