The Intention to Receive the COVID-19 Vaccine in China: Insights from Protection Motivation Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Method
2.2. Measurement of Intention to Receive COVID-19 Vaccine
2.3. Measurement of PMT Factors
2.4. Measurement of Control Variables
2.5. Statistical Analyses
3. Results
3.1. Statistical Description of Respondents’ Characteristics and PMT Factors
3.2. Results of Pearson Chi-Square Test
3.3. Results of Multivariate Ordered Logistic Regressions
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronavirus Disease (COVID-2019) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 20 March 2021).
- The Associated Press and NORC Expectations for a COVID-19 Vaccine. Available online: https://apnorc.org/projects/expectations-for-a-covid-19-vaccine/ (accessed on 19 April 2021).
- COCONEL Group. A future vaccination campaign against COVID-19 at risk of vaccine hesitancy and politicisation. Lancet Infect. Dis. 2020, 20, 769–770. [Google Scholar] [CrossRef]
- Yoda, T.; Katsuyama, H. Willingness to Receive COVID-19 Vaccination in Japan. Vaccines 2021, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.; Arim, R.G. Canadians’ Willingness to Get a COVID-19 Vaccine: Group Differences and Reasons for Vaccine Hesitancy. 2020. Available online: https://www150.statcan.gc.ca/n1/pub/45-28-0001/2020001/article/00073-eng.htm (accessed on 26 March 2021).
- Sherman, S.M.; Smith, L.E.; Sim, J.; Amlôt, R.; Cutts, M.; Dasch, H.; Rubin, G.J.; Sevdalis, N. COVID-19 vaccination intention in the UK: Results from the COVID-19 Vaccination Acceptability Study (CoVAccS), a nationally representative cross-sectional survey. Hum. Vaccines Immunother. 2020. [Google Scholar] [CrossRef]
- Paul, E.; Steptoe, A.; Fancourt, D. Attitudes towards vaccines and intention to vaccinate against COVID-19: Implications for public health communications. Lancet Reg. Health. Eur. 2021, 1, 100012. [Google Scholar] [CrossRef]
- Raftopoulos, V.; Iordanou, S.; Katsapi, A.; Dedoukou, X.; Maltezou, H.C. A comparative online survey on the intention to get COVID-19 vaccine between Greek and Cypriot healthcare personnel: Is the country a predictor? Hum. Vaccines Immunother. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gagneux-Brunon, A.; Detoc, M.; Bruel, S.; Tardy, B.; Rozaire, O.; Frappe, P.; Botelho-Nevers, E. Intention to get vaccinations against COVID-19 in French healthcare workers during the first pandemic wave: A cross sectional survey. J. Hosp. Infect. 2020, 108, 168–173. [Google Scholar] [CrossRef]
- Bassett, S.F.; Prapavessis, H. A test of an adherence-enhancing adjunct to physiotherapy steeped in the protection motivation theory. Physiother. Theory Pract. 2011, 27, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Boer, H.; Emons, P.A.A. Accurate and inaccurate HIV transmission beliefs, stigmatizing and HIV protection motivation in northern Thailand. AIDS Care 2004, 16, 167–176. [Google Scholar] [CrossRef]
- Fisher, A.; Bonner, C.; Biankin, A.V.; Juraskova, I. Factors influencing intention to undergo whole genome screening in future healthcare: A single-blind parallel-group randomised trial. Prev. Med. Int. J. Devoted Pract. Theory 2012, 55, 514–520. [Google Scholar] [CrossRef]
- Prestwich, A.; Ayres, K.; Lawton, R. Crossing two types of implementation intentions with a protection motivation intervention for the reduction of saturated fat intake: A randomized trial. Soc. Sci. Med. 2008, 67, 1550–1558. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Jacques-Tiura, A.J.; Chen, X.; Xie, N.; Chen, J.; Yang, N.; Gong, J.; MacDonell, K.K. Application of the Protection Motivation Theory in predicting cigarette smoking among adolescents in China. Addict. Behav. 2014, 39, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Bodenheimer, H.C.J.; Fulton, J.P.; Kramer, P.D. Acceptance of hepatitis B vaccine among hospital workers. Am. J. Public Health 1986, 76, 252–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, S.L.; Kottenhahn, R.K.; Biro, F.M.; Succop, P.A. Hepatitis B vaccine acceptance among adolescents and their parents. J. Adolesc. Health 1995, 17, 248–254. [Google Scholar] [CrossRef]
- Zimet, G.D.; Blythe, M.J.; Fortenberry, J.D. Vaccine characteristics and acceptability of HIV immunization among adolescents. Int. J. STD AIDS 2000, 11, 143–149. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, Y.J.; van Empelen, P.; Looman, C.W.; Richardus, J.H. Social-cognitive and socio-cultural predictors of hepatitis B virus-screening in Turkish migrants, the Netherlands. J. Immigr. Minor. Health 2014, 16, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Nicholas, S.; Wang, J. The association between protection motivation and hepatitis b vaccination intention among migrant workers in Tianjin, China: A cross-sectional study. BMC Public Health 2020, 20, 1219. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.; Kothe, E.J.; Mullan, B.A. Predicting intention to receive a seasonal influenza vaccination using Protection Motivation Theory. Soc. Sci. Med. 2019, 233, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Camerini, A.-L.; Diviani, N.; Fadda, M.; Schulz, P.J. Using protection motivation theory to predict intention to adhere to official MMR vaccination recommendations in Switzerland. SSM Popul. Health 2019, 7, 100321. [Google Scholar] [CrossRef]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef]
- Floyd, D.L.; Prentice-dunn, S.; Rogers, R.W. A Meta-Analysis of Research on Protection Motivation Theory. J. Appl. Soc. Psychol. 2000, 30, 407. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Barati, M.; Bashirian, S.; Jenabi, E.; Khazaei, S.; Karimi-Shahanjarini, A.; Zareian, S.; Rezapur-Shahkolai, F.; Moeini, B. Factors Associated with Preventive Behaviours of COVID-19 among Hospital Staff in Iran in 2020: An Application of the Protection Motivation Theory. J. Hosp. Infect. 2020, 105, 430–433. [Google Scholar] [CrossRef]
- Prasetyo, Y.T.; Castillo, A.M.; Salonga, L.J.; Sia, J.A.; Seneta, J.A. Factors Affecting Perceived Effectiveness of COVID-19 Prevention Measures among Filipino during Enhanced Community Quarantine in Luzon, Philippines: Integrating Protection Motivation Theory and Extended Theory of Planned Behavior. Int. J. Infect. Dis. 2020, 99, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-W.; Ahorsu, D.K.; Lin, C.-Y.; Chen, I.-H.; Yen, C.-F.; Kuo, Y.-J.; Griffith, M.D.; Pakpour, A.H. Motivation to Have COVID-19 Vaccination Explained Using an Extended Protection Motivation Theory among University Students in China: The Role of Information Sources. Vaccines 2021, 9, 380. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccination Free to Chinese Residents: Official. Available online: http://www.ecns.cn/news/2021-01-09/detail-ihafqmaz1834647.shtml (accessed on 5 February 2021).
- The COVID-19 Vaccination Situation Report. Available online: http://www.nhc.gov.cn/xcs/yqfkdt/202104/6f2444d14dce4ccda1a53554feaa153a.shtml (accessed on 19 April 2021).
- Lin, Y.; Hu, Z.; Zhao, Q.; Alias, H.; Danaee, M.; Wong, L.P. Understanding COVID-19 vaccine demand and hesitancy: A nationwide online survey in China. PLoS Negl. Trop. Dis. 2020, 14, e0008961. [Google Scholar] [CrossRef]
- Wang, K.; Wong, E.L.-Y.; Ho, K.-F.; Cheung, A.W.-L.; Yau, P.S.-Y.; Dong, D.; Wong, S.Y.-S.; Yeoh, E.-K. Change of Willingness to Accept COVID-19 Vaccine and Reasons of Vaccine Hesitancy of Working People at Different Waves of Local Epidemic in Hong Kong, China: Repeated Cross-Sectional Surveys. Vaccines 2021, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Alqudeimat, Y.; Alenezi, D.; AlHajri, B.; Alfouzan, H.; Almokhaizeem, Z.; Altamimi, S.; Almansouri, W.; Alzalzalah, S.; Ziyab, A. Acceptance of a COVID-19 Vaccine and its Related Determinants among the General Adult Population in Kuwait. Med. Princ. Pract. Int. J. Kuwait Univ. Health Sci. Cent. 2021. [Google Scholar] [CrossRef]
- Harapan, H.; Wagner, A.L.; Yufika, A.; Winardi, W.; Anwar, S.; Gan, A.K.; Setiawan, A.M.; Rajamoorthy, Y.; Sofyan, H.; Vo, T.Q.; et al. Willingness-to-pay for a COVID-19 vaccine and its associated determinants in Indonesia. Hum. Vaccines Immunother. 2020, 16, 3074–3080. [Google Scholar] [CrossRef]
- Mohammed, A.-M.; Kumar, P.B. Determinants of COVID-19 Vaccine Acceptance in Saudi Arabia: A Web-Based National Survey. J. Multidiscip. Healthc. 2020, 13, 1657–1663. [Google Scholar] [CrossRef]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Willingness to pay for a COVID-19 vaccine high in Chile. Pharm. Outcomes News 2020, 858, 35. [CrossRef] [PubMed]
- Sarasty, O.; Carpio, C.E.; Hudson, D.; Guerrero-Ochoa, P.A.; Borja, I. The demand for a COVID-19 vaccine in Ecuador. Vaccine 2020, 38, 8090–8098. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.H.; Cvejic, E.; Bonner, C.; Pickles, K.; McCaffery, K.J. Willingness to vaccinate against COVID-19 in Australia. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Nzaji, M.K.; Ngombe, L.K.; Mwamba, G.N.; Ndala, D.B.B.; Miema, J.M.; Lungoyo, C.L.; Mwimba, B.L.; Bene, A.C.M.; Musenga, E.M. Acceptability of Vaccination Against COVID-19 Among Healthcare Workers in the Democratic Republic of the Congo. Pragmatic Obs. Res. 2020, 11, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Leng, A.; Maitland, E.; Wang, S.; Nicholas, S.; Liu, R.; Wang, J. Individual preferences for COVID-19 vaccination in China. Vaccine 2021, 39, 247–254. [Google Scholar] [CrossRef]
- Dong, D.; Xu, R.H.; Wong, E.L.-Y.; Hung, C.-T.; Feng, D.; Feng, Z.; Yeoh, E.-K.; Wong, S.Y.-S. Public preference for COVID-19 vaccines in China: A discrete choice experiment. Health Expect. Int. J. Public Particip. Health Care Health Policy 2020. [Google Scholar] [CrossRef]
- Guidry, J.P.D.; Laestadius, L.I.; Vraga, E.K.; Miller, C.A.; Perrin, P.B.; Burton, C.W.; Ryan, M.; Fuemmeler, B.F.; Carlyle, K.E. Willingness to get the COVID-19 Vaccine with and without Emergency Use Authorization. Am. J. Infect. Control. 2020, 49, 137–142. [Google Scholar] [CrossRef]
- Liu, R.; Li, Y.; Wangen, K.R. Analysis of hepatitis B vaccination behavior and vaccination willingness among migrant workers from rural China based on protection motivation theory. Hum. Vaccines Immunother. 2016, 12, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S. Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyachi, T.; Takita, M.; Senoo, Y.; Yamamoto, K. Lower trust in national government links to no history of vaccination. Lancet 2020, 395, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, J.Z. In the Wake of Scandals: How Media Use and Social Trust Influence Risk Perception and Vaccination Intention among Chinese Parents. Health Commun. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef] [PubMed]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Wong, P.F.; Lee, H.Y.; AbuBakar, S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum. Vaccines Immunother. 2020, 16, 2204–2214. [Google Scholar] [CrossRef] [PubMed]
Factors | Description | Assignment |
---|---|---|
Severity | COVID-19 is a serious disease. | Disagree = 0; Neutral = 1; Agree = 2 |
Vulnerability | My relatives, friends and I face the risk of COVID-19 infection. | Disagree = 0; Neutral = 1; Agree = 2 |
Internal reward | After I received the COVID-19 vaccine, I will no longer be restricted in my travel. | Disagree = 0; Neutral = 1; Agree = 2 |
External reward | My relatives, friends and people around me all want to get vaccinated against COVID-19. | Disagree = 0; Neutral = 1; Agree = 2 |
Self-efficacy | I believe I will have the ability to get the COVID-19 vaccine in the future. | Disagree = 0; Neutral = 1; Agree = 2 |
Response efficacy | The COVID-19 vaccine is effective against COVID-19. | Disagree = 0; Neutral = 1; Agree = 2 |
Response cost | Going to get the COVID-19 vaccine would waste my time or delay my work. | Disagree = 0; Neutral = 1; Agree = 2 |
Variables | Total | No | It Depends | Yes | χ2 | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |||||
PMT factors | Severity | Disagree | 46 | 1.94 | 6 | 13.04 | 4 | 8.70 | 36 | 78.26 | 28.303 | <0.001 |
Neutral | 152 | 6.39 | 6 | 3.95 | 38 | 25.00 | 108 | 71.05 | ||||
Agree | 2179 | 91.67 | 76 | 3.49 | 292 | 13.40 | 1811 | 83.11 | ||||
Vulnerability | Disagree | 1107 | 46.57 | 50 | 4.52 | 143 | 12.92 | 914 | 82.57 | 12.692 | 0.013 | |
Neutral | 670 | 28.19 | 18 | 2.69 | 117 | 17.46 | 535 | 79.85 | ||||
Agree | 600 | 25.24 | 20 | 3.33 | 74 | 12.33 | 506 | 84.33 | ||||
Internal rewards | Disagree | 489 | 20.57 | 22 | 4.50 | 74 | 15.13 | 393 | 80.37 | 39.773 | <0.001 | |
Neutral | 774 | 32.56 | 33 | 4.26 | 150 | 19.38 | 591 | 76.36 | ||||
Agree | 1114 | 46.87 | 33 | 2.96 | 110 | 9.87 | 971 | 87.16 | ||||
External rewards | Disagree | 141 | 5.93 | 14 | 9.93 | 36 | 25.53 | 91 | 64.54 | 209.583 | <0.001 | |
Neutral | 729 | 30.67 | 46 | 6.31 | 187 | 25.65 | 496 | 68.04 | ||||
Agree | 1507 | 63.40 | 28 | 1.86 | 111 | 7.37 | 1368 | 90.78 | ||||
Self-efficacy | Disagree | 87 | 3.66 | 7 | 8.05 | 13 | 14.94 | 67 | 77.01 | 66.452 | <0.001 | |
Neutral | 437 | 18.38 | 26 | 5.95 | 107 | 24.49 | 304 | 69.57 | ||||
Agree | 1853 | 77.96 | 55 | 2.97 | 214 | 11.55 | 1584 | 85.48 | ||||
Response efficacy | Disagree | 17 | 0.72 | 6 | 35.29 | 4 | 23.53 | 7 | 41.18 | 245.711 | <0.001 | |
Neutral | 301 | 12.66 | 28 | 9.30 | 111 | 36.88 | 162 | 53.82 | ||||
Agree | 2059 | 86.62 | 54 | 2.62 | 219 | 10.64 | 1786 | 86.74 | ||||
Response cost | Disagree | 1500 | 63.10 | 52 | 3.47 | 166 | 11.07 | 1282 | 85.47 | 40.708 | <0.001 | |
Neutral | 532 | 22.38 | 20 | 3.76 | 117 | 21.99 | 395 | 74.25 | ||||
Agree | 345 | 14.51 | 16 | 4.64 | 51 | 14.78 | 278 | 80.58 | ||||
Control variables | Sex | Male | 1154 | 48.55 | 45 | 3.90 | 156 | 13.52 | 953 | 82.58 | 0.720 | 0.698 |
Female | 1223 | 51.45 | 43 | 3.52 | 178 | 14.55 | 1002 | 81.93 | ||||
Age | 18–27 | 915 | 38.49 | 21 | 2.30 | 139 | 15.19 | 755 | 82.51 | 25.116 | 0.001 | |
28–37 | 340 | 14.30 | 12 | 3.53 | 37 | 10.88 | 291 | 85.59 | ||||
38–47 | 460 | 19.35 | 21 | 4.57 | 77 | 16.74 | 362 | 78.70 | ||||
48–57 | 426 | 17.92 | 17 | 3.99 | 60 | 14.08 | 349 | 81.92 | ||||
>58 | 236 | 9.93 | 17 | 7.20 | 21 | 8.90 | 198 | 83.90 | ||||
Income | High | 813 | 34.20 | 33 | 4.06 | 138 | 16.97 | 642 | 78.97 | 15.355 | 0.004 | |
Medium | 796 | 33.49 | 29 | 3.64 | 116 | 14.57 | 651 | 81.78 | ||||
Low | 768 | 32.31 | 26 | 3.39 | 80 | 10.42 | 662 | 86.20 | ||||
Education level | Below high school | 1472 | 61.93 | 59 | 4.01 | 185 | 12.57 | 1228 | 83.42 | 7.684 | 0.021 | |
High school and above | 905 | 38.07 | 29 | 3.20 | 149 | 16.46 | 727 | 80.33 | ||||
Occupation | Professional | 708 | 29.79 | 29 | 4.10 | 120 | 16.95 | 559 | 78.95 | 35.573 | 0.001 | |
Farmer | 278 | 11.70 | 9 | 3.24 | 22 | 7.91 | 247 | 88.85 | ||||
Migrant worker | 289 | 12.16 | 8 | 2.77 | 42 | 14.53 | 239 | 82.70 | ||||
Self-employed | 221 | 9.30 | 12 | 5.43 | 29 | 13.12 | 180 | 81.45 | ||||
Unemployed | 103 | 4.33 | 8 | 7.77 | 6 | 5.83 | 89 | 86.41 | ||||
Student | 639 | 26.88 | 14 | 2.19 | 100 | 15.65 | 525 | 82.16 | ||||
Retired | 86 | 3.62 | 4 | 4.65 | 9 | 10.47 | 73 | 84.88 | ||||
Other | 53 | 2.23 | 4 | 7.55 | 6 | 11.32 | 43 | 81.13 | ||||
Medical insurance | Yes | 2289 | 96.30 | 81 | 3.54 | 316 | 13.81 | 1892 | 82.66 | 8.392 | 0.015 | |
No | 88 | 3.70 | 7 | 7.95 | 18 | 20.45 | 63 | 71.59 | ||||
Residence | Urban | 1462 | 61.51 | 56 | 3.83 | 209 | 14.30 | 1197 | 81.87 | 0.394 | 0.821 | |
Rural | 915 | 38.49 | 32 | 3.50 | 125 | 13.66 | 758 | 82.84 | ||||
Self-rated health | Bad | 73 | 3.07 | 3 | 4.11 | 10 | 13.70 | 60 | 82.19 | 1.171 | 0.883 | |
Medium | 564 | 23.73 | 24 | 4.26 | 74 | 13.12 | 466 | 82.62 | ||||
Good | 1740 | 73.20 | 61 | 3.51 | 250 | 14.37 | 1429 | 82.13 | ||||
Region | Eastern | 748 | 31.47 | 23 | 3.07 | 122 | 16.31 | 603 | 80.61 | 10.398 | 0.034 | |
Central | 686 | 28.86 | 34 | 4.96 | 79 | 11.52 | 573 | 83.53 | ||||
Western | 943 | 39.67 | 31 | 3.29 | 133 | 14.10 | 779 | 82.61 | ||||
Vaccine safety | Low | 40 | 1.68 | 11 | 27.50 | 8 | 20.00 | 21 | 52.50 | 279.622 | <0.001 | |
Medium | 378 | 15.90 | 36 | 9.52 | 128 | 33.86 | 214 | 56.61 | ||||
High | 1959 | 82.41 | 41 | 2.09 | 198 | 10.11 | 1720 | 87.80 |
Variables | Model 1 | Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
β | S.E. | p | OR (95%CI) | β | S.E. | p | OR (95%CI) | |||
PMT factors | Severity | Disagree | (Reference group) | |||||||
Neutral | 0.681 | 0.45 | 0.130 | 1.976 (0.819, 4.767) | ||||||
Agree | 0.674 | 0.40 | 0.090 | 1.962 (0.900, 4.276) | ||||||
Vulnerability | Disagree | (Reference group) | ||||||||
Neutral | 0.161 | 0.15 | 0.269 | 1.175 (0.883, 1.565) | ||||||
Agree | −0.073 | 0.15 | 0.637 | 0.930 (0.686, 1.259) | ||||||
Internal rewards | Disagree | (Reference group) | ||||||||
Neutral | 0.171 | 0.17 | 0.300 | 1.186 (0.859, 1.640) | ||||||
Agree | 0.006 | 0.17 | 0.973 | 1.006 (0.725, 1.394) | ||||||
External rewards | Disagree | (Reference group) | ||||||||
Neutral | 0.192 | 0.21 | 0.364 | 1.211 (0.801, 1.831) | ||||||
Agree | 1.508 | 0.22 | <0.001 | 4.519 (2.914, 7.009) | ||||||
Self-efficacy | Disagree | (Reference group) | ||||||||
Neutral | −0.309 | 0.32 | 0.330 | 0.734 (0.394, 1.367) | ||||||
Agree | −0.008 | 0.30 | 0.979 | 0.992 (0.547, 1.798) | ||||||
Response efficacy | Disagree | (Reference group) | ||||||||
Neutral | 1.133 | 0.55 | 0.041 | 3.105 (1.048, 9.197) | ||||||
Agree | 1.752 | 0.55 | 0.001 | 5.768 (1.956, 17.010) | ||||||
Reaction cost | Disagree | (Reference group) | ||||||||
Neutral | −0.288 | 0.15 | 0.047 | 0.749 (0.564, 0.996) | ||||||
Agree | −0.694 | 0.18 | <0.001 | 0.500 (0.354, 0.705) | ||||||
Control variables | Sex | Male | (Reference group) | (Reference group) | ||||||
Female | −0.102 | 0.11 | 0.375 | 0.903 (0.721, 1.131) | −0.135 | 0.12 | 0.263 | 0.874 (0.690, 1.106) | ||
Age | 18-27 | (Reference group) | (Reference group) | |||||||
28-37 | 0.116 | 0.23 | 0.621 | 1.123 (0.709, 1.779) | 0.133 | 0.24 | 0.585 | 1.142 (0.709, 1.840) | ||
38-47 | −0.367 | 0.21 | 0.083 | 0.692 (0.457, 1.049) | −0.451 | 0.22 | 0.040 | 0.637 (0.414, 0.979) | ||
48-57 | −0.397 | 0.22 | 0.076 | 0.672 (0.434, 1.042) | −0.521 | 0.23 | 0.024 | 0.594 (0.377, 0.934) | ||
58- | −0.786 | 0.29 | 0.006 | 0.456 (0.260, 0.797) | −0.753 | 0.30 | 0.012 | 0.471 (0.263, 0.845) | ||
Income | High | (Reference group) | (Reference group) | |||||||
Medium | 0.192 | 0.14 | 0.169 | 1.212 (0.921, 1.594) | 0.252 | 0.15 | 0.085 | 1.286 (0.966, 1.712) | ||
Low | 0.434 | 0.16 | 0.008 | 1.544 (1.121, 2.126) | 0.533 | 0.17 | 0.002 | 1.705 (1.218, 2.386) | ||
Education level | Below high school | (Reference group) | (Reference group) | |||||||
High school and above | −0.202 | 0.14 | 0.151 | 0.817 (0.620, 1.076) | −0.203 | 0.15 | 0.165 | 0.816 (0.612, 1.088) | ||
Occupation | Professional | (Reference group) | (Reference group) | |||||||
Farmer | 0.706 | 0.26 | 0.007 | 2.026 (1.212, 3.386) | 0.758 | 0.27 | 0.005 | 2.134 (1.258, 3.622) | ||
Migrant worker | 0.099 | 0.21 | 0.632 | 1.104 (0.736, 1.655) | 0.194 | 0.22 | 0.376 | 1.214 (0.791, 1.863) | ||
Self-employed | 0.025 | 0.22 | 0.907 | 1.026 (0.671, 1.569) | 0.121 | 0.23 | 0.594 | 1.129 (0.723, 1.760) | ||
Unemployed | 0.621 | 0.35 | 0.076 | 1.860 (0.938, 3.691) | 0.652 | 0.36 | 0.072 | 1.919 (0.944, 3.899) | ||
Student | −0.091 | 0.21 | 0.667 | 0.913 (0.603, 1.382) | −0.041 | 0.22 | 0.850 | 0.960 (0.625, 1.473) | ||
Retired | 0.554 | 0.36 | 0.126 | 1.740 (0.856, 3.538) | 0.651 | 0.38 | 0.084 | 1.917 (0.917, 4.008) | ||
Other | −0.041 | 0.39 | 0.916 | 0.960 (0.448, 2.055) | 0.132 | 0.41 | 0.746 | 1.141 (0.514, 2.534) | ||
Medical insurance | Yes | (Reference group) | (Reference group) | |||||||
No | −0.662 | 0.26 | 0.011 | 0.516 (0.311, 0.857) | −0.538 | 0.27 | 0.049 | 0.584 (0.341, 0.998) | ||
Residence | Urban | (Reference group) | (Reference group) | |||||||
Rural | −0.096 | 0.13 | 0.451 | 0.909 (0.709, 1.165) | −0.151 | 0.13 | 0.253 | 0.860 (0.664, 1.114) | ||
Self-rated health | Bad | (Reference group) | (Reference group) | |||||||
Medium | 0.327 | 0.35 | 0.356 | 1.387 (0.692, 2.781) | 0.666 | 0.36 | 0.066 | 1.947 (0.958, 3.957) | ||
Good | 0.281 | 0.35 | 0.418 | 1.325 (0.671, 2.617) | 0.507 | 0.35 | 0.152 | 1.66 (0.830, 3.322) | ||
Region | Eastern | (Reference group) | (Reference group) | |||||||
Central | 0.083 | 0.15 | 0.587 | 1.086 (0.806, 1.463) | 0.092 | 0.16 | 0.563 | 1.096 (0.804, 1.494) | ||
Western | −0.039 | 0.14 | 0.779 | 0.962 (0.731, 1.265) | −0.025 | 0.15 | 0.867 | 0.976 (0.732, 1.300) | ||
Vaccine safety | Low | (Reference group) | (Reference group) | |||||||
Medium | 0.689 | 0.34 | 0.043 | 1.992 (1.023, 3.878) | 0.695 | 0.37 | 0.063 | 2.004 (0.962, 4.173) | ||
High | 2.400 | 0.33 | <0.001 | 11.023 (5.731, 21.201) | 1.713 | 0.37 | <0.001 | 5.546 (2.688, 11.442) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, J.; Nicholas, S.; Maitland, E.; Leng, A.; Liu, R. The Intention to Receive the COVID-19 Vaccine in China: Insights from Protection Motivation Theory. Vaccines 2021, 9, 445. https://doi.org/10.3390/vaccines9050445
Li L, Wang J, Nicholas S, Maitland E, Leng A, Liu R. The Intention to Receive the COVID-19 Vaccine in China: Insights from Protection Motivation Theory. Vaccines. 2021; 9(5):445. https://doi.org/10.3390/vaccines9050445
Chicago/Turabian StyleLi, Lu, Jian Wang, Stephen Nicholas, Elizabeth Maitland, Anli Leng, and Rugang Liu. 2021. "The Intention to Receive the COVID-19 Vaccine in China: Insights from Protection Motivation Theory" Vaccines 9, no. 5: 445. https://doi.org/10.3390/vaccines9050445
APA StyleLi, L., Wang, J., Nicholas, S., Maitland, E., Leng, A., & Liu, R. (2021). The Intention to Receive the COVID-19 Vaccine in China: Insights from Protection Motivation Theory. Vaccines, 9(5), 445. https://doi.org/10.3390/vaccines9050445