Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art
Abstract
:1. Background
2. Immune Response of the Host to CMV Infection
3. CMV Vaccines
4. Administration of the CMV Vaccine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Zuylen, W.J.; Hamilton, S.T.; Naing, Z.; Hall, B.; Shand, A.; Rawlinson, W.D. Congenital cytomegalovirus infection: Clinical presentation, epidemiology, diagnosis and prevention. Obstet. Med. 2014, 7, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Mocarski, E.S., Jr.; Shenk, T.; Griffith, P.; Pass, R.F. Cytomegaloviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1960–2014. [Google Scholar]
- Boppana, S.B.; Ross, S.A.; Fowler, K.B. Congenital Cytomegalovirus Infection: Clinical Outcome. Clin. Infect. Dis. 2013, 57, S178–S181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.L.; King, C.C.; Kourtis, A.P. Cytomegalovirus infection in pregnancy. Birth Defects Res. 2017, 109, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.; Johnson, J. Cytomegalovirus: Should We Screen Pregnant Women for Primary Infection? Am. J. Perinatol. 2013, 30, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Stagno, S.; Pass, R.F.; Cloud, G.; Britt, W.J.; Henderson, R.; Walton, P.D.; Veren, D.; Page, F.; Alford, C. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986, 256, 1904–1908. [Google Scholar] [CrossRef]
- Boppana, S.B.; Fowler, K.B.; Britt, W.J.; Stagno, S.; Pass, R.F. Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 1999, 104, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ahlfors, K.; Ivarsson, S.A.; Harris, S. Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. Scand. J. Infect. Dis. 1999, 31, 443–457. [Google Scholar] [PubMed]
- Fowler, K.B.; Stagno, S.; Pass, R.F.; Britt, W.J.; Boll, T.J.; Alford, C.A. The Outcome of Congenital Cytomegalovirus Infection in Relation to Maternal Antibody Status. N. Engl. J. Med. 1992, 326, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Coppola, T.; Mangold, J.F.; Cantrell, S.; Permar, S.R. Impact of Maternal Immunity on Congenital Cytomegalovirus Birth Prevalence and Infant Outcomes: A Systematic Review. Vaccines 2019, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine Committee to Study Priorities for Vaccine Development. The National Academies Collection: Reports funded by National Institutes of Health. In Vaccines for the 21st Century: A Tool for Decision Making; Stratton, K.R., Durch, J.S., Lawrence, R.S., Eds.; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Plotkin, S. Preventing Infection by Human Cytomegalovirus. J. Infect. Dis. 2020, 221, S123–S127. [Google Scholar] [CrossRef]
- Nelson, C.S.; Herold, B.C.; Permar, S.R. A new era in cytomegalovirus vaccinology: Considerations for rational design of next-generation vaccines to prevent congenital cytomegalovirus infection. NPJ Vaccines 2018, 3, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehr, T.; Cippà, P.E.; Mueller, N.J. Cytomegalovirus post kidney transplantation: Prophylaxis versus pre-emptive therapy? Transpl. Int. 2015, 28, 1351–1356. [Google Scholar] [CrossRef]
- Torre-Cisneros, J.; Aguado, J.M.; Caston, J.J.; Almenar, L.; Alonso, A.; Cantisán, S.; Carratala, J.; Cervera, C.; Cordero, E.; Farinas, M.C.; et al. Management of cytomegalovirus infection in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant. Rev. 2016, 30, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.C.; Chapman, T.L.; Bjorkman, P.J.; Formankova, D.; Mocarski, E.S.; Phillips, J.H.; Lanier, L.L. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: The role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med. 1998, 187, 1681–1687. [Google Scholar] [CrossRef]
- Biron, C.A.; Byron, K.S.; Sullivan, J.L. Severe Herpesvirus Infections in an Adolescent without Natural Killer Cells. N. Engl. J. Med. 1989, 320, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Tomasec, P.; Wang, E.C.Y.; Davison, A.J.; Vojtesek, B.; Armstrong, M.; Griffin, C.; McSharry, B.P.; Morris, R.J.; Llewellyn-Lacey, S.; Rickards, C.; et al. Downregulation of natural killer cell–activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol. 2005, 6, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Cerboni, C.; Mousavi-Jazi, M.; Linde, A.; Söderström, K.; Brytting, M.; Wahren, B.; Kärre, K.; Carbone, E. Human Cytomegalovirus Strain-Dependent Changes in NK Cell Recognition of Infected Fibroblasts. J. Immunol. 2000, 164, 4775–4782. [Google Scholar] [CrossRef] [Green Version]
- Forrest, C.; Gomes, A.; Reeves, M.; Male, V. NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development. Vaccines 2020, 8, 394. [Google Scholar] [CrossRef]
- Chevillotte, M.; Landwehr, S.; Linta, L.; Frascaroli, G.; Lüske, A.; Buser, C.; Mertens, T.; von Einem, J. Major tegument protein pp65 of human cytomegalovirus is required for the incorporation of pUL69 and pUL97 into the virus particle and for viral growth in macrophages. J. Virol. 2009, 83, 2480–2490. [Google Scholar] [CrossRef] [Green Version]
- Paulus, C.; Nevels, M. The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses. Viruses 2009, 1, 760–779. [Google Scholar] [CrossRef] [Green Version]
- Lilleri, D.; Zelini, P.; Fornara, C.; Zavaglio, F.; Rampino, T.; Perez, L.; Gabanti, E.; Gerna, G. Human cytomegalovirus (HCMV)-specific T cell but not neutralizing or IgG binding antibody responses to glycoprotein complexes gB, gHgLgO, and pUL128L correlate with protection against high HCMV viral load reactivation in solid-organ transplant recipients. J. Med. Virol. 2018, 90, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Fornara, C.; Cassaniti, I.; Zavattoni, M.; Furione, M.; Adzasehoun, K.M.G.; De Silvestri, A.; Comolli, G.; Baldanti, F. Human Cytomegalo-virus-Specific Memory CD4+ T-Cell Response and Its Correlation with Virus Transmission to the Fetus in Pregnant Women with Primary Infection. Clin. Infect. Dis. 2017, 65, 1659–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slobedman, B.; Mocarski, E.S. Quantitative Analysis of Latent Human Cytomegalovirus. J. Virol. 1999, 73, 4806–4812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins-McMillen, D.; Kamil, J.; Moorman, N.; Goodrum, F. Control of Immediate Early Gene Expression for Human Cytomegalovirus Reactivation. Front. Cell. Infect. Microbiol. 2020, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Forte, E.; Zhang, Z.; Thorp, E.B.; Hummel, M. Cytomegalovirus Latency and Reactivation: An Intricate Interplay with the Host Immune Response. Front. Cell. Infect. Microbiol. 2020, 10, 130. [Google Scholar] [CrossRef]
- Schleiss, M.R.; Diamond, D.J. Exciting Times for Cytomegalovirus (CMV) Vaccine Development: Navigating the Pathways toward the Goal of Protecting Infants against Congenital CMV Infection. Vaccines 2020, 8, 526. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, B.J.; Rainish, B.L.; Chase, M.C.; Borton, J.A.; Nelson, J.A.; Jarvis, M.A.; Johnson, D.C. Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J. Virol. 2008, 82, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Kabanova, A.; Perez, L.; Lilleri, D.; Marcandalli, J.; Agatic, G.; Becattini, S.; Preite, S.; Fuschillo, D.; Percivalle, E.; Sallusto, F.; et al. Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc. Natl. Acad. Sci. USA 2014, 111, 17965–17970. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.S.; Huffman, T.; Jenks, J.A.; de la Rosa, E.C.; Xie, G.; Vandergrift, N.; Pass, R.F.; Pollara, J.; Permar, S.R. HCMV glycoprotein B subunit vaccine efficacy mediated by nonneu-tralizing antibody effector functions. Proc. Natl. Acad. Sci. USA 2018, 115, 6267–6272. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, S.; Friedman, H.; Fleisher, G.; Dafoe, D.; Grossman, R.; Smiley, M.L.; Starr, S.; Wlodaver, C.; Friedman, A.; Barker, C. Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet 1984, 323, 528–530. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Starr, S.E.; Friedman, H.M.; Gonczol, E.; Weibel, R.E. Protective effects of Towne cytomegalovirus vaccine against low-passage cytomegalovirus administered as a challenge. J. Infect. Dis. 1989, 159, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Prichard, M.N.; Penfold, M.E.; Duke, G.M.; Spaete, R.R.; Kemble, G.W. A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev. Med. Virol. 2001, 11, 191–200. [Google Scholar] [CrossRef]
- Heineman, T.; Schleiss, M.; Bernstein, D.; Fast, P.; Spaete, R.; Kemble, G. Preliminary safety results from a phase 1 study of four new live, recombinant HCMV Towne/Toledo chimeric vaccines. In Proceedings of the Abstracts of the 27th Herpes Simplex Virus Workshop, Cairns, Australia, 20–26 July 2002; Abstract 16.05. [Google Scholar]
- Adler, S.P.; Manganello, A.M.; Lee, R.; McVoy, M.A.; Nixon, D.E.; Plotkin, S.; Mocarski, E.; Cox, J.H.; Fast, P.E.; Nesterenko, P.A.; et al. A Phase 1 Study of 4 Live, Recombinant Human Cytomegalovirus Towne/Toledo Chimera Vaccines in Cytomegalovirus-Seronegative Men. J. Infect. Dis. 2016, 214, 1341–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hagan, D.T.; Ott, G.S.; Van Nest, G.; Rappuoli, R.; Del Giudice, G. The history of MF59® adjuvant: A phoenix that arose from the ashes. Expert Rev. Vaccines 2013, 12, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; Zhang, C.; Evans, A.; Simpson, T.; Andrews, W.; Huang, M.L.; Corey, L.; Hill, J.; Davis, E.; Flanigan, C.; et al. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 2009, 360, 1191–1199. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Munoz, F.M.; Callahan, S.T.; Rupp, R.; Wootton, S.H.; Edwards, K.M.; Turley, C.B.; Stanberry, L.R.; Patel, S.M.; Mcneal, M.M.; et al. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial. Vaccine 2016, 34, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieder, F.; Steininger, C. Cytomegalovirus vaccine: Phase II clinical trial results. Clin. Microbiol. Infect. 2014, 20 (Suppl. 5), 95–102. [Google Scholar] [CrossRef] [Green Version]
- Sabbaj, S.; Pass, R.F.; Pichon, S.; Goepfert, P.A. Glycoprotein B Vaccine Is Capable of Boosting Both Antibody and CD4 T-Cell Responses to Cytomegalovirus in Chronically Infected Women. J. Infect. Dis. 2011, 203, 1534–1541. [Google Scholar] [CrossRef] [Green Version]
- Garçon, N.; Van Mechelen, M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 2011, 10, 471–486. [Google Scholar] [CrossRef]
- Cui, X.; Cao, Z.; Wang, S.; Lee, R.B.; Wang, X.; Murata, H.; Adler, S.P.; McVoy, M.A.; Snapper, C.M. Novel trimeric human cytomegalovirus glycoprotein B elicits a high-titer neutralizing antibody response. Vaccine 2018, 36, 5580–5590. [Google Scholar] [CrossRef]
- Wang, D.; Shenk, T. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl. Acad. Sci. USA 2005, 102, 18153–18158. [Google Scholar] [CrossRef] [Green Version]
- Lilleri, D.; Gerna, G. Maternal immune correlates of protection from human cytomegalovirus transmission to the fetus after primary infection in pregnancy. Rev. Med. Virol. 2017, 27, e1921. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.P.; Plotkin, S.A.; Gonczol, E.; Cadoz, M.; Meric, C.; Wang, J.B.; Dellamonica, P.; Best, A.M.; Zahradnik, J.; Pincus, S.; et al. A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine (Towne). J. Infect Dis. 1999, 180, 843–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Library of Medicine. ClinicalTrials gov. A Study to Evaluate a Therapeutic Vaccine, ASP0113, in Cytomegalovirus (CMV)-Seropositive Recipients Undergoing Allogeneic, Hematopoietic Cell Transplant (HCT) (HELIOS). Available online: https://clinicaltrials.gov/ct2/show/NCT01877655 (accessed on 20 February 2021).
- La Rosa, C.; Longmate, J.; Martinez, J.; Zhou, Q.; Kaltcheva, T.I.; Tsai, W.; Drake, J.; Carroll, M.; Wussow, F.; Chiuppesi, F.; et al. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults. Blood 2017, 129, 114–125. [Google Scholar] [CrossRef]
- Aldoss, I.; La Rosa, C.; Baden, L.R.; Longmate, J.; Ariza-Heredia, E.J.; Rida, W.N.; Raj Lingaraju, C.; Zhou, Q.; Martinez, J.; TRIPLEX VACCINE Study Group; et al. Poxvirus Vectored Cytomegalovirus Vaccine to Prevent Cytomegalovirus Viremia in Transplant Recipients: A Phase 2, Randomized Clinical Trial. Ann. Intern. Med. 2020, 172, 306–316. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, C.; Longmate, J.; Lacey, S.F.; Kaltcheva, T.; Sharan, R.; Marsano, D. Clinical evaluation of safety and immunogenicity of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without PF03512676 adjuvant. J. Infect. Dis. 2012, 205, 1294–1304. [Google Scholar] [CrossRef]
- Wloch, M.K.; Smith, L.R.; Boutsaboualoy, S.; Reyes, L.; Han, C.; Kehler, J. Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J. Infect. Dis. 2008, 197, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Geall, A.J.; Verma, A.; Otten, G.R.; Shaw, C.A.; Hekele, A.; Banerjee, K. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.R.; Wloch, M.K.; Chaplin, J.A.; Gerber, M.; Rolland, A.P. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial. Vaccines 2013, 1, 398–414. [Google Scholar] [CrossRef] [Green Version]
- Perotti, M.; Marcandalli, J.; Demurtas, D.; Sallusto, F.; Perez, L. Rationally designed Human Cytomegalovirus gB nanoparticle vaccine with improved immunogenicity. PLoS Pathog. 2020, 16, e1009169. [Google Scholar] [CrossRef]
- Contreras, H.; Wussow, F.; Fernández-Alarcón, C.; Bierle, C.; Nguyen, J.; Diamond, D.J.; Schleiss, M.R. MVA-vectored pentameric complex (PC) and gB vaccines improve pregnancy outcome after guinea pig CMV challenge, but only gB vaccine reduces vertical transmission. Vaccines 2019, 7, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S.; Yuzhakov, O.; Woods, A.; Deterling, J.; Hassett, K.; Shaw, C.A.; Ciaramella, G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018, 36, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.S.; Jenks, J.A.; Pardi, N.; Goodwin, M.; Roark, H.; Edwards, W.; McLellan, J.S.; Pollara, J.; Weissman, D.; Permar, S.R. Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. J. Virol. 2020, 94, e00186-20. [Google Scholar] [CrossRef] [PubMed]
- Moderna. Moderna Announces Clinical Progress from its Industry-Leading mRNA Vaccine Franchise and Continues Investments to Accelerate Pipeline Development. Available online: https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-clinical-progress-its-industry-leading-mrna (accessed on 20 April 2021).
- Perotti, M.; Perez, L. Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, P.R.; Bialek, S.R.; Boppana, S.B.; Griffiths, P.D.; Laughlin, C.A.; Ljungman, P.; Mocarski, E.S.; Pass, R.F.; Read, J.S.; Schleiss, M.R.; et al. Priorities for CMV vaccine development. Vaccine 2013, 32, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, T.B.; Schmid, D.S.; Cannon, M.J. Cytomegalovirus seroconversion rates and risk factors: Implications for congenital CMV. Rev. Med. Virol. 2010, 20, 311–326. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Vaccines and Preventable Diseases. Administering HPV Vaccine. Dosage and Schedule. Available online: https://www.cdc.gov/vaccines/vpd/hpv/hcp/administration.html#:~:text=HPV%20vaccines%20are%20administered%20as,years%2C%20and%20for%20immunocompromised%20persons (accessed on 20 February 2021).
- Cannon, M.J.; Schmid, D.S.; Hyde, T.B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 2010, 20, 202–213. [Google Scholar] [CrossRef]
- Fowler, K.B.; Pass, R.F. Risk Factors for Congenital Cytomegalovirus Infection in the Offspring of Young Women: Exposure to Young Children and Recent Onset of Sexual Activity. Pediatrics 2006, 118, 286–292. [Google Scholar] [CrossRef]
- Fowler, K.B.; Pass, R.F. Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J. Infect. Dis. 1991, 164, 259–264. [Google Scholar] [CrossRef]
- Arav-Boger, R. Strain Variation and Disease Severity in Congenital Cytomegalovirus Infection: In Search of a Viral Marker. Infect. Dis. Clin. N. Am. 2015, 29, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Porath, A.; McNutt, R.A.; Smiley, L.M.; Weigle, K.A. Effectiveness and cost benefit of a proposed live cytomegalovirus vaccine in the prevention of congenital disease. Rev. Infect. Dis. 1990, 12, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, A.F.; Pangborn, H.M.; Prosser, L.A. Cost-effectiveness of routine vaccination of adolescent females against cytomegalovirus. Vaccine 2012, 30, 4060–4066. [Google Scholar] [CrossRef]
- N’Diaye, D.; Launay, O.; Picone, O.; Tsatsaris, V.; Azria, E.; Rozenberg, F.; Schwarzinger, M.; Yazdanpanah, Y. Cost-effectiveness of vaccination against cytomegalovirus (CMV) in adolescent girls to prevent infections in pregnant women living in France. Vaccine 2018, 36, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- N’Diaye, D.S.; Yazdanpanah, Y.; Krivine, A.; Andrieu, T.; Rozenberg, F.; Picone, O.; Tsatasris, V.; Goffinet, F.; Launay, O. Predictive Factors of Cytomegalovirus Seropositivity among Pregnant Women in Paris, France. PLoS ONE 2014, 9, e89857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Vaccine Category | Vaccines | Antigen Used | Adjuvant | Manufacturer | CT Identifier | Phase |
---|---|---|---|---|---|---|
Attenuated and DISC vaccines | V160-001 | gB, pp65, IE1 | Aluminum phosphate or none | MSD | NCT01986010 | 1 |
Towne- | CMV Research | NCT01195571 | 1 | |||
Toledo | Foundation. | |||||
Chimera | International | |||||
Vaccine | AIDS Vaccine | NCT00370006 | 1 | |||
Institute | NCT00373412 | 1 | ||||
VCL-CT02 | UC-SF, Vical | |||||
Plu Towne | ||||||
CMV | ||||||
Recombinant/Subunit vaccines | GSK1492903A | gB | Proprietary | GSK | NCT00435396 | 1 |
NCT01357915 | 1 | |||||
gB subunit | gB | MF59 | University | NCT00299260 | 2 | |
College, | NCT01883206 | 2 | ||||
gB/MF59 | gB | MF59 | London | NCT00133497 | 2 | |
NIAID | NCT00815165 | 2 | ||||
gB/MF59 | gB | MF59 | Sanofi Pasteur | NCT00125502 | 2 | |
Vectored vaccines | AVX601 | gB, pp65, IE1 | None | AlphaVax, Inc | NCT00439803 | 1 |
HCMV-MVA Triplex | None | (Novartis, GSK) | NCT01941056 | 1 | ||
NCT02506933 | 2 | |||||
pp65, IE1- exon4, IE2- exon5 gB, pp65 pp65 | None None | City of Hope, | ||||
HB-101 | National | NCT02798692 | ||||
ALVAC-pp65 | Cancer Institute | NCT00353977 | ||||
Hookipa | ||||||
Biotech | ||||||
NHLBI | ||||||
DNA, mRNA vaccines | ASP0113 | gB, pp65 | CRL 1005BAK | Astellas, Vical | NCT02103426 | 1 |
NCT01903928 | 2 | |||||
NCT01974206 | 2 | |||||
NCT01877655 | 3 | |||||
VCL-CB01 | gB, pp65 | Astellas, Vical | NCT00285259 | 2 | ||
Peptide Vaccines | CMVpp65- A*0201 peptide; containing either helper T lymphocyte (HTL) | gB,pentamer complex; pp65; T cell epitope fused to either PADRE or CMV tetanus epitope | CRL | Moderna | NCT03382405 | 1 |
1005BAK | NCT04232280 | 2 | ||||
None None None | ||||||
PADRE peptide or tetanus toxoid peptide Tetanus- HCMVpp65 fusion peptide (CMVpp65- A*0201; CMVPepVax) | pp65; T cell epitope fused to tetanus epitope | City of Hope, National Cancer Institute City of Hope, National Cancer Institute | NCT00712634 NCT00722839 NCT01588015 NCT02396134 | 1 1 1 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, S.; Chiopris, G.; Messina, G.; D’Alvano, T.; Perrone, S.; Principi, N. Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines 2021, 9, 523. https://doi.org/10.3390/vaccines9050523
Esposito S, Chiopris G, Messina G, D’Alvano T, Perrone S, Principi N. Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines. 2021; 9(5):523. https://doi.org/10.3390/vaccines9050523
Chicago/Turabian StyleEsposito, Susanna, Giulia Chiopris, Giulia Messina, Tiziana D’Alvano, Serafina Perrone, and Nicola Principi. 2021. "Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art" Vaccines 9, no. 5: 523. https://doi.org/10.3390/vaccines9050523
APA StyleEsposito, S., Chiopris, G., Messina, G., D’Alvano, T., Perrone, S., & Principi, N. (2021). Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines, 9(5), 523. https://doi.org/10.3390/vaccines9050523