Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea
Abstract
:1. Introduction
2. N. gonorrhoeae Infection and Disease
3. Epidemiology of N. gonorrhoeae Infection and Disease in Australia
4. Antimicrobial Resistant N. gonorrhoeae
5. Innate and Adaptive Immune Responses to N. gonorrhoeae Infection
6. Vaccine Development
6.1. Evidence of a Protective Effect from Serogroup B Meningococcal Vaccines
6.2. Clinical Trials for Efficacy of Meningococcal Vaccines against Gonorrhea in Australia
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowley, J.; Hoorn, S.V.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, Gonorrhoea, Trichomoniasis and Syphilis: Global Prevalence and Incidence Estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef]
- Korenromp, E.L.; Wi, T.; Resch, S.; Stover, J.; Broutet, N. Costing of National STI Program Implementation for the Global STI Control Strategy for the Health Sector, 2016–2021. PLoS ONE 2017, 12, e0170773. [Google Scholar] [CrossRef] [Green Version]
- Inhorn, M.C.; Patrizio, P. Infertility around the Globe: New Thinking on Gender, Reproductive Technologies and Global Movements in the 21st Century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Chesson, H.W.; Spicknall, I.H.; Bingham, A.; Brisson, M.; Eppink, S.T.; Farnham, P.G.; Kreisel, K.M.; Kumar, S.; Laprise, J.-F.; Peterman, T.A.; et al. The Estimated Direct Lifetime Medical Costs of Sexually Transmitted Infections Acquired in the United States in 2018. Sex. Transm. Dis. 2021, 48, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Edusei, K., Jr.; Chesson, H.W.; Gift, T.L.; Tao, G.; Mahajan, R.; Ocfemia, M.C.B.; Kent, C.K. The Estimated Direct Medical Cost of Selected Sexually Transmitted Infections in the United States, 2008. Sex. Transm. Dis. 2013, 40, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Chesson, H.W.; Kirkcaldy, R.D.; Gift, T.L.; Owusu-Edusei, K.; Weinstock, H.S. An Illustration of the Potential Health and Economic Benefits of Combating Antibiotic-Resistant Gonorrhea. Sex. Transm. Dis. 2018, 45, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Lahra, M.M.; Cole, M.; Galarza, P.; Ndowa, F.; Martin, I.; Dillon, J.-A.R.; Ramon-Pardo, P.; Bolan, G.; Wi, T. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): Review of New Data and Evidence to Inform International Collaborative Actions and Research Efforts. Sex. Health 2019, 16, 412–425. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017; pp. 1–7. [Google Scholar]
- Broutet, N.; Fruth, U.; Deal, C.; Gottlieb, S.L.; Rees, H.; Participants of the 2013 STI Vaccine Technical Consultation. Vaccines against Sexually Transmitted Infections: The Way Forward. Vaccine 2014, 32, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, S.L.; Jerse, A.E.; Delany-Moretlwe, S.; Deal, C.; Giersing, B.K. Advancing Vaccine Development for Gonorrhoea and the Global STI Vaccine Roadmap. Sex. Health 2019, 16, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, S.L.; Deal, C.D.; Giersing, B.; Rees, H.; Bolan, G.; Johnston, C.; Timms, P.; Gray-Owen, S.D.; Jerse, A.E.; Cameron, C.E.; et al. The Global Roadmap for Advancing Development of Vaccines against Sexually Transmitted Infections: Update and Next Steps. Vaccine 2016, 34, 2939–2947. [Google Scholar] [CrossRef]
- Wetzler, L.M.; Feavers, I.M.; Gray-Owen, S.D.; Jerse, A.E.; Rice, P.A.; Deal, C.D. Summary and Recommendations from the National Institute of Allergy and Infectious Diseases (NIAID) Workshop “Gonorrhea Vaccines: The Way Forward”. Clin. Vaccine Immunol. 2016, 23, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, S.L.; Ndowa, F.; Hook, E.W., III; Deal, C.; Bachmann, L.; Abu-Raddad, L.; Chen, X.-S.; Jerse, A.E.; Low, N.; MacLennan, C.A.; et al. Gonococcal Vaccines: Public Health Value and Preferred Product Characteristics; Report of A WHO Global Stakeholder Consultation, January 2019. Vaccine 2020, 38, 4362–4373. [Google Scholar] [CrossRef]
- Wellcome Trust and BCG. Vaccines to Tackle Drug Resistant Infections. An Evaluation of R&D Opportunities. Executive Summary; Wellcome Trust: London, UK, 2018. [Google Scholar]
- Petousis-Harris, H.; Paynter, J.; Morgan, J.; Saxton, P.; McArdle, B.; Goodyear-Smith, F.; Black, S. Effectiveness of A Group B Outer Membrane Vesicle Meningococcal Vaccine against Gonorrhoea in New Zealand: A Retrospective Case-Control Study. Lancet 2017, 390, 1603–1610. [Google Scholar] [CrossRef]
- Ochoa-Azze, R.F. A Meningococcal B Vaccine Induces Cross-Protection against Gonorrhea. Clin. Exp. Vaccine Res. 2019, 8, 110–115. [Google Scholar] [CrossRef]
- Leduc, I.; Connolly, K.L.; Begum, A.; Underwood, K.; Darnell, S.; Shafer, W.M.; Balthazar, J.T.; Macintyre, A.N.; Sempowski, G.D.; Duncan, J.A.; et al. The Serogroup B Meningococcal Outer Membrane Vesicle-Based Vaccine 4CMenB Induces Cross-Species Protection against Neisseria gonorrhoeae. PLoS Pathog. 2020, 16, e1008602. [Google Scholar] [CrossRef] [PubMed]
- Kirkcaldy, R.D.; Weston, E.; Segurado, A.C.; Hughes, G. Epidemiology of Gonorrhoea: A Global Perspective. Sex. Health 2019, 16, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Hui, B.; Fairley, C.K.; Chen, M.; Grulich, A.; Hocking, J.; Prestage, G.; Walker, S.; Law, M.; Regan, D. Oral and Anal Sex Are Key to Sustaining Gonorrhoea at Endemic Levels in MSM Populations: A Mathematical Model. Sex. Transm. Infect. 2015, 91, 365–369. [Google Scholar] [CrossRef]
- Schofield, C.B. Some Factors Affecting the Incubation Period and Duration of Symptoms of Urethritis in Men. Br. J. Vener. Dis. 1982, 58, 184–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrard, J.; Barlow, D. Gonorrhoea in Men: Clinical and Diagnostic Aspects. Genitourin. Med. 1996, 72, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.J.; Fethers, K.; Howden, B.P.; Fairley, C.K.; Chow, E.P.F.; Williamson, D.A.; Petalotis, I.; Aung, E.; Kanhutu, K.; De Petra, V.; et al. Asymptomatic and Symptomatic Urethral Gonorrhoea in Men Who Have Sex with Men Attending A Sexual Health Service. Clin. Microbiol. Infect. 2017, 23, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Lovett, A.; Duncan, J.A. Human Immune Responses and the Natural History of Neisseria gonorrhoeae Infection. Front. Immunol. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martín-Sánchez, M.; Ong, J.J.; Fairley, C.K.; Chen, M.Y.; Williamson, D.A.; Maddaford, K.; Aung, E.T.; Carter, G.; Bradshaw, C.S.; Chow, E.P.F. Clinical Presentation of Asymptomatic and Symptomatic Heterosexual Men Who Tested Positive for Urethral Gonorrhoea at A Sexual Health Clinic in Melbourne, Australia. BMC Infect. Dis. 2020, 20, 486. [Google Scholar] [CrossRef] [PubMed]
- Platt, R.; Rice, P.A.; McCormack, W.M. Risk of Acquiring Gonorrhea and Prevalence of Abnormal Adnexal Findings among Women Recently Exposed to Gonorrhea. JAMA 1983, 250, 3205–3209. [Google Scholar] [CrossRef]
- Barlow, D.; Phillips, I. Gonorrhoea in Women: Diagnostic, Clinical, and Laboratory Aspects. Lancet 1978, 311, 761–764. [Google Scholar] [CrossRef]
- Chan, P.A.; Robinette, A.; Montgomery, M.; Almonte, A.; Cu-Uvin, S.; Lonks, J.R.; Chapin, K.C.; Kojic, E.M.; Hardy, E.J. Extragenital Infections Caused by Chlamydia trachomatis and Neisseria gonorrhoeae: A Review of the Literature. Infect. Dis. Obstet. Gynecol. 2016, 2016, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, J.L.; Apicella, M.A. The Molecular Mechanisms Used by Neisseria gonorrhoeae to Initiate Infection Differ between Men and Women. Clin. Microbiol. Rev. 2004, 17, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Cannon, J.G.; Buchanan, T.M.; Sparling, P.F. Confirmation of Association of Protein I Serotype of Neisseria gonorrhoeae with Ability to Cause Disseminated Infection. Infect. Immun. 1983, 40, 816–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidaurrazaga, M.M.; Perlman, D.C. A Case of Purulent Gonococcal Arthritis. IDCases 2020, 19, e00662. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Kim, S.-H.; Baek, J.Y.; Huh, K.; Cho, S.Y.; Kang, C.-I.; Chung, D.R.; Huh, H.J.; Lee, N.Y.; Peck, K.R. A Case of Gonococcal Meningitis Caused by Neisseria gonorrhoeae MLST ST7363 in A Healthy Young Adult. J. Infect. Chemother. 2020, 26, 995–998. [Google Scholar] [CrossRef]
- Neto, A.; Sevilha, J.; Seabra, D.; Oliveira, I.; Santos, R.P.; Andrade, A.; Pinho, P.; Costa, P.M.; Viana, M.; Pinto, P. Acute aortic Regurgitation due to Endocarditis Caused by Disseminated Gonococcal Infection: A Case Report. Sex. Transm. Dis. 2021, 48, e48–e50. [Google Scholar] [CrossRef]
- Ramos, A.; García-Pavía, P.; Orden, B.; Cobo, M.; Sánchez-Castilla, M.; Sánchez-Romero, I.; Múñez, E.; Marín, M.; García-Montero, C. Gonococcal Endocarditis: A Case Report and Review of the Literature. Infection 2014, 42, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.; Chahin, M.; Isache, C. Neisseria gonorrhoeae: An Unexpected Cause of Polyarthritis and Meningitis. J. Investig. Med. High Impact Case Rep. 2021, 9, 1–4. [Google Scholar] [CrossRef]
- Malott, R.J.; Keller, B.O.; Gaudet, R.G.; McCaw, S.E.; Lai, C.C.L.; Dobson-Belaire, W.N.; Hobbs, J.L.; Michael, F.; Cox, A.D.; Moraes, T.F.; et al. Neisseria gonorrhoeae-Derived Heptose Elicits An Innate Immune Response and Drives HIV-1 Expression. Proc. Natl. Acad. Sci. USA 2013, 110, 10234–10239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, D.T.; Wasserheit, J.N. From Epidemiological Synergy to Public Health Policy and Practice: The Contribution of Other Sexually Transmitted Diseases to Sexual Transmission of HIV Infection. Sex. Transm. Infect. 1999, 75, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.S.; Hoffman, I.F.; Royce, R.A.; Kazembe, P.; Dyer, J.R.; Daly, C.C.; Zimba, D.; Vernazza, P.L.; Maida, M.; Fiscus, S.A.; et al. Reduction of Concentration of HIV-1 in Semen after Treatment of Urethritis: Implications for Prevention of Sexual Transmission of HIV-1. Lancet 1997, 349, 1868–1873. [Google Scholar] [CrossRef]
- Cohen, M.S. Sexually Transmitted Diseases Enhance HIV Transmission: No Longer a Hypothesis. Lancet 1998, 351, S5–S7. [Google Scholar] [CrossRef]
- Galvin, S.R.; Cohen, M.S. The Role of Sexually Transmitted Diseases in HIV Transmission. Nat. Rev. Microbiol. 2004, 2, 33–42. [Google Scholar] [CrossRef]
- Viglianti, G.A.; Planelles, V.; Hanley, T.M. Interactions with Commensal and Pathogenic Bacteria Induce HIV-1 Latency in Macrophages through Altered Transcription Factor Recruitment to the Long Terminal Repeat. J. Virol. 2021, 95, e02141-20. [Google Scholar] [CrossRef]
- Brunham, R.C.; Gottlieb, S.L.; Paavonen, J. Pelvic Inflammatory Disease. N. Engl. J. Med. 2015, 372, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Weström, L.; Joesoef, R.; Reynolds, G.; Hagdu, A.; Thompson, S.E. Pelvic Inflammatory Disease and Fertility: A Cohort Study of 1844 Women with Laparoscopically Verified Disease and 657 Control Women with Normal Laparoscopic Results. Sex. Transm. Dis. 1992, 19, 185–192. [Google Scholar] [CrossRef]
- Gray-Swain, M.R.; Peipert, J.F. Pelvic Inflammatory Disease in Adolescents. Curr. Opin. Obstet. Gynecol. 2006, 18, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Wiesenfeld, H.C.; Hillier, S.L.; Meyn, L.A.; Amortegui, A.J.; Sweet, R.L. Subclinical Pelvic Inflammatory Disease and Infertility. Obstet. Gynecol. 2012, 120, 37–43. [Google Scholar] [CrossRef]
- Vallely, L.M.; Egli-Gany, D.; Wand, H.; Pomat, W.S.; Homer, C.S.E.; Guy, R.; Silver, B.; Rumbold, A.R.; Kaldor, J.M.; Vallely, A.J.; et al. Adverse Pregnancy and Neonatal Outcomes Associated with Neisseria gonorrhoeae: Systematic Review and Meta-analysis. Sex. Transm. Infect. 2021, 97, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Reekie, J.; Donovan, B.; Guy, R.; Hocking, J.S.; Kaldor, J.M.; Mak, D.B.; Pearson, S.; Preen, D.; Stewart, L.; Ward, J.; et al. Risk of Pelvic Inflammatory Disease in Relation to Chlamydia and Gonorrhea Testing, Repeat Testing, and Positivity: A Population-Based Cohort Study. Clin. Infect. Dis. 2018, 66, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, B.D.; Ness, R.B.; Darville, T.; Haggerty, C.L. Microbial Correlates of Delayed Care for Pelvic Inflammatory Disease. Sex. Transm. Dis. 2011, 38, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Kirby Institute. National Update on HIV, Viral Hepatitis and Sexually Transmissible Infections in Australia: 2009–2018; Kirby Institute, UNSW Sydney: Sydney, Australia, 2020. [Google Scholar]
- Lahra, M.M.; Shoushtari, M.; George, C.R.R.; Armstrong, B.H.; Hogan, T.R. Australian Gonococcal Surveillance Programme Annual Report, 2019. Commun. Dis. Intell. 2020, 44, 1–15. [Google Scholar] [CrossRef]
- Kirby Institute. HIV, Viral Hepatitis and Sexually Transmissible Infections in Australia: Annual Surveillance Report 2018; Kirby Institute, UNSW Sydney: Sydney, Australia, 2018. [Google Scholar]
- Kirby Institute. HIV, Viral Hepatitis and Sexually Transmissible Infections in Australia: Annual Surveillance Report 2017; Kirby Institute, UNSW Sydney: Sydney, Australia, 2017. [Google Scholar]
- Kirby Institute. Bloodborne Viral and Sexually Transmissible Infections in Aboriginal and Torres Strait Islander People: Annual Surveillance Report 2018; Kirby Institute, UNSW Sydney: Sydney, Australia, 2018. [Google Scholar]
- Callander, D.; Wiggins, J.; Rosenberg, S.; Cornelisse, V.J.; Duck-Chong, E.; Holt, M.; Pony, M.; Vlahakis, E.; MacGibbon, J.; Cook, T. The 2018 Australian Trans and Gender Diverse Sexual Health Survey: Report of Findings; Kirby Institute, UNSW Sydney: Sydney, Australia, 2019. [Google Scholar]
- Callander, D.; McManus, H.; Guy, R.; Hellard, M.; O’Connor, C.C.; Fairley, C.K.; Chow, E.P.F.; McNulty, A.; Lewis, D.A.; Carmody, C.; et al. Rising Chlamydia and Gonorrhoea Incidence and Associated Risk Factors among Female Sex Workers in Australia: A Retrospective Cohort Study. Sex. Transm. Dis. 2018, 45, 199–206. [Google Scholar] [CrossRef]
- Chow, E.P.; Williamson, D.A.; Fortune, R.; Bradshaw, C.S.; Chen, M.Y.; Fehler, G.; De Petra, V.; Howden, B.P.; Fairley, C.K. Prevalence of Genital and Oropharyngeal Chlamydia and Gonorrhoea among Female Sex Workers in Melbourne, Australia, 2015–2017: Need for Oropharyngeal Testing. Sex. Transm. Infect. 2019, 95, 398–401. [Google Scholar] [CrossRef]
- Callander, D.; Read, P.; Prestage, G.; Minichiello, V.; Chow, E.P.F.; Lewis, D.A.; McNulty, A.; Ali, H.; Hellard, M.; Guy, R.; et al. A Cross-Sectional Study of HIV and STIs among Male Sex Workers Attending Australian Sexual Health Clinics. Sex. Transm. Infect. 2017, 93, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Turek, E.M.; Fairley, C.K.; Tabesh, M.; Phillips, T.R.; Bradshaw, C.S.; Rodriguez, E.; Chow, E.P.F. HIV, Sexually Transmitted Infections and Sexual Practices among Male Sex Workers Attending A Sexual Health Clinic in Melbourne, Australia: 2010 to 2018. Sex. Transm. Dis. 2021, 48, 103–108. [Google Scholar] [CrossRef]
- Callander, D.; Guy, R.; Fairley, C.K.; McManus, H.; Prestage, G.; Chow, E.P.F.; Chen, M.; Connor, C.C.O.; Grulich, A.E.; Bourne, C.; et al. Gonorrhoea Gone Wild: Rising Incidence of Gonorrhoea and Associated Risk Factors among Gay and Bisexual Men Attending Australian Sexual Health Clinics. Sex. Health 2019, 16, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Martín-Sánchez, M.; Case, R.; Fairley, C.; Hocking, J.S.; Bradshaw, C.; Ong, J.; Chen, M.Y.; Chow, E.P.F. Trends and Differences in Sexual Practices and Sexually Transmitted Infections in Men Who Have Sex with Men Only (MSMO) and Men Who Have Sex with Men and Women (MSMW): A Repeated Cross-Sectional Study in Melbourne, Australia. BMJ Open 2020, 10, e037608. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.; Bouman, W.P.; Seal, L.; Barker, M.J.; Nieder, T.O.; T’Sjoen, G. Non-Binary or Genderqueer Genders. Int. Rev. Psychiatry 2016, 28, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callander, D.; Cook, T.; Read, P.; Hellard, M.E.; Fairley, C.K.; Kaldor, J.M.; Vlahakis, E.; Pollack, A.; Bourne, C.; Russell, D.B.; et al. Sexually Transmissible Infections among Transgender Men and Women Attending Australian Sexual Health Clinics. Med. J. Aust. 2019, 211, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellhouse, C.; Walker, S.; Fairley, C.K.; Vodstrcil, L.A.; Bradshaw, C.S.; Chen, M.Y.; Chow, E.P.F. Patterns of Sexual Behaviour and Sexual Healthcare Needs among Transgender Individuals in Melbourne, Australia, 2011–2014. Sex. Transm. Infect. 2018, 94, 212–215. [Google Scholar] [CrossRef]
- Graham, S.; Guy, R.J.; Donovan, B.; McManus, H.; Su, J.Y.; El-Hayek, C.; Kwan, K.S.H.; Dyda, A.; Wand, H.C.; Ward, J.S. Epidemiology of Chlamydia and Gonorrhoea among Indigenous and Non-Indigenous Australians, 2000–2009. Med. J. Aust. 2012, 197, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.-A.R.; Ramon-Pardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial Resistance in Neisseria gonorrhoeae: Global Surveillance and A Call for International Collaborative Action. PLoS Med. 2017, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Guidelines for the Treatment of Neisseria gonorrhoeae; World Health Organization: Geneva, Switzerland, 2016; pp. 1–55. [Google Scholar]
- Ohnishi, M.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.-I.; Watanabe, H.; Kitawaki, J. Ceftriaxone-Resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis. 2011, 17, 148–149. [Google Scholar] [CrossRef]
- Golparian, D.; Ohlsson, A.K.; Janson, H.; Lidbrink, P.; Richtner, T.; Ekelund, O.; Fredlund, H.; Unemo, M. Four Treatment Failures of Pharyngeal Gonorrhoea with Ceftriaxone (500 mg) or Cefotaxime (500 mg), Sweden, 2013 and 2014. Eurosurveillance 2014, 19, 20862. [Google Scholar] [CrossRef] [Green Version]
- Unemo, M.; Golparian, D.; Hestner, A. Ceftriaxone Treatment Failure of Pharyngeal Gonorrhoea Verified by International Recommendations, Sweden, July 2010. Eurosurveillance 2011, 16, 19792. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Stevens, K.; Tideman, R.; Zaia, A.; Tomita, T.; Fairley, C.K.; Lahra, M.; Whiley, D.; Hogg, G. Failure of 500 mg of Ceftriaxone to Eradicate Pharyngeal Gonorrhoea, Australia. J. Antimicrob. Chemother. 2013, 68, 1445–1447. [Google Scholar] [CrossRef] [Green Version]
- Tapsall, J.; Read, P.; Carmody, C.; Bourne, C.; Ray, S.; Limnios, A.; Sloots, T.; Whiley, D. Two Cases of Failed Ceftriaxone Treatment in Pharyngeal Gonorrhoea Verified by Molecular Microbiological Methods. J. Med. Microbiol. 2009, 58, 683–687. [Google Scholar] [CrossRef]
- Read, P.J.; Limnios, E.A.; McNulty, A.; Whiley, D.; Lahra, M.M. One Confirmed and One Suspected Case of Pharyngeal Gonorrhoea Treatment Failure Following 500mg Ceftriaxone in Sydney, Australia. Sex. Health 2013, 10, 460–462. [Google Scholar] [CrossRef]
- Unemo, M.; Golparian, D.; Potočnik, M.; Jeverica, S. Treatment Failure of Pharyngeal Gonorrhoea with Internationally Recommended First-Line Ceftriaxone Verified in Slovenia, September 2011. Eurosurveillance 2012, 17. [Google Scholar] [CrossRef]
- Fifer, H.; Natarajan, U.; Jones, L.; Alexander, S.; Hughes, G.; Golparian, D.; Unemo, M. Failure of Dual Antimicrobial Therapy in Treatment of Gonorrhea. N. Engl. J. Med. 2016, 374, 2504–2506. [Google Scholar] [CrossRef]
- Nakayama, S.-I.; Shimuta, K.; Furubayashi, K.-I.; Kawahata, T.; Unemo, M.; Ohnishi, M. New Ceftriaxone- and Multidrug-resistant Neisseria gonorrhoeae Strain with A Novel Mosaic penA Gene Isolated in Japan. Antimicrob. Agents Chemother. 2016, 60, 4339–4341. [Google Scholar] [CrossRef] [Green Version]
- Terkelsen, D.; Tolstrup, J.; Johnsen, C.H.; Lund, O.; Larsen, H.K.; Worning, P.; Unemo, M.; Westh, H. Multidrug-Resistant Neisseria gonorrhoeae Infection with Ceftriaxone Resistance and Intermediate Resistance to Azithromycin, Denmark, 2017. Eurosurveillance 2017, 22, 17–00659. [Google Scholar] [CrossRef] [Green Version]
- Eyre, D.W.; Town, K.; Street, T.; Barker, L.; Sanderson, N.; Cole, M.J.; Mohammed, H.; Pitt, R.; Gobin, M.; Irish, C.; et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 Clone, with Ceftriaxone Resistance and Intermediate Resistance to Azithromycin, October to December 2018. Eurosurveillance 2019, 24, 1900147. [Google Scholar] [CrossRef] [Green Version]
- Golparian, D.; Rose, L.; Lynam, A.; Mohamed, A.; Bercot, B.; Ohnishi, M.; Crowley, B.; Unemo, M. Multidrug-Resistant Neisseria gonorrhoeae Isolate, Belonging to the Internationally Spreading Japanese FC428 Clone, with Ceftriaxone Resistance and Intermediate Resistance to Azithromycin, Ireland, August 2018. Eurosurveillance 2018, 23, 1800617. [Google Scholar] [CrossRef]
- Poncin, T.; Fouere, S.; Braille, A.; Camelena, F.; Agsous, M.; Bebear, C.; Kumanski, S.; Lot, F.; Mercier-Delarue, S.; Ngangro, N.N.; et al. Multidrug-Resistant Neisseria gonorrhoeae Failing Treatment with Ceftriaxone and Doxycycline in France, November 2017. Eurosurveillance 2018, 23, 1800264. [Google Scholar] [CrossRef]
- Lahra, M.M.; Martin, I.; Demczuk, W.; Jennison, A.V.; Lee, K.-I.; Nakayama, S.-I.; Lefebvre, B.; Longtin, J.; Ward, A.; Mulvey, M.R.; et al. Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain. Emerg. Infect. Dis. 2018, 24, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, B.; Martin, I.; Demczuk, W.; Deshaies, L.; Michaud, S.; Labbé, A.-C.; Beaudoin, M.-C.; Longtin, J. Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 2018, 24, 381–383. [Google Scholar] [CrossRef] [Green Version]
- Eyre, D.W.; Sanderson, N.D.; Lord, E.; Regisford-Reimmer, N.; Chau, K.; Barker, L.; Morgan, M.; Newnham, R.; Golparian, D.; Unemo, M.; et al. Gonorrhoea Treatment Failure Caused by A Neisseria gonorrhoeae Strain with Combined Ceftriaxone and High-Level Azithromycin Resistance, England, February 2018. Eurosurveillance 2018, 23, 1–6. [Google Scholar] [CrossRef]
- Jennison, A.V.; Whiley, D.; Lahra, M.M.; Graham, R.M.; Cole, M.J.; Hughes, G.; Fifer, H.; Andersson, M.; Edwards, A.; Eyre, D. Genetic Relatedness of Ceftriaxone-Resistant and High-Level Azithromycin Resistant Neisseria gonorrhoeae Cases, United Kingdom and Australia, February to April 2018. Eurosurveillance 2019, 24, 1900118. [Google Scholar] [CrossRef] [Green Version]
- Whiley, D.M.; Jennison, A.; Pearson, J.; Lahra, M.M. Genetic Characterisation of Neisseria gonorrhoeae Resistant to both Ceftriaxone and Azithromycin. Lancet Infect. Dis. 2018, 18, 717–718. [Google Scholar] [CrossRef]
- Jefferson, A.; Smith, A.; Fasinu, P.S.; Thompson, D.K. Sexually Transmitted Neisseria gonorrhoeae Infections—Update on Drug Treatment and Vaccine Development. Medicines 2021, 8, 11. [Google Scholar] [CrossRef]
- Yan, F.; Gao, F. A Systematic Strategy for the Investigation of Vaccines and Drugs Targeting Bacteria. Comput. Struct. Biotechnol. J. 2020, 18, 1525–1538. [Google Scholar] [CrossRef]
- Lim, K.Y.L.; Mullally, C.A.; Haese, E.C.; Kibble, E.A.; McCluskey, N.R.; Mikucki, E.C.; Thai, V.C.; Stubbs, K.A.; Sarkar-Tyson, M.; Kahler, C.M. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics 2021, 10, 103. [Google Scholar] [CrossRef]
- Kahler, C.M. Multidrug-Resistant Neisseria gonorrhoeae: Future Therapeutic Options. Future Microbiol. 2018, 13, 499–501. [Google Scholar] [CrossRef]
- Abara, W.E.; Jerse, A.E.; Hariri, S.; Kirkcaldy, R.D. Planning for A Gonococcal Vaccine: A Narrative Review of Vaccine Development and Public Health Implications. Sex. Transm. Dis. 2020, 48, 453–457. [Google Scholar] [CrossRef]
- Hedges, S.R.; Sibley, D.A.; Mayo, M.S.; Hook, E.W., III; Russell, M.W. Cytokine and Antibody Responses in Women Infected with Neisseria gonorrhoeae: Effects of Concomitant Infections. J. Infect. Dis. 1998, 178, 742–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, S.R.; Mayo, M.S.; Mestecky, J.; Hook, E.W., III; Russell, M.W. Limited Local and Systemic Antibody Responses to Neisseria gonorrhoeae during Uncomplicated Genital Infections. Infect. Immun. 1999, 67, 3937–3946. [Google Scholar] [CrossRef] [Green Version]
- Fung, M.; Scott, K.C.; Kent, C.K.; Klausner, J.D. Chlamydial and Gonococcal Reinfection among Men: A Systematic Review of Data to Evaluate the Need for Retesting. Sex. Transm. Infect. 2007, 83, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerse, A.E.; Wu, H.; Packiam, M.; Vonck, R.A.; Begum, A.A.; Garvin, L.E. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front. Microbiol. 2011, 2, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, P.A.; Shafer, W.M.; Ram, S.; Jerse, A.E. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu. Rev. Microbiol. 2017, 71, 665–686. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.; Brown, M.; Nickel, P.; Meyer, T.F. Opacity Genes in Neisseria gonorrhoeae: Control of Phase and Antigenic Variation. Cell 1986, 47, 61–71. [Google Scholar] [CrossRef]
- Seifert, H.S.; Wright, C.J.; Jerse, A.E.; Cohen, M.S.; Cannon, J.G. Multiple Gonococcal Pilin Antigenic Variants Are Produced during Experimental Human Infections. J. Clin. Investig. 1994, 93, 2744–2749. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, L.A.; Seifert, H.S. Focusing Homologous Recombination: Pilin Antigenic Variation in the Pathogenic Neisseria. Mol. Microbiol. 2011, 81, 1136–1143. [Google Scholar] [CrossRef] [Green Version]
- Harvey, H.A.; Swords, W.E.; Apicella, M.A. The Mimicry of Human Glycolipids and Glycosphingolipids by the Lipooligosaccharides of Pathogenic Neisseria and Haemophilus. J. Autoimmun. 2001, 16, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Binker, M.G.; Cosen-Binker, L.I.; Terebiznik, M.R.; Mallo, G.V.; McCaw, S.E.; Eskelinen, E.-L.; Willenborg, M.; Brumell, J.H.; Saftig, P.; Grinstein, S.; et al. Arrested Maturation of Neisseria—Containing Phagosomes in the Absence of the Lysosome-Associated Membrane Proteins, LAMP-1 and LAMP-2. Cell. Microbiol. 2007, 9, 2153–2166. [Google Scholar] [CrossRef]
- Huynh, K.K.; Eskelinen, E.-L.; Scott, C.C.; Malevanets, A.; Saftig, P.; Grinstein, S. LAMP Proteins Are Required for Fusion of Lysosomes with Phagosomes. EMBO J. 2007, 26, 313–324. [Google Scholar] [CrossRef]
- Chen, T.; Grunert, F.; Medina-Marino, A.; Gotschlich, E.C. Several Carcinoembryonic Antigens (CD66) Serve as receptors for Gonococcal Opacity Proteins. J. Exp. Med. 1997, 185, 1557–1564. [Google Scholar] [CrossRef]
- Boulton, I.C.; Gray-Owen, S.D. Neisserial Binding to CEACAM1 Arrests the Activation and Proliferation of CD4+ T Lymphocytes. Nat. Immunol. 2002, 3, 229–236. [Google Scholar] [CrossRef]
- Zariri, A.; Van Dijken, H.; Hamstra, H.-J.; Van Der Flier, M.; Vidarsson, G.; Van Putten, J.P.M.; Boog, C.J.P.; Van Den Dobbelsteen, G.; Van Der Ley, P. Expression of Human CEACAM1 in Transgenic Mice Limits the Opa-Specific Immune Response against Meningococcal Outer Membrane Vesicles. Vaccine 2013, 31, 5585–5593. [Google Scholar] [CrossRef]
- Zhu, W.; Ventevogel, M.S.; Knilans, K.J.; Anderson, J.E.; Oldach, L.M.; McKinnon, K.P.; Hobbs, M.M.; Sempowski, G.D.; Duncan, J.A. Neisseria gonorrhoeae Suppresses Dendritic Cell-Induced, Antigen-Dependent CD4 T Cell Proliferation. PLoS ONE 2012, 7, e41260. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Tomberg, J.; Knilans, K.J.; Anderson, J.E.; McKinnon, K.P.; Sempowski, G.D.; Nicholas, R.A.; Duncan, J.A. Properly Folded and Functional PorB from Neisseria gonorrhoeae Inhibits Dendritic Cell Stimulation of CD4 + T Cell Proliferation. J. Biol. Chem. 2018, 293, 11218–11229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criss, A.K.; Seifert, H.S. A Bacterial Siren Song: Intimate Interactions between Neisseria and Neutrophils. Nat. Rev. Microbiol. 2012, 10, 178–190. [Google Scholar] [CrossRef]
- Palmer, A.; Criss, A.K. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol. 2018, 26, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- Escobar, A.; Rodas, P.I.; Acuña-Castillo, C. Macrophage–Neisseria gonorrhoeae Interactions: A Better Understanding of Pathogen Mechanisms of Immunomodulation. Front. Immunol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Château, A.; Seifert, H.S. Neisseria gonorrhoeae Survives within and Modulates Apoptosis and Inflammatory Cytokine Production of Human Macrophages. Cell. Microbiol. 2016, 18, 546–560. [Google Scholar] [CrossRef] [Green Version]
- Escobar, A.; Candia, E.; Reyes-Cerpa, S.; Villegas-Valdes, B.; Neira, T.; Lopez, M.; Maisey, K.; Tempio, F.; Ríos, M.; Acuña-Castillo, C.; et al. Neisseria gonorrhoeae Induces A Tolerogenic Phenotype in Macrophages to Modulate Host Immunity. Mediat. Inflamm. 2013, 2013, 127017. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, M.C.; Lefimil, C.; Rodas, P.I.; Vernal, R.; Lopez, M.; Acuña-Castillo, C.; Imarai, M.; Escobar, A. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to A M2 Profile. PLoS ONE 2015, 10, e0130713. [Google Scholar] [CrossRef] [Green Version]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1426. [Google Scholar] [CrossRef] [Green Version]
- Sica, A.; Mantovani, A. Macrophage Plastic ity and Polariation: In Vivo Veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Mantovani, A. Macrophage Plasticity and Interaction with lymphocyte Subsets: Cancer as A Paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Feinen, B.; Jerse, A.E.; Gaffen, S.L.; Russell, M.W. Critical Role of Th17 Responses in A Murine Model of Neisseria gonorrhoeae Genital Infection. Mucosal Immunol. 2010, 3, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Islam, E.A.; Jarvis, G.A.; Gray-Owen, S.D.; Russell, M.W. Neisseria gonorrhoeae Selectively Suppresses the Development of Th1 and Th2 Cells, and Enhances Th17 Cell Responses, through TGF-β-Dependent Mechanisms. Mucosal Immunol. 2012, 5, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Gulati, S.; Mu, X.; Zheng, B.; Reed, G.W.; Ram, S.; Rice, P.A. Antibody to Reduction Modifiable Protein Increases the Bacterial Burden and the Duration of Gonococcal Infection in A Mouse Model. J. Infect. Dis. 2015, 212, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Joiner, K.A.; Scales, R.; Warren, K.A.; Frank, M.M.; Rice, P.A. Mechanism of Action of Blocking Immunoglobulin G for Neisseria gonorrhoeae. J. Clin. Investig. 1985, 76, 1765–1772. [Google Scholar] [CrossRef] [Green Version]
- Plummer, F.A.; Chubb, H.; Simonsen, J.N.; Bosire, M.; Slaney, L.; Maclean, I.; Ndinya-Achola, J.O.; Waiyaki, P.; Brunham, R.C. Antibody to Rmp (Outer Membrane Protein 3) Increases Susceptibility to Gonococcal Infection. J. Clin. Investig. 1993, 91, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, I.; Diena, B.B.; Kenny, C.P.; Znamirowski, R. Preliminary Studies on the Development of A Gonococcal Vaccine. Bull. World Health Organ. 1971, 45, 531–535. [Google Scholar]
- Greenberg, I.; Diena, B.B.; Ashton, F.A.; Wallace, R.; Kenny, C.P.; Znamirowski, R.; Ferrari, H.; Atkinson, J. Gonococcal Vaccine Studies in Inuvik. Can. J. Public Health 1974, 65, 29–33. [Google Scholar] [PubMed]
- Greenberg, L. Field Trials of A Gonococcal Vaccine. J. Reprod. Med. 1975, 14, 34–36. [Google Scholar]
- Tramont, E.C.; Boslego, J.W. Pilus Vaccines. Vaccine 1985, 3, 3–10. [Google Scholar] [CrossRef]
- Boslego, J.W.; Tramont, E.C.; Chung, R.C.; McChesney, D.G.; Ciak, J.; Sadoff, J.C.; Piziak, M.V.; Brown, J.D.; Brinton, C.C., Jr.; Wood, S.W.; et al. Efficacy Trial of A Parenteral Gonococcal Pilus Vaccine in Men. Vaccine 1991, 9, 154–162. [Google Scholar] [CrossRef]
- Rice, P.A.; Gulati, S.; McQuillen, D.P.; Ram, S. Is There Protective Immunity to Gonococcal Disease? In Proceedings of the Tenth International Pathogenic Neisseria Conference, Baltimore, MD, USA, 8–13 September 1996. [Google Scholar]
- Schwechheimer, C.; Kuehn, M.J. Outer-Membrane Vesicles from Gram-Negative Bacteria: Biogenesis and Functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acevedo, R.; Fernandez, S.; Zayas, C.; Acosta, A.; Sarmiento, M.; Ferro, V.; Rosenqvist, E.; Campa, C.; Cardoso, D.; Garcia, L.; et al. Bacterial Outer Membrane Vesicles and Vaccine Applications. Front. Immunol. 2014, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Metzger, D.W. IL-12 as An Adjuvant for the Enhancement of Protective Humoral Immunity. Expert Rev. Vaccines 2009, 8, 515–518. [Google Scholar] [CrossRef]
- Metzger, D.W. Interleukin-12 as An Adjuvant for Induction of Protective Antibody Responses. Cytokine 2010, 52, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Egilmez, N.K.; Russell, M.W. Enhancement of Adaptive Immunity to Neisseria gonorrhoeae by Local Intravaginal Administration of MICROENCAPSULATED interleukin 12. J. Infect. Dis. 2013, 208, 1821–1829. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hammer, L.A.; Liu, W.; Hobbs, M.M.; Zielke, R.A.; Sikora, A.E.; Jerse, A.E.; Egilmez, N.K.; Russell, M.W. Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model. Mucosal Immunol. 2017, 10, 1594–1608. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Perez, J.; Hammer, L.A.; Gallagher, H.C.; De Jesus, M.; Egilmez, N.K.; Russell, M.W. Intravaginal Administration of Interleukin 12 during Genital Gonococcal Infection in Mice Induces Immunity to Heterologous Strains of Neisseria gonorrhoeae. mSphere 2018, 3, e00421-17. [Google Scholar] [CrossRef] [Green Version]
- Gulati, S.; Zheng, B.; Reed, G.W.; Su, X.; Cox, A.D.; St. Michael, F.; Stupak, J.; Lewis, L.A.; Ram, S.; Rice, P.A. Immunization against A Saccharide Epitope Accelerates Clearance of Experimental Gonococcal Infection. PLoS Pathog. 2013, 9, e1003559. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Pennington, M.W.; Czerwinski, A.; Carter, D.; Zheng, B.; Nowak, N.A.; DeOliveira, R.B.; Shaughnessy, J.; Reed, G.W.; Ram, S.; et al. Preclinical Efficacy of A Lipooligosaccharide Peptide Mimic Candidate Gonococcal Vaccine. mBio 2019, 10, e02552-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulati, S.; McQuillen, D.P.; Mandrell, R.E.; Jani, D.B.; Rice, P.A. Immunogenicity of Neisseria gonorrhoeae Lipooligosaccharide Epitope 2C7, Widely Expressed In Vivo with No Immunochemical Similarity to Human Glycosphingolipids. J. Infect. Dis. 1996, 174, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Jerse, A.E.; Bash, M.C.; Russell, M.W. Vaccines against Gonorrhea: Current Status and Future Challenges. Vaccine 2014, 32, 1579–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, J.L.; Jennings, M.P.; Apicella, M.A.; Seib, K.L. Is Gonococcal Disease Preventable? The Importance of Understanding Immunity and Pathogenesis in Vaccine Development. Crit. Rev. Microbiol. 2016, 42, 928–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, M.W.; Jerse, A.E.; Gray-Owen, S.D. Progress toward A Gonococcal Vaccine: The Way Forward. Front. Immunol. 2019, 10, 2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arko, R.J.; Duncan, W.P.; Jerry, W.B.; Peacock, W.L.; Tomizawa, T. Immunity in Infection with Neisseria gonorrhoeae: Duration and Serological Response in the Chimpanzee. J. Infect. Dis. 1976, 133, 436–440. [Google Scholar] [CrossRef]
- Vincent, L.R.; Jerse, A.E. Biological Feasibility and Importance of A Gonorrhea Vaccine for Global Public Health. Vaccine 2019, 37, 7419–7426. [Google Scholar] [CrossRef]
- Hobbs, M.M.; Sparling, P.F.; Cohen, M.S.; Shafer, W.M.; Deal, C.D.; Jerse, A.E. Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC. Front. Microbiol. 2011, 2, 123. [Google Scholar] [CrossRef] [Green Version]
- Sierra-González, V.G. Cuban Meningococcal Vaccine VA-MENGOC-BC: 30 Years of Use and Future Potential. MEDICC Rev. 2019, 21, 19–27. [Google Scholar] [CrossRef]
- Holst, J.; Oster, P.; Arnold, R.; Tatley, M.; Næss, L.; Aaberge, I.; Galloway, Y.; McNicholas, A.; O’Hallahan, J.; Rosenqvist, E.; et al. Vaccines against Meningococcal Serogroup B Disease Containing Outer Membrane Vesicles (OMV): Lessons from Past Programs and Implications for the Future. Hum. Vaccines Immunother. 2013, 9, 1241–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gala, R.P.; Zaman, R.U.; D’Souza, M.J.; Zughaier, S.M. Novel Whole-Cell Inactivated Neisseria gonorrhoeae Microparticles as Vaccine Formulation in Microneedle-Based Transdermal Immunization. Vaccines 2018, 6, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kłyż, A.; Piekarowicz, A. Phage Proteins Are Expressed on the Surface of Neisseria gonorrhoeae and Are Potential Vaccine Candidates. PLoS ONE 2018, 13, e0202437. [Google Scholar] [CrossRef]
- Toneatto, D.; Pizza, M.; Masignani, V.; Rappuoli, R. Emerging Experience with Meningococcal Serogroup B Protein Vaccines. Expert Rev. Vaccines 2017, 16, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Harrison, O.B.; Claus, H.; Jiang, Y.; Bennett, J.S.; Bratcher, H.B.; Jolley, K.A.; Corton, C.; Care, R.; Poolman, J.T.; Zollinger, W.D.; et al. Description and Nomenclature of Neisseria meningitidis Capsule Locus. Emerg. Infect. Dis. 2013, 19, 566–573. [Google Scholar] [CrossRef]
- Ochoa-Azze, R.F.; García-Imía, L.; Vérez-Bencomo, V. Effectiveness of A Serogroup B and C Meningococcal Vaccine Developed in Cuba. MEDICC Rev. 2018, 20, 22–29. [Google Scholar] [CrossRef]
- Ochoa-Azze, R.F. Cross-Protection Induced by VA-MENGOC-BC® Vaccine. Hum. Vaccines Immunother. 2018, 14, 1064–1068. [Google Scholar] [CrossRef]
- Sotolongo, F.; Campa, C.; Casanueva, V.; Fajardo, E.M.; Cuevas, I.E.; González, N. Cuban Meningococcal BC Vaccine: Experiences and Contributions from 20 Years of Application. MEDICC Rev. 2007, 9, 16–22. [Google Scholar] [CrossRef]
- Cuello, M.; Cabrera, O.; Acevedo, R.; Nuñez, N.; del Campo, J.; Lastre, M.; Zayas, C.; González, E.; Balboa, J.; Romeu, B.; et al. Inmunización Nasal con AFCo1 Induce en Ratones Respuesta Inmune A N. gonorrhoea. Vaccimonitor 2009, 18, 78–80. [Google Scholar]
- Pérez, O.; del Campo, J.; Cuello, M.; González, E.; Nuñez, N.; Cabrera, O.; Llanes, R.; Acevedo, R.; Zayas, C.; Balboa, J.; et al. Mucosal Approaches in Neisseria Vaccinology. Vaccimonitor 2009, 18, 53–55. [Google Scholar]
- Arnold, R.; Galloway, Y.; McNicholas, A.; O’Hallahan, J. Effectiveness of A Vaccination Programme for An Epidemic of Meningococcal B in New Zealand. Vaccine 2011, 29, 7100–7106. [Google Scholar] [CrossRef]
- Paynter, J.; Goodyear-Smith, F.; Morgan, J.; Saxton, P.; Black, S.; Petousis-Harris, H. Effectiveness of A Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. Vaccines 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Pizza, M.; Bekkat-Berkani, R.; Rappuoli, R. Vaccines against Meningococcal Diseases. Microorganisms 2020, 8, 1521. [Google Scholar] [CrossRef]
- Basta, N.E.; Mahmoud, A.A.F.; Wolfson, J.; Ploss, A.; Heller, B.L.; Hanna, S.; Johnsen, P.; Izzo, R.; Grenfell, B.T.; Findlow, J.; et al. Immunogenicity of A Meningococcal B Vaccine during A University Outbreak. N. Engl. J. Med. 2016, 375, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Lujan, E.; Winter, K.; Rovaris, J.; Liu, Q.; Granoff, D.M. Serum Bactericidal Antibody Responses of Students Immunized with A Meningococcal Serogroup B Vaccine in Response to An Outbreak on A University Campus. Clin. Infect. Dis. 2017, 65, 1112–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, S.R.; Andrews, N.J.; Beebeejaun, K.; Campbell, H.; Ribeiro, S.; Ward, C.; White, J.M.; Borrow, R.; Ramsay, M.E.; Ladhani, S.N. Effectiveness and Impact of A Reduced Infant Schedule of 4CMenB Vaccine against Group B Meningococcal Disease in England: A National Observational Cohort Study. Lancet 2016, 388, 2775–2782. [Google Scholar] [CrossRef] [Green Version]
- Longtin, J.; Dion, R.; Simard, M.; Belinga, J.-F.B.; Longtin, Y.; Lefebvre, B.; Labbé, A.-C.; Deceuninck, G.; De Wals, P. Possible Impact of Wide-Scale Vaccination against Serogroup B Neisseria meningitidis on Gonorrhea Incidence Rates in One Region of Quebec, Canada. Open Forum Infect. Dis. 2017, 4, S734–S735. [Google Scholar] [CrossRef] [Green Version]
- Semchenko, E.A.; Tan, A.; Borrow, R.; Seib, K.L. The Serogroup B Meningococcal Vaccine Bexsero® Elicits Antibodies to Neisseria gonorrhoeae. Clin. Infect. Dis. 2019, 69, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Australian New Zealand Clinical Trials Registry. Identifier ACTRN12619001478101. MenGO: Does the Licensed Meningococcal Vaccine Bexsero® Provide Cross-Protection against Gonorrhoea in Gay and Bisexual Men? 25 October 2019. Available online: https://www.anzctr.org.au/ACTRN12619001478101.aspx (accessed on 17 May 2021).
- ClinicalTrials.gov. Identifier NCT04415424. Efficacy Study of 4CMenB (Bexsero®) to Prevent Gonorrhoea Infection in Gay and Bisexual Men (GoGoVax). 4 June 2020. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04415424 (accessed on 17 May 2021).
- ClinicalTrials.gov. Identifier NCT04398849. Immunisation for Adolescents against Serious Communicable Diseases (B Part of it NT). 21 May 2020. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04398849 (accessed on 17 May 2021).
- World Health Organization. Human Papillomavirus Vaccines: WHO Position Paper, May 2017–Recommendations. Vaccine 2017, 35, 5753–5755. [Google Scholar] [CrossRef] [PubMed]
- Constable, C.; Caplan, A. Comparison of the Implementation of Human Papillomavirus and Hepatitis B Vaccination Programs in the United States: Implications for Future Vaccines. Vaccine 2020, 38, 954–962. [Google Scholar] [CrossRef] [PubMed]
Vaccine Approach | Vaccine Components/Antigens under Investigation 1 | References |
---|---|---|
Meningococcal and gonococcal OMVvaccines | VA-MENGOC-BC® | [141] |
MeNZB®: NZ 98/254 OMV (Omp85, FetA, PorA, PorB3, FbpA, RmpM, OpcA, and NspA) Formalin-inactivated whole cell microparticles | [142,143] | |
Purified protein subunit vaccines | AniA, Lst, OmpA, Opa, OpcA, PilC, PilQ, PorB, TbpB, TbpA, TdfJ, NgoΦfil phage particles | [135,144] |
Mixed OMV and protein subunit vaccines | Bexsero®: MeNZB OMV antigens with additional fHbp, NHBA, and NadA antigens | [145] |
Immunotherapeutic vaccines | OMV vaccine with IL-12 adjuvant | [130] |
2C7 LOS epitope mimic multi-antigenic peptide vaccine | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haese, E.C.; Thai, V.C.; Kahler, C.M. Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines 2021, 9, 804. https://doi.org/10.3390/vaccines9070804
Haese EC, Thai VC, Kahler CM. Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines. 2021; 9(7):804. https://doi.org/10.3390/vaccines9070804
Chicago/Turabian StyleHaese, Ethan C., Van C. Thai, and Charlene M. Kahler. 2021. "Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea" Vaccines 9, no. 7: 804. https://doi.org/10.3390/vaccines9070804
APA StyleHaese, E. C., Thai, V. C., & Kahler, C. M. (2021). Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines, 9(7), 804. https://doi.org/10.3390/vaccines9070804