Augmenting CO2 Absorption Flux through a Gas–Liquid Membrane Module by Inserting Carbon-Fiber Spacers
Abstract
:1. Introduction
2. Theoretical Model
- The system is operated under normal pressure conditions;
- The membrane is a porous hydrophobic media and is not wetted by the liquid MEA;
- The membrane material does not react with liquid MEA;
- Henry’s law applies to the interface between the gas phase and the liquid phase.
3. Experimental Study
4. Numerical Study
5. Results and Discussions
5.1. Concentration Polarization
5.2. CO2 Absorption Flux Enhancement
5.3. Energy Consumption
6. Conclusions
- The higher the MEA feed rate, the lower the feed CO2 concentration, and wider carbon-fiber spacers result in a larger CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% enhancement in CO2 absorption efficiency was found in the device where carbon-fiber spacers were inserted compared to that in the empty channel device.
- The CO2 absorption rate is higher for countercurrent operation than that for concurrent operation. The CO2 absorption flux is mainly driven by the overall CO2 concentration gradient along the channel direction. The overall CO2 concentration gradient for countercurrent operation is higher than that for concurrent operation of the system.
- The ratio of increment of the CO2 absorption flux to the increment of power consumption was used to evaluate the power utilization’s effectiveness in augmenting the CO2 absorption rate in this system. The evaluation concluded that the power utilization is more effective for the channel where carbon-fiber spacers of 3mm were inserted than that of 2mm, and the higher the feed MEA flow rate, the lower the effectiveness of the power utilization. To increase the CO2 absorption flux, widening the carbon-fiber spacers is more effective than increasing the MEA feed flow rate.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Concentration (mol m−3) | |
Mean value of (mol m−3) | |
Membrane coefficient based on the Knudsen diffusion model () | |
Membrane coefficient based on the molecular diffusion model () | |
Membrane permeation coefficient () | |
Width of the inserting carbon-fiber spacers (m) | |
Diffusion coefficient of CO2 in MEA (m2 s−1) | |
Diffusion coefficient of N2 and CO2 in the membrane (m2 s−1) | |
Equivalent hydraulic diameter of channel (m), | |
Deviation of experimental results from the theoretical predictions | |
Fanning friction factor | |
Channel height (m) | |
Dimensionless Henry’s constant | |
Hydraulic dissipate energy (J kg−1), | |
Mass flux enhancement, defined by Equation (21) | |
Power consumption relative index, defined by Equation (22) | |
Molar flux (mol m−2 s−1) | |
Mass transfer coefficient in the gas feed flow side (m s−1) | |
Mass transfer coefficient in the liquid absorbent flow side (m s−1) | |
Equilibrium constant | |
Reduced equilibrium constant | |
Overall mass transfer coefficient of membrane (m s−1) | |
kCO2 | Mass transfer of carbon dioxide () |
Friction loss of CO2 (J kg−1), | |
Channel length (m) | |
Molecular weight of water (kg mol−1) | |
Nexp | Number of experimental measurements |
Number of inserting carbon-fiber fins | |
Saturation vapor pressure in the gas feed flow side (Pa) | |
Saturation vapor pressure in the liquid absorbent flow side (Pa) | |
Volumetric flow rate of the gas feed flow side (m3 s−1) | |
Volumetric flow rate of the liquid absorbent flow side (m3 s−1) | |
Gas constant (8.314 J mol−1 K−1) | |
Re | Reynolds number |
Membrane pore radius (m) | |
The precision index of an experimental measurements of molar flux (mol m−2 s−1) | |
The mean value of (mol m−2 s−1) | |
Dimensionless Schmidt number | |
ShE | Enhanced dimensionless Schmidt number |
Dimensionless Schmidt number for laminar flow | |
Temperature (°C) | |
Mean temperature in membrane (°C) | |
Channel width (m) | |
Channel width of the inserting carbon-fiber spacers (m) | |
Absorption efficiency, defined by Equation (23) | |
Mass flux in the gas feed flow side () | |
Mass flux, () | |
Mass flux in the liquid absorbent flow side () | |
Mass flux in the membrane () | |
Experimental result of CO2 absorption flux () | |
Theoretical predicted CO2 absorption flux () | |
Natural log mean CO2 mole fraction in the membrane | |
Axial coordinate along the flow direction (m) | |
Greek letters | |
Mass transfer enhancement factor | |
Aspect ratio of the channel | |
Thickness of membrane (µm) | |
Membrane porosity | |
Average velocity () | |
Density (), | |
Concentration polarization coefficients | |
Subscripts | |
1 | Membrane surface on gas side |
Liquid phase on membrane surface on MEA side | |
Gas phase on membrane surface on MEA side | |
a | In the gas feed flow channel |
b | In the liquid absorbent flow channel |
cal | Calculated results |
carbon | Inserting carbon-fiber as supporters |
empty | Inserting nylon fiber as supporters |
exp | Experimental results |
in | Inlet |
out | Outlet |
theo | Theoretical predictions |
References
- Mangalapally, H.P.; Notz, R.; Hoch, S.; Asprion, N.; Sieder, G.; García, H.; Hasse, H. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia 2009, 1, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Eide-Haugmo, I.; Lepaumier, H.; Einbu, A.; Vernstad, K.; Da Silva, E.F.; Svendsen, H.F. Chemical stability and biodegradability of new solvents for CO2 capture. Energy Procedia 2011, 4, 1631–1636. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Xu, J.; Wang, L.; Li, J.; Sun, X. Reduction of VOC emissions by a membrane-based gas absorption process. J. Environ. Sci. 2009, 21, 1096–1102. [Google Scholar] [CrossRef]
- Ramakul, P.; Prapasawad, T.; Pancharoen, U.; Pattaveekongka, W. Separation of radioactive metal ions by hollow fiber-supported liquid membrane and permeability analysis. J. Chin. Inst. Chem. Eng. 2007, 38, 489–494. [Google Scholar] [CrossRef]
- Bandini, S.; Gostoli, C.; Sarti, G. Role of heat and mass transfer in membrane distillation process. Desalination 1991, 81, 91–106. [Google Scholar] [CrossRef]
- Nagaraj, N.; Patil, G.; Babu, B.R.; Hebbar, U.H.; Raghavarao, K.; Nene, S. Mass transfer in osmotic membrane distillation. J. Membr. Sci. 2006, 268, 48–56. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation II: Direct contact MD. J. Membr. Sci. 1996, 120, 123–133. [Google Scholar] [CrossRef]
- Schofield, R.; Fane, A.; Fell, C. Heat and mass transfer in membrane distillation. J. Membr. Sci. 1987, 33, 299–313. [Google Scholar] [CrossRef]
- Von Harbou, I.; Imle, M.; Hasse, H. Modeling and simulation of reactive absorption of CO2 with MEA: Results for four different packings on two different scales. Chem. Eng. Sci. 2014, 105, 179–190. [Google Scholar] [CrossRef]
- Zhang, Z.E.; Yan, Y.F.; Zhang, L.; Ju, S.X. Hollow fiber membrane contactor absorption of CO2 from the flue gas: Review and perspective. Glob. NEST J. 2014, 16, 354–374. [Google Scholar]
- Zhang, Z.; Yan, Y.; Zhang, L.; Ju, S. Numerical Simulation and Analysis of CO2 Removal in a Polypropylene Hollow Fiber Membrane Contactor. Int. J. Chem. Eng. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-F.; Ko, C.-C.; Chen, C.-H.; Tung, K.-L.; Chang, K.-S.; Chung, T.-W. Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors. Appl. Energy 2014, 129, 25–31. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Kuo, J.-W. Mesoporous bis(trimethoxysilyl)hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chem. Eng. J. 2016, 300, 29–35. [Google Scholar] [CrossRef]
- Wang, W.; Lin, H.; Ho, C.-D. An analytical study of laminar co-current flow gas absorption through a parallel-plate gas–liquid membrane contactor. J. Membr. Sci. 2006, 278, 181–189. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef] [Green Version]
- Rongwong, W.; Boributh, S.; Assabumrungrat, S.; Laosiripojana, N.; Jiraratananon, R. Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. J. Membr. Sci. 2012, 392, 38–47. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Hu, H.-C.; Chai, X.-S.; Pan, L.; Xiao, X.-M. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography. J. Chromatogr. A 2013, 1310, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, Y.; Zhang, L.; Chen, Y.; Ran, J.; Pu, G.; Qin, C. Theoretical Study on CO2 Absorption from Biogas by Membrane Contactors: Effect of Operating Parameters. Ind. Eng. Chem. Res. 2014, 53, 14075–14083. [Google Scholar] [CrossRef]
- Gabelman, A.; Hwang, S.-T. Hollow fiber membrane contactors. J. Membr. Sci. 1999, 159, 61–106. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A. Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies. J. Membr. Sci. 2003, 217, 193–206. [Google Scholar] [CrossRef]
- Srisurichan, S.; Jiraratananon, R.; Fane, A. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. J. Membr. Sci. 2006, 277, 186–194. [Google Scholar] [CrossRef]
- Kim, T.-J.; Lang, A.; Chikukwa, A.; Sheridan, E.; Dahl, P.I.; Leimbrink, M.; Skiborowski, M.; Roubroeks, J. Enzyme Carbonic Anhydrase Accelerated CO2 Absorption in Membrane Contactor. Energy Procedia 2017, 114, 17–24. [Google Scholar] [CrossRef]
- Afza, K.N.; Hashemifard, S.; Abbasi, M. Modelling of CO2 absorption via hollow fiber membrane contactors: Comparison of pore gas diffusivity models. Chem. Eng. Sci. 2018, 190, 110–121. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Hosseinzadeh, M.; Vatani, A.; Mohammadi, T. Mathematical modeling for the simultaneous absorption of CO2 and SO2 using MEA in hollow fiber membrane contactors. Chem. Eng. Process. Process. Intensif. 2017, 111, 35–45. [Google Scholar] [CrossRef]
- Ho, C.-D.; Chen, L.; Chen, L.; Liou, J.-W.; Jen, L.-Y. Theoretical and experimental studies of CO2 absorption by the amine solvent system in parallel-plate membrane contactors. Sep. Purif. Technol. 2018, 198, 128–136. [Google Scholar] [CrossRef]
- Santos, J.L.C.; Geraldes, V.; Velizarov, S.; Crespo, J.G. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). J. Membr. Sci. 2007, 305, 103–117. [Google Scholar] [CrossRef]
- Shakaib, M.; Hasani, S.; Mahmood, M. CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels. J. Membr. Sci. 2009, 326, 270–284. [Google Scholar] [CrossRef]
- Ho, C.-D.; Chang, H.; Tsai, C.-H.; Lin, P.-H. Theoretical and Experimental Studies of a Compact Multiunit Direct Contact Membrane Distillation Module. Ind. Eng. Chem. Res. 2016, 55, 5385–5394. [Google Scholar] [CrossRef]
- Karoor, S.; Sirkar, K.K. Gas absorption studies in microporous hollow fiber membrane modules. Ind. Eng. Chem. Res. 1993, 32, 674–684. [Google Scholar] [CrossRef]
- Ho, C.-D.; Chen, L.; Huang, M.-C.; Lai, J.-Y.; Chen, Y.-A. Distillate flux enhancement in the air gap membrane distillation with inserting carbon-fiber spacers. Sep. Sci. Technol. 2017, 52, 2817–2828. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Tobiesen, F.A.; Svendsen, H.F. Study of a Modified Amine-Based Regeneration Unit. Ind. Eng. Chem. Res. 2006, 45, 2489–2496. [Google Scholar] [CrossRef]
- Haimour, N.; Sandall, O.C. Absorption of carbon dioxide into aqueous methyldiethanolamine. Chem. Eng. Sci. 1984, 39, 1791–1796. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, R.; Fane, A. A new model for mass transfer in direct contact membrane distillation. Desalination 2003, 151, 217–227. [Google Scholar] [CrossRef]
- Bhattacharya, S. Concentration polarization, separation factor, and Peclet number in membrane processes. J. Membr. Sci. 1997, 132, 73–90. [Google Scholar] [CrossRef]
- Zheng, Q.; Dong, L.; Chen, J.; Gao, G.; Fei, W. Absorption solubility calculation and process simulation for CO2 capture. J. Chem. Ind. Eng. 2010, 61, 1740–1746. [Google Scholar]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Iversen, S.; Bhatia, V.; Dam-Johansen, K.; Jonsson, G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci. 1997, 130, 205–217. [Google Scholar] [CrossRef]
- Lin, S.H.; Tung, K.L.; Chang, H.W.; Lee, K.R. Influence of Fluorocarbon Fat-Membrane Hydrophobicity on Carbon Dioxide Recovery. Chemosphere 2009, 75, 1410–1416. [Google Scholar] [CrossRef]
- Welty, J.R.; Wicks, C.E.; Wilson, R.E. Fundamentals of Momentum, Heat, and Mass Transfer, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Kandlikar, S.G.; Schmitt, D.; Carrano, A.L.; Taylor, J.B. Characterization of surface roughness effects on pressure drop in single-phase flow in mini channels. Phys. Fluids 2005, 17, 100606–100616. [Google Scholar] [CrossRef] [Green Version]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
(%) | (m3 s−1) | Empty Channel | Inserted Carbon-Fiber Spacers | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 mm | 3 mm | ||||||||||
(mol m−2 s−1) | (mol m−2 s−1) | (%) | (mol m−2 s−1) | (%) | |||||||
30 | 6.67 | 7.42 | 0.2450 | 9.27 | 3.52 | 0.3500 | 24.9 | 12.4 | 0.29 | 0.3709 | 67.1 |
8.33 | 8.39 | 0.2578 | 10.7 | 2.55 | 0.3527 | 27.5 | 13.7 | 1.14 | 0.3725 | 63.3 | |
10.0 | 8.84 | 0.2630 | 11.0 | 3.55 | 0.3566 | 24.4 | 14.0 | 1.60 | 0.3749 | 58.4 | |
40 | 6.67 | 8.75 | 0.1946 | 10.5 | 4.02 | 0.3122 | 20.0 | 13.1 | 4.04 | 0.3482 | 49.7 |
8.33 | 9.45 | 0.2062 | 11.4 | 0.34 | 0.3153 | 20.6 | 14.3 | 0.17 | 0.3501 | 51.3 | |
10.0 | 9.79 | 0.2109 | 12.2 | 0.80 | 0.3189 | 24.6 | 15.0 | 2.26 | 0.3522 | 53.2 |
(%) | Empty Channel | Inserted Carbon-Fiber Spacers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 mm | 3 mm | ||||||||||
(mol m−2 s−1) | (mol m−2 s−1) | (%) | (mol m−2 s−1) | (%) | |||||||
30 | 6.67 | 7.11 | 0.2426 | 9.58 | 4.34 | 0.3407 | 34.7 | 12.8 | 5.32 | 0.3653 | 80.0 |
8.33 | 8.45 | 0.2578 | 10.9 | 6.09 | 0.3451 | 29.0 | 14.0 | 6.67 | 0.3679 | 65.5 | |
10.0 | 8.80 | 0.2614 | 11.2 | 2.46 | 0.3493 | 27.3 | 14.4 | 4.43 | 0.3704 | 63.6 | |
40 | 6.67 | 8.65 | 0.1882 | 10.9 | 12.3 | 0.2999 | 26.0 | 13.8 | 4.83 | 0.3408 | 59.5 |
8.33 | 9.88 | 0.2124 | 11.9 | 0.97 | 0.3051 | 20.4 | 15.1 | 5.16 | 0.3439 | 52.8 | |
10.0 | 10.2 | 0.2162 | 12.2 | 1.84 | 0.3091 | 19.6 | 15.5 | 3.51 | 0.3463 | 52.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ho, C.-D.; Jen, L.-Y.; Lim, J.-W.; Chen, Y.-H. Augmenting CO2 Absorption Flux through a Gas–Liquid Membrane Module by Inserting Carbon-Fiber Spacers. Membranes 2020, 10, 302. https://doi.org/10.3390/membranes10110302
Chen L, Ho C-D, Jen L-Y, Lim J-W, Chen Y-H. Augmenting CO2 Absorption Flux through a Gas–Liquid Membrane Module by Inserting Carbon-Fiber Spacers. Membranes. 2020; 10(11):302. https://doi.org/10.3390/membranes10110302
Chicago/Turabian StyleChen, Luke, Chii-Dong Ho, Li-Yang Jen, Jun-Wei Lim, and Yu-Han Chen. 2020. "Augmenting CO2 Absorption Flux through a Gas–Liquid Membrane Module by Inserting Carbon-Fiber Spacers" Membranes 10, no. 11: 302. https://doi.org/10.3390/membranes10110302
APA StyleChen, L., Ho, C. -D., Jen, L. -Y., Lim, J. -W., & Chen, Y. -H. (2020). Augmenting CO2 Absorption Flux through a Gas–Liquid Membrane Module by Inserting Carbon-Fiber Spacers. Membranes, 10(11), 302. https://doi.org/10.3390/membranes10110302