A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Abstract
:1. Introduction
2. Methodologies for Analyzing Hydrogen Permeability Consistently
2.1. Pressure-Dependent Hydrogen Permeation Coefficient
2.2. Analysis of Hydrogen Diffusivity Based on Thermodynamic Factor
2.3. Consistent Description of Hydrogen Permeation Based on Hydrogen Chemical Potential
3. Applications of the Consistent Description of Hydrogen Permeability
3.1. Prediction of Hydrogen Flux through Pd Membrane under Given Conditions
3.2. Comparability of Hydrogen Permeability
3.3. Understanding of Reverse Temperature Dependence of Hydrogen Permeability through Pd-Ag Alloy Membrane
3.4. Design of Non-Pd-Based Alloy Membranes with High Hydrogen Permeability Together with Strong Resistance to Hydrogen Embrittlement
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Lu, G.Q.; da Costa, D.; Duke, M.; Giessler, D.; Socolow, R.; Williams, R.H.; Kreutz, T. Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid Interface Sci. 2007, 314, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrosis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy Fuels 2005, 19, 2098–2106. [Google Scholar] [CrossRef]
- Levin, D.B.; Chahine, R. Challenges for renewable hydrogen production from biomass. Int. J. Hydrog. Energy 2010, 35, 4962–4969. [Google Scholar] [CrossRef]
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrog. Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Alhumaidan, F.; Tsakiris, D.; Cresswell, D.; Garforth, A. Hydrogen storage in liquid organic hydride: Selectivity of HCH dehydrogenation over monometallic and bimetallic Pt catalysts. Int. J. Hydrog. Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Yukawa, H.; Nambu, T.; Matsumoto, Y. 13-Design of group 5 metal-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement. Adv. Hydrog. Prod. Storage Distrib. 2014, 341–367. [Google Scholar] [CrossRef]
- Fukai, Y. The Metal-Hydrogen System; Springer: Berlin/Heidelberg, Germany, 1993; pp. 207–214. [Google Scholar]
- Knapton, A.G. Palladium Alloys for Hydrogen Diffusion Membranes A Review of High Permeability Materials. Platin. Met. Rev. 1977, 21, 44–50. [Google Scholar]
- Uemiya, S.; Matusda, T.; Kikuchi, E. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. J. Memb. Sci. 1991, 56, 315–325. [Google Scholar] [CrossRef]
- Vicinanza, N.; Svenum, I.-H.; Peters, T.; Bredesen, R.; Venvik, H. New Insight to the Effects of Heat treatment in Air on the Permeation Properties of Thin Pd77%Ag23% Membranes. Membranes 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurlbert, R.C.; Konecny, J.O. Diffusion of Hydrogen through Palladium. J. Chem. Phys. 1961, 34, 655–658. [Google Scholar] [CrossRef]
- Morreale, B.D.; Ciocco, M.V.; Enick, M.; Morsi, B.I.; Howard, B.H.; Cugini, A.V. The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. J. Memb. Sci. 2003, 212, 87–97. [Google Scholar] [CrossRef]
- Hara, S.; Ishituka, M.; Suda, H.; Mukaida, M.; Haraya, K. Pressure-dependent hydrogen permeability extended for metal membranes not obeying the square-root raw. J. Phys. Chem. B 2009, 113, 9795–9801. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-L.; Ishikawa, K.; Aoki, K. Microstructural change-induced lowering of hydrogen permeability in eutectic Nb-TiNi alloy. J. Memb. Sci. 2010, 351, 65–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Jian, L.; Ikehara, T.; Maeda, R.; Nishimura, C. Characterization and permeation of microfabricated palladium membrane. Mater. Trans. 2006, 47, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Itoh, N.; Xu, W.-C.; Hara, S.; Kimura, H.; Masumoto, T. Permeability of hydrogen in amorphous Pd(1-x)Six alloys at elevated temperatures. J. Memb. Sci. 1998, 139, 29–35. [Google Scholar] [CrossRef]
- Hara, S.; Caravella, A.; Ishitsuka, M.; Suda, H.; Mukaida, M.; Harada, K.; Shimano, E.; Tsuji, T. Hydrogen diffusion coefficient and mobility in palladium as a function of equilibrium pressure evaluated by permeation measurement. J. Memb. Sci. 2012, 421–422, 355–360. [Google Scholar] [CrossRef]
- Caravella, A.; Hara, S.; Drioli, E.; Barbieri, G. Sieverts law pressure exponent for hydrogen permeation through Pd-based membrane: Coupled influence of non-ideal diffusion and multicomponent external mass transfer. J. Hydrog. Energy 2013, 38, 16229–16244. [Google Scholar] [CrossRef]
- Caravella, A.; Hara, N.; Negishi, H.; Hara, S. Quantitative contribution of non-ideal permeability under diffusion-controlled hydrogen permeation through Pd-membranes. Int. J. Hydrog. Energy 2014, 39, 4676–4682. [Google Scholar] [CrossRef]
- Flanagan, T.B.; Wang, D.; Shanahan, K.L. Diffusion of H through Pd membranes: Effects of non-ideality. J. Memb. Sci. 2007, 306, 66–74. [Google Scholar] [CrossRef]
- Flanagan, T.B.; Wang, D.; Shanahan, K.L. The role of non-ideality in H permeation through membranes. Scr. Mater. 2007, 56, 261–263. [Google Scholar] [CrossRef]
- Dolan, M.D.; Mclennan, K.G.; Way, J.D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions. J. Phys. Chem. C 2012, 16, 1512–1518. [Google Scholar] [CrossRef]
- Dolan, M.D.; Kellam, M.E.; Mclennan, K.G.; Liang, D.; Song, G. Hydrogen transport properties of several vanadium-based binary alloys. Int. J. Hydrog. Energy 2013, 38, 9794–9799. [Google Scholar] [CrossRef]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Consistent description of hydrogen permeability through metal membrane based on hydrogen chemical potential. Int. J. Hydrog. Energy 2014, 39, 7919–7924. [Google Scholar] [CrossRef]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Anomalous Temperature Dependence of Hydrogen Permeability through Palladium–Silver Binary Alloy Membrane and Its Analysis Based on Hydrogen Chemical Potential. Mater. Trans. 2016, 57, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Quantitative Evaluation of Hydrogen Solubility and Diffusivity of V–Fe Alloys toward the Design of Hydrogen Permeable Membrane for Low Operative Temperature. Mater. Trans. 2016, 57, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Analysis of pressure–composition–isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement. J. Memb. Sci. 2016, 503, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Li, X.; Zhu, Z.; Chen, R.; Su, Y.; Guo, J.; Rettenmayr, M.; Liu, D. Analysis of W/Mo alloying on hydrogen permeation performance of dual phase Nb-Ti-Ni alloys based on hydrogen chemical potentials. J. Memb. Sci. 2019, 584, 290–299. [Google Scholar] [CrossRef]
- Zhu, K.; Li, X.; Yang, Y.; Chen, R.; Su, Y.; Guo, J.; Liu, D. Hydrogen diffusivity of Nb56-xWxTi23Co21 alloys under non-dilute conditions and its analysis based on hydrogen chemical potential. J. Alloys Compd. 2019, 799, 43–49. [Google Scholar] [CrossRef]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Analysis of hydrogen mobility in Nb-based alloy membranes in view of new description of hydrogen permeability based on hydrogen chemical potential. J. Alloys Compd. 2015, 645, S107–S111. [Google Scholar] [CrossRef] [Green Version]
- Serra, E.; Kemali, M.; Perujo, A.; Ross, D.K. Hydrogen and deuterium in Pd-25 pct Ag alloy: Permeation, diffusion, solubilization, and surface reaction. Metall. Mater. Sci. A 1998, 29, 1023–1028. [Google Scholar]
- Okazaki, J.; Tanaka, D.A.P.; Tanco, M.A.L.; Wakui, Y.; Mizukami, F.; Suzuki, T.M. Hydrogen permeability study of the thin Pd-Ag alloy membranes in the temperature range across the α-β phase transition. J. Memb. Sci. 2006, 282, 370–374. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Mori, S.; Suzuki, M. Hydrogen permeance and the effect of H2O and CO on the permeability of Pd0.75Ag0.25 membranes under gas-driven permeation and plasma-driven permeation. Chem. Eng. J. 2009, 155, 55–61. [Google Scholar] [CrossRef]
- Wang, D.; Flanagan, T.B.; Shanahan, K. Diffusion of H through Pd-Ag alloys (423-523 K). J. Phys. Chem. B 2008, 112, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, V.; Lin, Y.S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. J. Memb. Sci. 1995, 104, 251–262. [Google Scholar] [CrossRef]
- Mejdell, A.L.; Klette, H.; Ramachandran, A.; Borg, A.; Bredesen, R. Hydrogen permeation of thin, free-standing Pd/Ag23% membranes before and after heat treatment in air. J. Membr. Sci. 2008, 307, 96–104. [Google Scholar] [CrossRef]
- Amano, M.; Komaki, M.; Nishimura, C. Hydrogen permeation characteristics of palladium-plated V- Ni alloy membranes. J. Less-Common Met. 1991, 172–174, 727–731. [Google Scholar] [CrossRef]
- Hashi, K.; Ishikawa, K.; Matsuda, T.; Aoki, K. Hydrogen permeation characteristics of multi-phase Nb-Ti-Ni alloys. J. Alloys Compd. 2004, 368, 215–220. [Google Scholar] [CrossRef]
- Arakawa, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H. Hydrogen solubility and permeability of Nb–W–Mo alloy membrane. J. Alloys Compd. 2011, 509, S877–S880. [Google Scholar]
- Yukawa, H.; Nambu, T.; Matsumoto, Y. Ta-W Alloy for Hydrogen Permeable Membranes. Mater. Trans. 2011, 52, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Steward, S.A. Review of Hydrogen Isotope Permeability through Materials. Lawrence Livermore National Laboratory Reports, UCRL-53441. 1983. Available online: https://digital.library.unt.edu/ark:/67531/metadc1066698/ (accessed on 9 June 2020).
- Matsumoto, Y.; Yukawa, H.; Nambu, T. Quantitative evaluation of hydrogen embrittlement of metal membrane defected by in-situ small punch test under hydrogen permeation. Met. J. 2010, LXIII, 74–78. [Google Scholar]
- Matsumoto, Y.; Yukawa, H.; Nambu, T. Determination of Ductile-to-Brittle Transition Hydrogen Concentrations for V and Nb Alloys using in-situ Small Punch Test. Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques. In Proc. 2nd International Conference Small Sample Test Technics (SSTT2012); Matocha, K., Hurst, R., Sun, W., Eds.; OCELOT s.r.o.: Ostrava, Czech Republic, 2012; pp. 132–137. [Google Scholar]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Alloying Effects on Hydrogen Solubility and Hydrogen Permeability for V-Based Alloy Membranes. Mater. Trans. 2015, 56, 1688–1692. [Google Scholar] [CrossRef] [Green Version]
- Veleckis, E.; Edwards, R.K. Thermodynamic Properties in the Systems Vanadium-Hydrogen, Niobium-Hydrogen, and Tantalum-Hydrogen. J. Phys. Chem. 1969, 73, 683–692. [Google Scholar] [CrossRef]
- Nishimura, C.; Komaki, M.; Amano, M. Hydrogen permeation characteristics of vanadium-nickel alloys. Mater. Trans. 1991, 32, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Yelon, A.; Movaghar, B.; Branz, H.M. Origin and consequences of the compensation (Meyer-Neldel) law. Phys. Rev. B 1992, 46, 12244. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, A.; Yukawa, H. A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes. Membranes 2020, 10, 120. https://doi.org/10.3390/membranes10060120
Suzuki A, Yukawa H. A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes. Membranes. 2020; 10(6):120. https://doi.org/10.3390/membranes10060120
Chicago/Turabian StyleSuzuki, Asuka, and Hiroshi Yukawa. 2020. "A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes" Membranes 10, no. 6: 120. https://doi.org/10.3390/membranes10060120
APA StyleSuzuki, A., & Yukawa, H. (2020). A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes. Membranes, 10(6), 120. https://doi.org/10.3390/membranes10060120