Evaluation of an Integrated Ultrafiltration/Solid Phase Extraction Process for Purification of Oligomeric Grape Seed Procyanidins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment
2.3. Preparative Separation Methodologies
2.4. Analytical Methodologies
3. Results and Discussion
3.1. Semiquantitative Determination of OPCs and PPCs by NP–HPLC–PAD
3.2. Separation of Low Molecular Mass (OPCs) from Highly Polymerised Procyanidins (PPCs) by Tangential-Flow Pressure-Driven Ultrafiltration (UF)
3.2.1. Effect of the UF on the Main Process Parameters
3.2.2. Mass Transfer through the Membrane
3.2.3. Quality of Separation between Procyanidin Polymers (PPCs) and Oligomers (OPCs)
3.3. Separation of OPCs from Sugars by Solid-Phase Extraction (SPE)
3.4. Evaluation of the Global Purification of OPCs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mané, C.; Souquet, J.M.; Ollé, D.; Verriés, C.; Váran, F.; Mazerolles, G.; Cheynier, V.; Fulcrand, H. Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of champagne grape varieties. J. Agric. Food Chem. 2007, 55, 7224–7233. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; García-Viguera, C.; Tomás-Barberán, F.A. On-line identification of flavonoids by HPLC coupled to diode array detection. In Methods in Polyphenol Analysis; Santos-Buelga, C., Williamson, G., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2003; pp. 92–127. [Google Scholar]
- Dixon, R.A.; Xie, D.Y.; Sharma, S.B. Proanthocyanidin—A final frontier in flavonoid research? New Phytol. 2005, 165, 9–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prodanov, M.; Vacas, V.; Hernández, T.; Estrella, I.; Amador, B.; Winterhalter, P. Chemical characterisation of Malvar grape seeds (Vitis vinifera L.) by ultrafiltration and RP-HPLC-PAD-MS. J. Food Compost. Anal. 2013, 31, 284–292. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Goñi, I.; Mañas, E.; Abia, R. Klason lignin, condensed tannins and resistant protein as dietary fibre constituents: Determination in grape pomaces. Food Chem. 1991, 39, 299–309. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; García-Marino, M.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Statistical correlation between flavanolic composition, colour and sensorial parameters in grape seed during ripening. Anal. Chim. Acta 2010, 660, 22–28. [Google Scholar] [CrossRef]
- Hidalgo, J. Fenómenos coloidales y clarificación por encolado de los vinos. In Tratado de Enología; Hidalgo, J., Ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2003; pp. 1065–1114. [Google Scholar]
- Appel, H.M. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 1993, 19, 1521–1552. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Tech. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. J. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Razmaraii, N.; Babaei, H.; Nayebi, A.M.; Assadnassab, G.; Helan, J.A.; Azarmi, Y. Cardioprotective effect of grape seed extract on chronic doxorubicin-induced cardiac toxicity in Wistar rats. Adv. Pharm. Bull. 2016, 6, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Li, W.G.; Wu YJZheng, T.Z.; Li, W.; Qu, S.Y.; Liu, N.F. Proanthocyanidin from grape seeds potentiates anti-tumor activity of doxorubicin via immunomodulatory mechanism. Int. Immunopharmacol. 2005, 5, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Balu, M.; Sangeetha, P.; Murali, G.; Panneerselvam, C. Modulatory role of grape seed extract on age-related oxidative DNA damage in central nervous system of rats. Brain Res. Bull 2006, 68, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Charradi, K.; Mahmoudi, M.; Bedhiafi, T.; Jebari, K.; El May, M.V.; Limam, F.; Aouani, E. Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed. Pharmacother. 2018, 107, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Garg, A.; Krohn, R.L.; Bagchi, M.; Tran, M.X.; Stohs, S.J. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Chem. Pathol. Pharmacol. 1997, 95, 179–189. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Int. Food Res. J. 2003, 36, 117–122. [Google Scholar] [CrossRef]
- Silván, J.M.; Mingo, E.; Hidalgo, M.; de Pascual-Teresa, S.; Carrascosa, A.V.; Martinez-Rodriguez, A.J. Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control 2013, 29, 25–31. [Google Scholar] [CrossRef]
- Kim, T.H.; Jeon, E.J.; Cheung, D.Y.; Kim, C.W.; Kim, S.S.; Park, S.H.; Han, S.W.; Kim, M.J.; Lee, Y.S.; Cho, M.L.; et al. Gastroprotective effects of grape seed proanthocyanidin extracts against nonsteroid anti-inflammatory drug-induced gastric injury in rats. Gut Liver 2013, 7, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Grases, F.; Prieto, R.M.; Fernández-Cabot, R.A.; Costa-Bauzá, A.; Sánchez, A.M.; Prodanov, M. Effect of consuming a grape seed supplement with abundant phenolic compounds on the oxidative status of healthy human volunteers. Nutr. J. 2015, 14, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Prasain, J.K.; Peng, N.; Dai, Y.; Moore, R.; Arabshahi, A.; Wilson, L.; Barnes, S.; Michael Wyss, J.; Kim, H.; Watts, R.L. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine 2009, 16, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.; Macià, A.; Romero, M.P.; Anglés, N.; Morelló, J.R.; Motilva, M.J. Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids. Food Chem. 2011, 126, 1127–1137. [Google Scholar] [CrossRef]
- Choy, Y.Y.; Waterhouse, A.L. Proanthocyanidin metabolism, a mini review. Nutr. Aging 2014, 2, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Patán, F.; Barroso, E.; van de Wiele, T.; Jiménez-Girón, A.; Martín-Alvarez, P.J.; Moreno-Arribas, M.V.; Martínez-Cuesta, M.C.; Peláez, C.; Requena, T.; Bartolomé, B. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chem. 2015, 183, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.E.; Chaudry, F.; Pannala, A.S.; Srai, S.K.; Debnam, E.; Rice-Evans, C. Decomposition of cocoa procyanidins in the gastric milieu. Biochem. Biophys. Res. Commun. 2000, 272, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rèmèsy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–422S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appeldoorn, M.M.; Sanders, M.; Vincken, J.P.; Cheynier, V.; Le Guernevé, C.; Hollman, P.C.H.; Gruppen, H. Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chem. 2009, 117, 713–720. [Google Scholar] [CrossRef]
- Plumb, G.W.; de Pascual-Teresa, S.; Santos-Buelga, C.; Cheynier, V.; Williamson, G. Antioxidant properties of catechins and proanthocyanidins: Effect of polymerisation, galloylation, and glycosilation. Free Radic. Res. 1998, 29, 351–358. [Google Scholar] [CrossRef]
- Hümmer, W.; Schreier, P. Analysis of proanthocyanidins. Mol. Nutr. Food Res. 2008, 52, 1381–1398. [Google Scholar] [CrossRef]
- Montero, L.; Herrero, M.; Prodanov, M.; Ibañez, E.; Cifuentes, A. Characterization of grape seed procyanidins by comprehensive two-dimensional hydrophilic interaction x reversed phase liquid chromatography coupled to diode array detection and tandem mass spectrometry (HILICxRPLC-DAD-MS/MS). Anal. Bioanal. Chem. 2013, 405, 4627–4638. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Z.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9387–9400. [Google Scholar] [CrossRef] [Green Version]
- Rigaud, J.; Escribano-Bailon, M.T.; Prieur, C.; Souquet, J.M.; Cheynier, V. Normal-phase high-performance liquid chromatographic separation of procyanidins from cocoa beans and grape seeds. J. Chromatogr. A 1993, 654, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Prodanov, M.; Vázquez, E.; Amador, B.; Reglero, G. Why proanthocyanidins elute in increasing molecular mass order when analysed by normal phase HPLC? In Proceedings of the Polyphenols Communications 2010, XXV International Conference on Polyphenols (ICP 2010), Montpellier, France, 23–27 August 2010; Volume 2, pp. 594–595. [Google Scholar]
- Muñoz-Labrador, A.; Prodanov, M.; Villamiel, M. Effects of high intensity ultrasound on disaggregation of a macromolecular procyanidin-rich fraction from Vitis vinifera L. seed extract and evaluation of its antioxidant activity. Ultrason. Sonochem. 2019, 50, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.S.; Belchior, G.P.; Ricardo-da-Silva, J.M.; Spranger, M.I. Isolation and purification of dimeric and trimeric procyanidins from grape seeds. J. Chromatogr. A 1999, 841, 115–121. [Google Scholar] [CrossRef]
- Sharma, V.; Zhang, C.; Pasinetti, G.M.; Dixon, R.A. Fractionation of grape seed proanthocyanidins for bioactivity assessment. In The Biological Activity of Phytochemicals, Recent Advances in Phytochemicals; Gang, D.R., Ed.; Springer: New York, NY, USA, 2011; pp. 33–46. [Google Scholar] [CrossRef]
- Pasini, F.; Chinnici, F.; Caboni, M.F.; Verardo, V. Recovery of oligomeric proanthocyanidins and other phenolic compounds with established bioactivity from grape seed by-products. Molecules 2019, 24, 677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, N.; Wray, V.; Winterhalter, P. Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography. J. Chromatogr. A 2008, 1177, 114–125. [Google Scholar] [CrossRef]
- Giori, A.; Anneli, A. Grape Seeds Extracts Obtainable by Fractioning on a Resin. World Intellectual Property Organization Patent WO 2007/0.7037 A1, 15 February 2007. [Google Scholar]
- Fernández, K.E.; Paiva, R.; Aspé, E. Purification of grape proanthocyanidins by membrane ultrafiltration. J. Med. Biol. Eng. 2015, 4, 178–183. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Cui, Y.; Luo, L.; Li, Y.; Zhou, P.; Sun, B. Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chem. 2017, 219, 399–407. [Google Scholar] [CrossRef]
- Phansalkar, R.S.; Nam, J.W.; Chen, S.N.; McAlpine, J.B.; Leme, A.A.; Aydin, B.; Bedran-Russoc, A.K.; Pauli, G.F. Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development. J. Chromatogr. A 2018, 1535, 55–62. [Google Scholar] [CrossRef]
- Appeldoorn, M.M.; Vincken, J.P.; Aura, A.M.; Hollman, P.C.H.; Gruppen, H. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J. Agric. Food Chem. 2009, 57, 1084–1092. [Google Scholar] [CrossRef]
- Silvan, J.M.; Pinto-Bustillos, M.A.; Vázquez-Ponce, P.; Prodanov, M.; Martínez-Rodríguez, A.J. Olive mill wastewater as potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. Innov. Food Sci. Emerg. 2018, 51, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Cassano, A.; Conidi, C.; Drioli, E. Clarification and concentration of pomegranate juce (Punica granatum L.) using membrane processes. J. Food Eng. 2011, 107, 366–373. [Google Scholar] [CrossRef]
- Prodanov, M.; Aznar, M.; Cabellos, J.M.; Vacas, V.; López, F.; Hernández, T.; Estrella, I. Tangential-flow membrane clarification of Malvar (Vitis vinifera L.) wine: Incidence on chemical composition and sensorial expression. OENO One 2019, 53, 725–739. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Carle, R.; Stanley, R.A.; Saleh, Z.S. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols. J. Agric. Food Chem. 2010, 58, 6787–6796. [Google Scholar] [CrossRef] [PubMed]
SPEbatch | TSS/batch | TSSperm | TSSRperm | TSSOPC | TSSROPC |
---|---|---|---|---|---|
(g) | (g) | (%) | (g) | (%) | |
SPE1 | 105 | 58.9 | 56.1 | 12.7 | 12.1 |
SPE2 | 105 | 59.5 | 56.7 | 11.5 | 10.9 |
SPE3 | 105 | 60.3 | 57.4 | 10.9 | 10.4 |
SPE4 | 105 | 59.3 | 56.5 | 10.2 | 9.7 |
Flavan-3-ols | Flavan-3-ol Enrichment (Folds) | |||
---|---|---|---|---|
SPE1 | SPE2 | SPE3 | SPE4 | |
C+EC | 9.6 | 8.5 | 4.6 | 0.7 |
ECG | 4.0 | 5.4 | 2.9 | 0.4 |
PC2 | 7.8 | 7.8 | 4.2 | 0.6 |
PC21G | 5.6 | 7.4 | 3.7 | 0.1 |
PC3+PC22G | 5.7 | 6.1 | 3.5 | 0.9 |
PC31,2G | 5.7 | 6.3 | 3.4 | 0.4 |
PC4+PC33G | 5.3 | 4.7 | 3.1 | 1.5 |
PC4XG | 5.9 | 5.0 | 3.0 | 0.9 |
PC5+PC4YG | 6.2 | 5.0 | 4.5 | 4.0 |
PC5XG | 5.3 | 4.4 | 3.1 | 1.9 |
PC6+PC5YG | 3.3 | 2.7 | 2.1 | 4.1 |
PPC | 0.9 | 1.4 | 2.4 | 3.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Docio, A.; Almodóvar, P.; Moreno-Fernandez, S.; Silvan, J.M.; Martinez-Rodriguez, A.J.; Alonso, G.L.; Prodanov, M. Evaluation of an Integrated Ultrafiltration/Solid Phase Extraction Process for Purification of Oligomeric Grape Seed Procyanidins. Membranes 2020, 10, 147. https://doi.org/10.3390/membranes10070147
Gutierrez-Docio A, Almodóvar P, Moreno-Fernandez S, Silvan JM, Martinez-Rodriguez AJ, Alonso GL, Prodanov M. Evaluation of an Integrated Ultrafiltration/Solid Phase Extraction Process for Purification of Oligomeric Grape Seed Procyanidins. Membranes. 2020; 10(7):147. https://doi.org/10.3390/membranes10070147
Chicago/Turabian StyleGutierrez-Docio, Alba, Paula Almodóvar, Silvia Moreno-Fernandez, Jose Manuel Silvan, Adolfo J. Martinez-Rodriguez, Gonzalo Luis Alonso, and Marin Prodanov. 2020. "Evaluation of an Integrated Ultrafiltration/Solid Phase Extraction Process for Purification of Oligomeric Grape Seed Procyanidins" Membranes 10, no. 7: 147. https://doi.org/10.3390/membranes10070147
APA StyleGutierrez-Docio, A., Almodóvar, P., Moreno-Fernandez, S., Silvan, J. M., Martinez-Rodriguez, A. J., Alonso, G. L., & Prodanov, M. (2020). Evaluation of an Integrated Ultrafiltration/Solid Phase Extraction Process for Purification of Oligomeric Grape Seed Procyanidins. Membranes, 10(7), 147. https://doi.org/10.3390/membranes10070147