Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Spinning Solution
2.3. Electrospinning
2.4. Preparation of PEO Casting Films
2.5. Characterization
2.5.1. Characterization of the HA and HA/PEO Blended Solutions
2.5.2. Characterization of the HA/PEO Blended Fibers
3. Results and Discussion
3.1. Electrospinning of the HA and HA/PEO Aqueous Solutions
3.2. Characterization of the HA Solutions and Their Electrospinnability
3.3. Characterization of the HA/PEO Bicomponent Nanofibers
3.4. Model Showing the Effect of PEO on HA Chain Conformation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sofi, H.S.; Ashraf, R.; Khan, A.H.; Beigh, M.A.; Majeed, S.; Sheikh, F.A. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater. Sci. Eng. C 2018, 94, 1102–1124. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Morelli, S.; Salerno, S.; Holopainen, J.; Ritala, M.; Bartolo, L.D. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. J. Biotechnol. 2015, 204, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Morelli, S.; Piscioneri, A.; Salerno, S.; Chen, C.C.; Chew, C.H.; Giorno, L.; Drioli, E.; Bartolo, L.D. Microtube array membrane bioreactor promotes neuronal differentiation and orientation. Biofabrication 2017, 9, 025018. [Google Scholar] [CrossRef]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef]
- Guo, B.; Ma, P.X. Conducting polymers for tissue engineering. Biomacromolecules 2018, 19, 1764–1782. [Google Scholar] [CrossRef]
- Kim, P.H.; Cho, J.Y. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep. 2016, 49, 26. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Jeong, L.; Kang, Y.O.; Lee, S.J.; Park, W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009, 61, 1020–1032. [Google Scholar] [CrossRef]
- Kim, C.W.; Frey, M.W.; Marquez, M.; Joo, Y.L. Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J. Polym. Sci. Pol. Phys. 2005, 43, 1673–1683. [Google Scholar] [CrossRef]
- Zong, H.; Xia, X.; Liang, Y.; Dai, S.; Alsaedi, A.; Hayat, T.; Pan, J.H. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater. Sci. Eng. C 2018, 92, 1075–1091. [Google Scholar] [CrossRef]
- Gupta, P.; Elkins, C.; Long, T.E.; Wilkes, G.L. Electrospinning of linear homopolymers of poly (methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005, 46, 4799–4810. [Google Scholar] [CrossRef]
- Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer–polymer interaction limit. Polymer 2005, 46, 3372–3384. [Google Scholar] [CrossRef]
- McKee, M.G.; Hunley, M.T.; Layman, J.M.; Long, T.E. Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules 2006, 39, 575–583. [Google Scholar] [CrossRef]
- Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic acid in inflammation and tissue regeneration. Wounds 2016, 28, 78–88. [Google Scholar]
- Jung, J.H.; Desit, P.; Prausnitz, M.R. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing. Invest. Ophthalmol. Vis. Sci 2018, 59, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Um, I.C.; Fang, D.; Okamoto, A.; Hsiao, B.S.; Chu, B. Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 2005, 46, 4853–4867. [Google Scholar] [CrossRef]
- Li, J.; He, A.; Han, C.C.; Fang, D.; Hsiao, B.S.; Chu, B. Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromol. Rapid Commun. 2006, 27, 114–120. [Google Scholar] [CrossRef]
- Wang, S.; Ju, J.P.; Wu, S.X.; Lin, M.; Sui, K.Y.; Xia, Y.Z.; Tan, Y.Q. Electrospinning of Biocompatible Alginate-Based Nanofiber Membranes Via Tailoring Chain Flexibility. Carbohydr. Polym. 2019, 230, 115665. [Google Scholar] [CrossRef]
- Xu, S.S.; Li, J.X.; He, A.H.; Liu, W.W.; Jiang, X.Y.; Zheng, J.F.; Charles, C.H.; Benjamin, S.H.; Chu, B.; Fang, D. Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes. Polymer 2019, 50, 3762–3769. [Google Scholar] [CrossRef]
- Thien, D.V.H.; Hsiao, S.W.; Ho, M.H.; Li, C.H.; Shih, J.L. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 2013, 48, 1640–1645. [Google Scholar] [CrossRef]
- Nie, H.; He, A.; Wu, W.; Zheng, J.; Xu, S.; Li, J.; Han, C.C. Effect of poly(ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate. Polymer 2019, 50, 4926–4934. [Google Scholar] [CrossRef]
Sample No. (HA/PEO = wt%:wt%) | Conductivity (ms/cm) | Surface Tension (mN/m) | Stability | Fiber Diameter (nm) |
---|---|---|---|---|
HA | 1.20 | 71.3 | - | No fiber |
HA/PEO100 = 1:0.5 | 1.14 | 60.7 | + | ~200 |
HA/PEO100 = 1:1 | 1.11 | 59.0 | + | 200~500 |
HA/PEO100 = 1:2 | 1.02 | 54.9 | ++ | ~1200 |
HA/PEO2 = 1:10 | 0.70 | 51.8 | + | ~100 |
HA/PEO2 = 1:20 | 0.49 | 50.9 | ++ | 500~800 |
HA/PEO2 = 1:40 | 0.25 | 47.5 | ++ | 1000~3000 |
Sample | Tm/°C | ΔH/Jg−1 | χc % |
---|---|---|---|
HA/PEO100 = 1:0.5 | 58.2 | −109.4 | 51 |
HA/PEO100 = 1:1 | 59.0 | −113.7 | 53 |
HA/PEO100 = 1:2 | 57.9 | −122.2 | 57 |
PEO-100 fiber | 66.7 | −111.3 | 52 |
PEO-100 film | 66.5 | −147.8 | 69 |
HA/PEO2 = 1:10 | 65.6 | −171.7 | 80 |
HA/PEO2 = 1:20 | 65.6 | −161.3 | 75 |
HA/PEO2 = 1:40 | 65.0 | −169.7 | 79 |
PEO-2 droplets | 65.2 | −168.7 | 79 |
PEO-2 film | 66.0 | −208.8 | 98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, X.; Chen, H.; Liu, X.; Li, J.; Luo, J.; He, A.; Han, C.C.; Liu, Y.; Xu, S. Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. Membranes 2020, 10, 217. https://doi.org/10.3390/membranes10090217
Chen H, Chen X, Chen H, Liu X, Li J, Luo J, He A, Han CC, Liu Y, Xu S. Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. Membranes. 2020; 10(9):217. https://doi.org/10.3390/membranes10090217
Chicago/Turabian StyleChen, Hao, Xuhong Chen, Huiying Chen, Xin Liu, Junxing Li, Jun Luo, Aihua He, Charles C. Han, Ying Liu, and Shanshan Xu. 2020. "Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution" Membranes 10, no. 9: 217. https://doi.org/10.3390/membranes10090217
APA StyleChen, H., Chen, X., Chen, H., Liu, X., Li, J., Luo, J., He, A., Han, C. C., Liu, Y., & Xu, S. (2020). Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. Membranes, 10(9), 217. https://doi.org/10.3390/membranes10090217