Polysulfone–Polyvinyl Pyrrolidone Blend Polymer Composite Membranes for Batik Industrial Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batik Wastewater Pre-Treatment
2.3. Membrane Preparation
2.4. Membrane Characterization
2.5. Pure Water and Permeate Flux
2.6. Batik Wastewater Removal
2.7. Membrane Fouling Study
3. Results and Discussion
3.1. Membrane Characterization
3.2. Batik Wastewater Pre-Treatment
3.3. Pure Water Flux
3.4. Batik Wastewater Flux
3.5. Pollutant Removal
3.6. Membrane Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Permadani, I.; Phasa, D.A.; Pratiwi, A.W.; Rahmawati, F. The Composite of ZrO2-TiO2 Produced from Local Zircon Sand Used as A Photocatalyst for The Degradation of Methylene Blue in A Single Batik Dye Wastewater. Bull. Chem. React. Eng. Catal. 2016, 11, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Khalik, W.F.; Ong, S.-A.; Ho, L.-N.; Wong, Y.S.; Yusoff, N.A.; Ridwan, F. Decolorization and Mineralization of Batik Wastewater through Solar Photocatalytic Process. Sains Malays. 2015, 44, 607–612. [Google Scholar] [CrossRef]
- Yin, H.; Qiu, P.; Qian, Y.; Kong, Z.; Zheng, X.; Tang, Z.; Guo, H. Textile Wastewater Treatment for Water Reuse: A Case Study. Process 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.Á. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. Environ. Manag. 2017, 191, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem. Eng. J. 2019, 358, 992–1001. [Google Scholar] [CrossRef]
- Ma, X.; Chen, P.; Zhou, M.; Zhong, Z.; Zhang, F.; Xing, W. Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment. Ind. Eng. Chem. Res. 2017, 56, 7070–7079. [Google Scholar] [CrossRef]
- Laqbaqbi, M.; García-Payo, M.; Khayet, M.; El Kharraz, J.; Chaouch, M. Application of direct contact membrane distillation for textile wastewater treatment and fouling study. Sep. Purif. Technol. 2019, 209, 815–825. [Google Scholar] [CrossRef]
- Xu, Y.C.; Wang, Z.X.; Cheng, X.Q.; Xiao, Y.C.; Shao, L. Positively charged nanofiltration membranes via economically mussel-substance-simulated codeposition for textile wastewater treatment. Chem. Eng. J. 2016, 303, 555–564. [Google Scholar] [CrossRef]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: Influence of dye mass loading rate and biomass concentration. Process. Saf. Environ. Prot. 2020, 135, 364–382. [Google Scholar] [CrossRef]
- Cinperi, N.C.; Ozturk, E.; Yigit, N.O.; Kitis, M. Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J. Clean. Prod. 2019, 223, 837–848. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Baltaru, M.-C.; Tang, Y.P.; Bernstein, N.J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Membr. Sci. 2016, 514, 217–228. [Google Scholar] [CrossRef]
- Yurtsever, A.; Sahinkaya, E.; Çınar, Ö. Performance and foulant characteristics of an anaerobic membrane bioreactor treating real textile wastewater. J. Water Process Eng. 2020, 33, 101088. [Google Scholar] [CrossRef]
- Tavangar, T.; Jalali, K.; Shahmirzadi, M.A.A.; Karimi, M. Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation–Nanofiltration process. Sep. Purif. Technol. 2019, 216, 115–125. [Google Scholar] [CrossRef]
- Nyobe, D.; Ye, J.; Tang, B.; Bin, L.; Huang, S.; Fu, F.; Li, P.; Hu, Q. Build-up of a continuous flow precoated dynamic membrane filter to treat diluted textile wastewater and identify its dynamic membrane fouling. J. Environ. Manag. 2019, 252, 109647. [Google Scholar] [CrossRef]
- Erkan, H.S.; Çağlak, A.; Soysaloglu, A.; Takatas, B.; Engin, G.O. Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment. J. Water Process. Eng. 2020, 38, 101631. [Google Scholar] [CrossRef]
- Shang, W.; Tiraferri, A.; He, Q.; Li, N.; Chang, H.; Liu, C.; Liu, B. Reuse of shale gas flowback and produced water: Effects of coagulation and adsorption on ultrafiltration, reverse osmosis combined process. Sci. Total Environ. 2019, 689, 47–56. [Google Scholar] [CrossRef]
- Köse, T.E.; Biroğul, N.Ç. Real textile wastewater reclamation using a combined coagulation/flocculation/membrane filtration system and the evaluation of several natural materials as flocculant aids. Gazi Univ. J. Sci. 2016, 29, 565–572. [Google Scholar]
- Dos Santos, J.D.; Veit, M.T.; Palácio, S.M.; Da Cunha Gonçalves, G.; Fagundes-Klen, M.R. Evaluation of the combined process of coagulation/flocculation and microfiltration of Cassava Starch wastewater: Removal efficiency and membrane fouling. Water Air Soil Pollut. 2017, 228, 1–12. [Google Scholar] [CrossRef]
- De Camargo Lima Beluci, N.; Mateus, G.A.P.; Miyashiro, C.S.; Homem, N.C.; Gomes, R.G.; Fagundes-Klen, M.R.; Bergamasco, R.; Vieira, A.M.S. Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Sci. Total. Environ. 2019, 664, 222–229. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Serbanescu, O.; Voicu, S.I.; Thakur, V.K. Polysulfone functionalized membranes: Properties and challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Nguyen, H.T.V.; Ngo, T.H.A.; Do, K.D.; Nguyen, M.N.; Dang, N.T.T.; Nguyen, T.T.H.; Vien, V.; Vu, T.A. Preparation and Characterization of a Hydrophilic Polysulfone Membrane Using Graphene Oxide. J. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moradihamedani, P.; Abdullah, A.H.B. Phosphate removal from water by polysulfone ultrafiltration membrane using PVP as a hydrophilic modifier. Desalination Water Treat. 2016, 57, 25542–25550. [Google Scholar] [CrossRef]
- Aili, D.; Kraglund, M.R.; Tavacoli, J.; Chatzichristodoulou, C.; Jensen, J.O. Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis. J. Membr. Sci. 2020, 598, 117674. [Google Scholar] [CrossRef]
- Wei, N.; Zhang, G.; Liu, D.; Wu, Y.; Wang, J.; Wang, Q. Coagulation behavior of polyaluminum chloride: Effects of pH and coagulant dosage. Chin. J. Chem. Eng. 2015, 23, 1041–1046. [Google Scholar] [CrossRef]
- Vasin, S.I.; Filippov, A. Hydrodynamic Permeability of the Membrane as a System of Rigid Particles Covered with Porous Layer (Cell Model). Colloid J. 2004, 66, 266–270. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Ariyanti, N.; Utomo, D.P. Effect of nano-TiO2 loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment. J. Water Process Eng. 2020, 35, 101190. [Google Scholar] [CrossRef]
- Xu, X.; Rawat, P.; Shi, Y.; Zhu, D. Tensile mechanical properties of basalt fiber reinforced polymer tendons at low to intermediate strain rates. Compos. Part B Eng. 2019, 177, 107442. [Google Scholar] [CrossRef]
- Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Doraisammy, V.; Lai, G.S.; Kartohardjono, S.; Lau, W.J.; Chong, K.C.; Lai, S.O.; Hasbullah, H.; Ismail, A.F. Synthesis and characterization of mixed matrix membranes incorporated with hydrous manganese oxide nanoparticles for highly concentrated oily solution treatment. Can. J. Chem. Eng. 2018, 96, 1612–1619. [Google Scholar] [CrossRef]
- Rabiee, H.; Shahabadi, S.M.S.; Mokhtare, A.; Rabiei, H.; Alvandifar, N. Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80. J. Environ. Chem. Eng. 2016, 4, 4050–4061. [Google Scholar] [CrossRef]
- Karimi, A.; Khataee, A.; Vatanpour, V.; Safarpour, M. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Sep. Purif. Technol. 2019, 229, 115838. [Google Scholar] [CrossRef]
- Shakak, M.; Rezaee, R.; Maleki, A.; Jafari, A.; Safari, M.; Shahmoradi, B.; Daraei, H.; Lee, S.-M. Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environ. Technol. Innov. 2020, 17, 100529. [Google Scholar] [CrossRef]
- Matsuyama, H.; Maki, T.; Teramoto, M.; Kobayashi, K. Effect of PVP Additive on Porous Polysulfone Membrane Formation by Immersion Precipitation Method. Sep. Sci. Technol. 2003, 38, 3449–3458. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, X.; Rikimaru, S.; Nomizu, M.; Nishi, N. Surface characterization of polysulfone membranes modified by DNA immobilization. J. Membr. Sci. 2003, 214, 179–189. [Google Scholar] [CrossRef]
- Frank, B.P.; Belfort, G. Atomic Force Microscopy for Low-Adhesion Surfaces: Thermodynamic Criteria, Critical Surface Tension, and Intermolecular Forces. Langmuir 2001, 17, 1905–1912. [Google Scholar] [CrossRef]
- Han, M.-J.; Nam, S.-T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J. Membr. Sci. 2002, 202, 55–61. [Google Scholar] [CrossRef]
- Gebru, K.A.; Das, C. Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: Impacts of solvents and additives on morphology, permeability and fouling performances. Chin. J. Chem. Eng. 2017, 25, 911–923. [Google Scholar] [CrossRef]
- Yuan, Z.; Dan-Li, X. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination 2008, 223, 438–447. [Google Scholar] [CrossRef]
- Qin, J.-J.; Wong, F.-S.; Li, Y.; Liu, Y.-T. A high flux ultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol. J. Membr. Sci. 2003, 211, 139–147. [Google Scholar] [CrossRef]
- Marchese, J.; Ponce, M.; Ochoa, N.; Prádanos, P.; Palacio, L.; Hernández, A. Fouling behaviour of polyethersulfone UF membranes made with different PVP. J. Membr. Sci. 2003, 211, 1–11. [Google Scholar] [CrossRef]
- Febriasari, A.; Purnawan, I.; Chalid, M.; Ismojo, I.; Kartohardjono, S. A Direct Comparison Between Poly (vinylidene) Flouride and Polysulfone Flat Sheet Membrane; Characterization and Mechanical Strength. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2020; p. 012002. [Google Scholar]
- Tofighy, M.A.; Mohammadi, T.; Sadeghi, M.H. Highflux PVDF/PVP nanocomposite ultrafiltration membrane incorporated with graphene oxide nanoribbones with improved antifouling properties. J. Appl. Polym. Sci. 2020, 138, 49718. [Google Scholar] [CrossRef]
- Li, M.; Wu, L.; Zhang, C.; Chen, W.; Liu, C. Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone. Appl. Surf. Sci. 2019, 483, 967–978. [Google Scholar] [CrossRef]
- Tabatabaei, S.H.; Carreau, P.; Ajji, A. Microporous membranes obtained from PP/HDPE multilayer films by stretching. J. Membr. Sci. 2009, 345, 148–159. [Google Scholar] [CrossRef]
- Ohya, H.; Shiki, S.; Kawakami, H. Fabrication study of polysulfone hollowfiber microfiltration membranes: Optimal dope viscosity for nucleation and growth. J. Membr. Sci. 2009, 326, 293–302. [Google Scholar] [CrossRef]
- Rahmadyanti, E.; Febriyanti, C.P. Feasibility of Constructed Wetland Using Coagulation Flocculation Technology in Batik Wastewater Treatment. J. Ecol. Eng. 2020, 21, 67–77. [Google Scholar] [CrossRef]
- Justina, M.D.; Muniz, B.R.B.; Bröring, M.M.; Costa, V.J.; Skoronski, E. Using vegetable tannin and polyaluminium chloride as coagulants for dairy wastewater treatment: A comparative study. J. Water Process Eng. 2018, 25, 173–181. [Google Scholar] [CrossRef]
- Rana, S.; Suresh, S. Comparison of different Coagulants for Reduction of COD from Textile industry wastewater. Mater. Today Proc. 2017, 4, 567–574. [Google Scholar] [CrossRef]
- Purnawan, I.; Febriasari, A.; Setyaputra, B.; Yolandini, T.; Windriyo, M.; Karamah, E.; Kartohardjono, S. Combined Process of Ozonation and Membrane Processes to treat Wastewater from Batik Industry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2020; p. 012003. [Google Scholar]
- An, A.K.; Guo, J.; Jeong, S.; Lee, E.-J.; Tabatabai, S.A.A.; Leiknes, T. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation. Water Res. 2016, 103, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Qtaishat, M.; Khayet, M.; Matsuura, T. Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation. J. Membr. Sci. 2009, 329, 193–200. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.; Purkait, M. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 2008, 315, 36–47. [Google Scholar] [CrossRef]
- Sato, K.; Sugimoto, K.; Nakane, T. Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145 °C in vapor permeation. J. Membr. Sci. 2008, 307, 181–195. [Google Scholar] [CrossRef]
- Mahat, S.B.; Omar, R.; Lee, J.L.; Mohd Idris, A.I.; Che Man, H.; Mustapa Kamal, S.M.; Idris, A. Effect of pore size of monofilament woven filter cloth as supporting material for dynamic membrane filtration on performance using aerobic membrane bioreactor technology. Asia Pac. J. Chem. Eng. 2020, 15, e2453. [Google Scholar] [CrossRef]
- Aouni, A.; Fersi, C.; Cuartas-Uribe, B.; Bes-Pía, A.; Alcaina-Miranda, M.; Dhahbi, M. Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes. Desalination 2012, 297, 87–96. [Google Scholar] [CrossRef]
- Kajekar, A.J.; Dodamani, B.; Isloor, A.M.; Zulhairun, A.K.; Cheer, N.B.; Ismail, A.; Shilton, S.J. Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination 2015, 365, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Ras, R.H.; Tian, X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018, 36, 90–109. [Google Scholar] [CrossRef]
- Sondhi, R.; Lin, J.Y.; Alvarez, F. Crossflow filtration of chromium hydroxide suspension by ceramic membranes: Fouling and its minimization by backpulsing. J. Membr. Sci. 2000, 174, 111–122. [Google Scholar] [CrossRef]
- Wu, T.Y.; Mohammad, A.W.; Md. Jahim, J.; Anuar, N. Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling. Biochem. Eng. J. 2007, 35, 309–317. [Google Scholar] [CrossRef]
Indicator | Analysis Method | Equipment |
---|---|---|
pH | Electrometric | Water quality meter (AZ 86031) |
COD | Digestion reaction and UV visible | DRB200 Digital Reactor Block and spectrophotometer UV–Vis (Thermo Fisher Scientific, UV23000) |
TSS | Standard method 2540D | Glass fiber filter |
TDS | Electrometric | Water quality meter (AZ 86031) |
Color | Pt/Co method | Spectrophotometer UV–Vis (Thermo fisher scientific, UV23000) |
Conductivity | Electrometric | Water quality meter (AZ 86031) |
Membrane | Composition | ||
---|---|---|---|
PSf (g) | PVP (g) | NMP (mL) | |
Pristine PSf | 7.5 | 0 | 42.5 |
PSf/PVP 0.15 | 7.35 | 0.15 | 42.5 |
PSf/PVP 0.25 | 7.25 | 0.25 | 42.5 |
PSf/PVP 0.35 | 7.15 | 0.35 | 42.5 |
Membrane | Membrane Thickness (L, µm) | Porosity (ε, %) | Average Pore Size (rm, nm) | WCA (°) | ||
---|---|---|---|---|---|---|
SEM | Dial Thickness | SEM | Dial Thickness | |||
PSf | 116 ± 9.0 | 158 ± 0.03 | 30.52 ± 2.4 | 24.44 ± 3.1 | 5 | 120 ± 0.5 |
PSf/PVP 0.15 | 107.5 ± 5.5 | 150 ± 0.01 | 44.77 ± 4.4 | 32.80 ± 2.1 | 17 | 65.37 ± 1.2 |
PSf/PVP 0.25 | 101 ± 2.0 | 106 ± 0.05 | 71.94 ± 9.8 | 67.88 ± 3.4 | 13 | 50.46 ± 0.8 |
PSf/PVP 0.35 | 148 ± 5.0 | 226 ± 0.01 | 39.69 ± 1.34 | 26.19 ± 1.3 | 12 | 50.26 ± 3.4 |
Membrane | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
PSf | 5.41 ± 0.96 | 33.47 ± 9.75 |
PSf/PVP 0.15 | 4.63 ± 0.45 | 36.14 ± 12.39 |
PSf/PVP 0.25 | 4.18 ± 0.45 | 22.90 ± 14.90 |
PSf/PVP 0.35 | 3.89 ± 0.44 | 27.34 ± 7.34 |
Parameter | Unit | Initial Wastewater | After Coagulation–Flocculation | pH 7 Adjustment | After Conventional Filtration |
---|---|---|---|---|---|
COD | mg/L | 5100 | 1100 | 1215 | 674 |
TDS | mg/L | 2200 | 2250 | 2670 | 2590 |
TSS | mg/L | 700 | 325 | 362 | 3 |
Conductivity | mS | 4.20 | 4.39 | 5.34 | 5.18 |
Color | mg/L | 8500 | 378 | 405 | 405 |
pH | – | 9.40 | 4.09 | 6.99 | 7.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Febriasari, A.; Huriya; Ananto, A.H.; Suhartini, M.; Kartohardjono, S. Polysulfone–Polyvinyl Pyrrolidone Blend Polymer Composite Membranes for Batik Industrial Wastewater Treatment. Membranes 2021, 11, 66. https://doi.org/10.3390/membranes11010066
Febriasari A, Huriya, Ananto AH, Suhartini M, Kartohardjono S. Polysulfone–Polyvinyl Pyrrolidone Blend Polymer Composite Membranes for Batik Industrial Wastewater Treatment. Membranes. 2021; 11(1):66. https://doi.org/10.3390/membranes11010066
Chicago/Turabian StyleFebriasari, Arifina, Huriya, Annisa Hasna Ananto, Meri Suhartini, and Sutrasno Kartohardjono. 2021. "Polysulfone–Polyvinyl Pyrrolidone Blend Polymer Composite Membranes for Batik Industrial Wastewater Treatment" Membranes 11, no. 1: 66. https://doi.org/10.3390/membranes11010066
APA StyleFebriasari, A., Huriya, Ananto, A. H., Suhartini, M., & Kartohardjono, S. (2021). Polysulfone–Polyvinyl Pyrrolidone Blend Polymer Composite Membranes for Batik Industrial Wastewater Treatment. Membranes, 11(1), 66. https://doi.org/10.3390/membranes11010066