Optimization of Mordenite Membranes Using Sucrose Precursor for Pervaporation of Water-Ethanol Mixtures
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yan, Y.; Davis, M.E.; Gavalas, G.R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment. J. Membr. Sci. 1997, 123, 95–103. [Google Scholar] [CrossRef]
- Zhu, M.-H.; Liang, L.; Wang, H.; Liu, Y.; Wu, T.; Zhang, F.; Li, Y.; Kumakiri, I.; Chen, X.; Kita, H. Influences of Acid Post-Treatment on High Silica SSZ-13 Zeolite Membrane. Ind. Eng. Chem. Res. 2019, 58, 14037–14043. [Google Scholar] [CrossRef]
- Chang, N.; Tang, H.; Bai, L.; Zhang, Y.; Zeng, G. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes. J. Membr. Sci. 2018, 552, 13–21. [Google Scholar] [CrossRef]
- Navajas, A.; Mallada, R.; Téllez, C.; Coronas, J.; Menéndez, M.; Santamaria, J.; Ariso, C.T. Preparation of mordenite membranes for pervaporation of water-ethanol mixtures. Desalination 2002, 148, 25–29. [Google Scholar] [CrossRef]
- Casado, L. Preparation, characterization and pervaporation performance of mordenite membranes. J. Membr. Sci. 2003, 216, 135–147. [Google Scholar] [CrossRef]
- Li, G.; Su, X.; Lin, R. Effect of post-treatment in the hydrochloric acid solution on the pervaporation perfor-mance of mordenite membranes. Sep. Purif. Technol. 2007, 56, 378–382. [Google Scholar] [CrossRef]
- Lin, X.; Kikuchi, E.; Matsukata, M. Preparation of mordenite membranes on α-alumina tubular supports for pervaporation of water–isopropyl alcohol mixtures. Chem. Commun. 2000, 957–958. [Google Scholar] [CrossRef]
- Elyassi, B.; Jeon, M.; Tsapatsis, M.; Narasimharao, K.; Basahel, S.; Al-Thabaiti, S. Ethanol/water mixture pervapo-ration performance of b-oriented silicalite-1 membranes made by gel-free secondary growth. AIChE J. 2015, 62, 556–563. [Google Scholar] [CrossRef]
- Li, G.; Su, X.-H.; Lin, R.-S. Preparation of highly water-selective mordenite membranes via post-synthetic treatment with oxalic acid. Mater. Lett. 2007, 61, 4576–4578. [Google Scholar] [CrossRef]
- Alomair, A.A.; Al-Jubouri, S.M.; Holmes, S.M. A novel approach to fabricate zeolite membranes for pervaporation processes. J. Mater. Chem. A 2015, 3, 9799–9806. [Google Scholar] [CrossRef]
- Alomair, A.A.; AlQaheem, Y. The Implementation of a Carbon Precursor to Produce ZSM-5 Membranes for the Separation of Isomers in the Pervaporation System. ACS Omega 2019, 4, 19005–19010. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Su, X.H.; Lin, R.S. Highly water-selective mordenite membranes prepared via hydrothermal post-treatment in a dilute hydrochloric acid solution. Sep. Purif. Technol. 2008, 61, 225–228. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Hu, N.; Zhang, F.; Wu, T.; Chen, X.; Kita, H. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures. J. Membr. Sci. 2018, 564, 174–183. [Google Scholar] [CrossRef]
- Kumar, M.; Berkson, Z.J.; Clark, R.J.; Shen, Y.; Prisco, N.A.; Zheng, Q.; Zeng, Z.; Zheng, H.; McCusker, L.B.; Palmer, J.C.; et al. Crystallization of Mordenite Platelets using Cooperative Organic Structure-Directing Agents. J. Am. Chem. Soc. 2019, 141, 20155–20165. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Qian, W.; Zhang, H.; Zhao, P.; Ma, H.; Ying, W. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether. Microporous Mesoporous Mater. 2020, 295, 109950. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.; Suely, A.; Boyce, A.; Faruq, G. Bioethanol production from renewable sources: Current per-spectives and technological progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Sydney, E.; Letti, L.; Karp, S.; Sydney, A.; Vandenberghe, L.; de Carvalho, J.; Woiciechowski, A.L.; Medeiros, A.B.P.; Socco, V.T.; Soccol, C.R. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bio-ethanol in the transportation sector. Bioresour. Technol. Rep. 2019, 7, 100234. [Google Scholar] [CrossRef]
- Zhao, L.; Ou, X.; Chang, S. Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives. Energy 2016, 115, 303–313. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Wang, D.; Su, X. Investigation of the effects of lean mixtures on combustion and particulate emissions in a DISI engine fueled with bioethanol-gasoline blends. Fuel 2020, 260, 116096. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Rezaei-Asl, A. The effect of added ethanol to diesel fuel on performance, vibration, combustion and knocking of a CI engine. Fuel 2016, 185, 718–733. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Z.; Yang, C.; Ou, B.; Lu, H.; Xu, H.; Cheng, X. Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine. Appl. Energy 2018, 230, 19–30. [Google Scholar] [CrossRef]
- Makertihartha, I.G.B.N.; Dharmawijaya, P.T.; Wenten, I.G. Recent Advances on Bioethanol Dehydration using Zeolite Membrane. J. Phys. Conf. Ser. 2017, 877, 012074. [Google Scholar] [CrossRef]
- Navajas, A.; Mallada, R.; Téllez, C.; Coronas, J.; Menéndez, M.; Santamaria, J.; Ariso, C.T. The use of post-synthetic treatments to improve the pervaporation performance of mordenite membranes. J. Membr. Sci. 2006, 270, 32–41. [Google Scholar] [CrossRef]
- Navajas, A.; Mallada, R.; Téllez, C.; Coronas, J.; Menéndez, M.; Santamaria, J.; Ariso, C.T. Study on the reproducibility of mordenite tubular membranes used in the dehydration of ethanol. J. Membr. Sci. 2007, 299, 166–173. [Google Scholar] [CrossRef]
- Zhu, M.-H.; Xia, S.-L.; Hua, X.-M.; Feng, Z.-J.; Hu, N.; Zhang, F.; Kumakiri, I.; Lu, Z.-H.; Chen, X.-S.; Kita, H. Rapid Preparation of Acid-Stable and High Dehydration Performance Mordenite Membranes. Ind. Eng. Chem. Res. 2014, 53, 19168–19174. [Google Scholar] [CrossRef]
Membrane | Weight (Grams) | ||
---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | |
S.S disc | 4.206 | 4.189 | 4.195 |
S.S disc + zeolite paste | 4.836 | 4.864 | 4.706 |
S.S disc + zeolite paste + sucrose | 5.132 | 5.207 | 5.198 |
Membrane after pyrolysis | 4.220 | 4.201 | 4.211 |
Mass of carbon plus zeolite | 0.014 | 0.012 | 0.016 |
Pyrolysis | Feed (EtOH wt%) | Permeate | Separation | PSI | |
---|---|---|---|---|---|
Temperature (°C) | H2O | EtOH | Flux (g/m2h) (+/−0.5) | Factor (+/−6) | |
650 | 20 | 80 | 14.9 | 81 | 1195 |
650 | 10 | 90 | 14.6 | 125 | 1821 |
650 | 1 | 99 | 13.8 | 201 | 2770 |
750 | 20 | 80 | 10.0 | 590 | 5917 |
750 | 10 | 90 | 9.9 | 692 | 6889 |
750 | 1 | 99 | 9.1 | 990 | 9005 |
850 | 20 | 80 | 8.0 | 498 | 3996 |
850 | 10 | 90 | 7.5 | 654 | 4934 |
850 | 1 | 99 | 6.3 | 834 | 5288 |
Pyrolysis | Feed (g) (wt%) | Feed (mol%) | Permeate (wt%) | Permeate (mol%) | ||||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | H2O | EtOH | H2O | EtOH | H2O | EtOH | H2O | EtOH |
650 | 20 | 80 | 39.02 | 60.98 | 95.31 | 4.69 | 98.11 | 1.88 |
650 | 10 | 90 | 22.14 | 77.86 | 93.32 | 6.68 | 97.28 | 2.72 |
650 | 1 | 99 | 2.52 | 97.48 | 67.04 | 32.96 | 83.88 | 6.12 |
750 | 20 | 80 | 39.02 | 60.98 | 99.32 | 0.67 | 99.73 | 0.26 |
750 | 10 | 90 | 22.14 | 77.86 | 98.72 | 1.28 | 99.49 | 0.51 |
750 | 1 | 99 | 2.52 | 97.48 | 90.91 | 9.088 | 96.24 | 3.76 |
850 | 20 | 80 | 39.02 | 60.98 | 99.21 | 0.79 | 99.69 | 0.31 |
850 | 10 | 90 | 22.14 | 77.86 | 98.64 | 1.36 | 99.46 | 0.53 |
850 | 1 | 99 | 2.52 | 97.48 | 89.39 | 10.61 | 95.57 | 4.43 |
Preparation Method | Support | Feed Temperature (°C) | Separation Factor | Flux (g/m2h) | Reference |
---|---|---|---|---|---|
Carbon pretreatment | stainless-steel | 25 | 990 | 9.1 | Current study |
Hydrothermal synthesis | α-Al2O3 | 25 | 150 | 200 | [4] |
Seeded hydrothermal synthesis | α-Al2O3 | 25 | 60 | 5.3 | [5] |
Post-treatment with hydrochloric acid solution | α-Al2O3 | 25 | 368 | 100 | [6] |
Post-treatment with oxalic acid | α-Al2O3 | 75 | >10,000 | 53 | [9] |
Post-treatment in the hydrochloric acid solution | α-Al2O3 | 50 | >10,000 | 60 | [11] |
Alkaline post- treatment | α-Al2O3 | 150 | 139 | 160 | [22] |
Alkaline post- treatment | α-Al2O3 | 150 | 900 | 260 | [23] |
microwaveassisted synthesis | α-Al2O3 | 75 | 7500 | 1100 | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomair, A.A.; Alqaheem, Y. Optimization of Mordenite Membranes Using Sucrose Precursor for Pervaporation of Water-Ethanol Mixtures. Membranes 2021, 11, 160. https://doi.org/10.3390/membranes11030160
Alomair AA, Alqaheem Y. Optimization of Mordenite Membranes Using Sucrose Precursor for Pervaporation of Water-Ethanol Mixtures. Membranes. 2021; 11(3):160. https://doi.org/10.3390/membranes11030160
Chicago/Turabian StyleAlomair, Abdulaziz A., and Yousef Alqaheem. 2021. "Optimization of Mordenite Membranes Using Sucrose Precursor for Pervaporation of Water-Ethanol Mixtures" Membranes 11, no. 3: 160. https://doi.org/10.3390/membranes11030160
APA StyleAlomair, A. A., & Alqaheem, Y. (2021). Optimization of Mordenite Membranes Using Sucrose Precursor for Pervaporation of Water-Ethanol Mixtures. Membranes, 11(3), 160. https://doi.org/10.3390/membranes11030160