Adsorption Behaviors of a Twin-Tower Hydrogen Purification System Mounted onto Staggered Stainless Steel Sheets Coated with Composite Membrane
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Composite Membrane
2.2. Adsorber and Adsorption Test
3. Results and Discussion
3.1. Characteristic of the Composite Membrane
3.2. Discussion on Dynamic Curve
3.3. Effect of the Amount of Target Adsorbent on Adsorption Behavior
3.4. Switch Time for Stripping
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H. Particulate and membrane molecular sieve prepared to adsorb carbon dioxide in packed. Chem. Ind. Chem. Eng. Q. 2018, 24, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Kowler, D.E.; Kadlec, R.H. The Optimal control of a periodic adsorber: Part I. Experiment. AIChE J. 1972, 18, 1207–1212. [Google Scholar] [CrossRef]
- Tamura, T. Absorption Process for Gas Separation. U.S. Patent 3,797,201, 19 March 1974. [Google Scholar]
- Sircar, S.; Zondlo, J.W. Fractionation of Air by Adsorption. U.S. Patent 4,013,429, 22 March 1977. [Google Scholar]
- Yang, R.T.; Doong, S.J. Hydrogen purification by the multibed pressure swing adsorption process. React. Polym. Ion Exch. Sorbents 1987, 6, 7–13. [Google Scholar] [CrossRef]
- Watson, C.F.; Whitley, R.D. Multiple Zeolite Adsorbent Layers in Oxygen Separation. U.S Patent 5,529,610, 25 June 1996. [Google Scholar]
- Solares, R.A.A.; Wood, J. A parametric study of process design and cycleconfigurations for pre-combustion PSA applied to NGCC power plants. Chem. Eng. Res. Des. 2020, 160, 141–153. [Google Scholar] [CrossRef]
- He, B.; Liu, J.; Zhang, Y.; Zhang, S.; Wang, P.; Xu, H. Comparison of structured activated carbon and traditional adsorbents for purification of H2. Sep. Purif. Technol. 2020, 239, 116529. [Google Scholar] [CrossRef]
- Brunetti, A.; Simone, S.; Scura, F.; Barbieri, G.; Figoli, A.; Drioli, E. Hydrogen mixture separation with PEEK-WC asymmetric membranes. Sep. Purif. Technol. 2009, 69, 195–204. [Google Scholar] [CrossRef]
- Chen, H.Z.; Thong, Z.; Li, P.; Chung, T.S. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. Int. J. Hydrog. Energy 2014, 39, 5043–5053. [Google Scholar] [CrossRef]
- Kim, D.H.; Kong, S.Y.; Lee, G.H.; Yoon, C.W.; Ham, H.C.; Han, J.; Song, K.H.; Henkensmeier, D.; Choi, S.H. Effect of PBI-HFA surface treatments on Pd/PBI-HFA composite gas separation membranes. Int. J. Hydrog. Energy 2017, 42, 22915–22924. [Google Scholar] [CrossRef]
- Itta, A.K.; Tseng, H.H.; Wey, M.Y. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation. Int. J. Hydrog. Energy 2010, 35, 1650–1658. [Google Scholar] [CrossRef]
- Budhi, Y.W.; Suganda, W.; Irawan, H.K.; Restiawaty, E.; Miyamoto, M.; Uemiya, S.; Nishiyama, N.; Annaland, M.S. Hydrogen separation from mixed gas (H2, N2) using Pd/Al2O3 membrane under forced unsteady state operations. Int. J. Hydrog. Energy 2020, 45, 9821–9835. [Google Scholar] [CrossRef]
- Huang, P.H.; Cheng, H.H.; Lin, S.H. Adsorption of carbon dioxide onto activated carbon prepared from coconut shells. J. Chem. 2015, 106590. [Google Scholar] [CrossRef]
- Abdeljaoued, A.; Querejeta, N.; Durán, I.; Álvarez-Gutiérrez, N.; Pevida, C.; Chahbani, M.H. Preparation and evaluation of a coconut shell-based activated carbon for CO2/CH4 Separation. Energies 2018, 11, 1748. [Google Scholar] [CrossRef] [Green Version]
- Satvekar, R.K.; Phadatare, M.R.; Karande, V.A.; Patil, R.N.; Tiwale, B.M.; Pawar, S.H. Influence of silane content on the optical properties of sol gel derived spin coated silica thin films. Int. J. Basic Appl. Sci. 2012, 1, 468–476. [Google Scholar] [CrossRef] [Green Version]
- El-Feky, H.H.; Briceño, K.; Jardim, E.O.; Silvestre-Albero, J.; Gumí, T. Novel silica membrane material for molecular sieve applications. Microporous Mesoporous Mater. 2013, 179, 22–29. [Google Scholar] [CrossRef]
- Shah, B.A.; Patela, A.V.; Bagia, M.I.; Shah, A.V. Green approach towards the synthesis of MCM-41 from siliceous sugar industry waste. Int. J. Appl. Chem. 2017, 13, 497–514. [Google Scholar]
- Oliveira, D.M.; Andrada, A.S. Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica 2019, 65, 374. [Google Scholar] [CrossRef]
- Ueno, K.; Negishi, H.; Okuno, T.; Tawarayama, H.; Ishikawa, S.; Miyamoto, M.; Uemiya, S.; Oumi, Y. Effects of silica-particle coating on a silica support for the fabrication of high-performance silicalite-1 membranes by gel-free steam-assisted conversion. Membranes 2019, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Zulkefli, N.N.; Masdar, M.S.; Isahak, W.N.R.W.; Jahim, J.M.; Rejab, S.A.M.; Lye, C.C. Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent. PLoS ONE 2019, 14, e0211713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.C.; Qiao, X.C.; Yu, J.G. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag. Mater. Lett. 2016, 167, 246–249. [Google Scholar] [CrossRef]
- Abdeljaoued, A.; Relvas, F.; Mendes, A.; Chahbani, M.H. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells. J. Environ. Chem. Eng. 2018, 6, 338–355. [Google Scholar] [CrossRef]
- Park, Y.; Kang, J.H.; Moon, D.K.; Jo, Y.S.; Lee, C.H. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture. Chem. Eng. J. 2021. [Google Scholar] [CrossRef]
Adsorption Time (min) | Stripping Time (min) |
---|---|
35 | 33 |
40 | 40 |
45 | 44 |
50 | 52 |
55 | 65 |
66 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-T.; Chung, C.-C. Adsorption Behaviors of a Twin-Tower Hydrogen Purification System Mounted onto Staggered Stainless Steel Sheets Coated with Composite Membrane. Membranes 2021, 11, 169. https://doi.org/10.3390/membranes11030169
Wu H-T, Chung C-C. Adsorption Behaviors of a Twin-Tower Hydrogen Purification System Mounted onto Staggered Stainless Steel Sheets Coated with Composite Membrane. Membranes. 2021; 11(3):169. https://doi.org/10.3390/membranes11030169
Chicago/Turabian StyleWu, Hung-Ta, and Chin-Chun Chung. 2021. "Adsorption Behaviors of a Twin-Tower Hydrogen Purification System Mounted onto Staggered Stainless Steel Sheets Coated with Composite Membrane" Membranes 11, no. 3: 169. https://doi.org/10.3390/membranes11030169
APA StyleWu, H. -T., & Chung, C. -C. (2021). Adsorption Behaviors of a Twin-Tower Hydrogen Purification System Mounted onto Staggered Stainless Steel Sheets Coated with Composite Membrane. Membranes, 11(3), 169. https://doi.org/10.3390/membranes11030169