Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental procedure
2.2.1. Preparation of PPSU/PES Membranes
2.2.2. Membranes Testing Rig Setup
2.3. Membranes Characteristics
3. Results and Discussion
3.1. Impact of PES Content on the Structural Morphology
3.2. Role of Operational Conditions on the Performance of Blend Membranes
3.3. Comparison Study
3.4. Optimization and Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.-S.; Taylor, J.S.; Mulford, L.A.; Norris, C.D. Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes. Desalination 2004, 160, 103–111. [Google Scholar] [CrossRef]
- Kiso, Y.; Sugiura, Y.; Kitao, T.; Nishimura, K. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Membr. Sci. 2001, 192, 1–10. [Google Scholar] [CrossRef]
- Yu, P.; Chang, Z.; Ma, Y.; Wang, S.; Cao, H.; Hua, C.; Liu, H. Separation of p-Nitrophenol and o-Nitrophenol with three-liquid-phase extraction system. Sep. Purif. Technol. 2009, 70, 199–206. [Google Scholar] [CrossRef]
- Mohamed, E.F.; Andriantsiferana, C.; Wilhelm, A.-M.; Delmas, H. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon. Environ. Technol. 2011, 32, 1325–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Chen, W.; Li, N.; Xu, M.; Yao, Y. Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Appl. Catal. B Environ. 2009, 87, 146–151. [Google Scholar] [CrossRef]
- Huang, J.; Yan, C.; Huang, K. Removal of p-nitrophenol by a water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: A comparative study. J. Colloid Interface Sci. 2009, 332, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Corre, C.; Couriol, C.; Amrane, A.; Dumont, É.; Andrès, Y.; Le Cloirec, P. Efficiency of Biological Activator Formulated Material (BAFM) for volatile organic compounds removal – preliminary batch culture tests with activated sludge. Environ. Technol. 2012, 33, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Chen, D.-H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664–669. [Google Scholar] [CrossRef]
- Modirshahla, N.; Behnajady, M.; Mohammadi-Aghdam, S. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. J. Hazard. Mater. 2008, 154, 778–786. [Google Scholar] [CrossRef]
- Zhao, B.; Mele, G.; Pio, I.; Li, J.; Palmisano, L.; Vasapollo, G. Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J. Hazard. Mater. 2010, 176, 569–574. [Google Scholar] [CrossRef]
- Ahmad, A.; Tan, K. Reverse osmosis of binary organic solute mixtures in the presence of strong solute-membrane affinity. Desalination 2004, 165, 193–199. [Google Scholar] [CrossRef]
- Szczepański, P.; Diaconu, I. Transport of p-nitrophenol through an agitated bulk liquid membrane. Sep. Sci. Technol. 2012, 47, 1725–1732. [Google Scholar] [CrossRef]
- Al-Ani, F.H.; Alsalhy, Q.F.; Al-Dahhan, M. Enhancing emulsion liquid membrane system (ELM) stability and performance for the extraction of phenol from wastewater using various nanoparticles. Desalination Water Treat. 2021, 210, 180–191. [Google Scholar] [CrossRef]
- Loo, Y.-M.; Lim, P.-E.; Seng, C.-E. Treatment of p-nitrophenol in an adsorbent-supplemented sequencing batch reactor. Environ. Technol. 2010, 31, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Hoekman, D. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Alif, A.; Boule, P. Photochemistry and environment Part XIV. Phototransformation of nitrophenols induced by excitation of nitrite and nitrate ions. J. Photochem. Photobiol. A 1991, 59, 357–367. [Google Scholar] [CrossRef]
- Grosjean, D. Atmospheric Chemistry of Toxic Contaminants 1. Reaction Rates and Atmospheric Persistence. J. Air Waste Manag. Assoc. 1990, 40, 1397-140. [Google Scholar] [CrossRef] [Green Version]
- Howard, P.H.; Jarvis, W.; Sage, G.; Basu, D.; Gray, D.; Meylan, W.; Crosbie, E. Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Volume 1: Large Production and Priority Pollutants; Lewis Publishers: Chelsea, MI, USA, 1989. [Google Scholar]
- U.S. EPA. Ambient Water Quality Criteria for Pentachlorophenol; Criteria and Standards Division, U.S. Environmental Protection Agency: Washington, DC, USA, 1980. [Google Scholar]
- U.S. EPA. The Emergency Planning and Community Right-to-Know Act (EPCRA) List of Hazardous and Toxic Chemicals; U.S. Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- U.S. EPA. Effluent Guidelines and Standards: Organic Chemicals, Plastics, and Synthetic Fibers; U.S. Environmental Protection Agency: Washington, DC, USA, 1988. [Google Scholar]
- World Health Organization. Mononitrophenols, Concise International Chemical Assessment Document 20; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Zinatizadeh, A.A.; Rahimpour, F. Separation of nitrophenols using cellulose acetate nanofiltration membrane: Influence of surfactant additives. Sep. Purif. Technol. 2012, 85, 147–156. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Badieh, M.M.S.; Falsafi, M.; Vatanpour, V. Fabrication and modification of polysulfone nanofiltration membrane using organic acids: Morphology, characterization and performance in removal of xenobiotics. Sep. Purif. Technol. 2012, 96, 214–228. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Monash, P.; Velu, S.; Banat, F.; Naushad, M.; Arthanareeswaran, G.; Show, P.L. Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process. Saf. Environ. Prot. 2019, 124, 266–278. [Google Scholar] [CrossRef]
- Ghadhban, M.Y.; Majdi, H.S.; Rashid, K.T.; Alsalhy, Q.F.; Lakshmi, D.S.; Salih, I.K.; Figoli, A. Removal of Dye from a Leather Tanning Factory by Flat-Sheet Blend Ultrafiltration (UF) Membrane. Membranes 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ani, D.M.; Al-Ani, F.H.; Alsalhy, Q.F.; Ibrahim, S.S. Preparation and characterization of ultrafiltration membranes from PPSU-PES polymer blend for dye removal. Chem. Eng. Commun. 2021, 208, 41–59. [Google Scholar] [CrossRef]
- Al-Ani, F.H.; Alsalhy, Q.F.; Raheem, R.S.; Rashid, K.T.; Figoli, A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Rajabi, H.; Daraei, P.; Falsafi, M. Effect of fatty acids on the structure and performance of cellulose acetate nanofiltration membranes in retention of nitroaromatic pesticides. Desalination 2012, 301, 26–41. [Google Scholar] [CrossRef]
- Kadhim, R.J.; Al-Ani, F.H.; Al-Shaeli, M.; Alsalhy, Q.F.; Figoli, A. Removal of Dyes Using Graphene Oxide (GO) Mixed Matrix Membranes. Membranes 2020, 10, 366. [Google Scholar] [CrossRef]
- Alsalhy, Q.F. Influence of Spinning Conditions on the Morphology, Pore Size, Pore Size Distribution, Mechanical Properties, and Performance of PVC Hollow Fiber Membranes. Sep. Sci. Technol. 2012, 48, 234–245. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Rashid, K.T.; Ibrahim, S.S.; Ghanim, A.H.; Van der Bruggen, B. Patricia Luis, Mumtaz Zablouk, Poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-co-HFP) hollow fiber membranes prepared from PVDF-co-HFP/PEG-600Mw/DMAC solution for membrane distillation. J. Appl. Polym. Sci. 2013, 129, 3304–3313. [Google Scholar] [CrossRef]
- Jamed, M.J.; Alanezi, A.A.; Alsalhy, Q.F. Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly(vinylidene fluoride-cohexafluoropropylene) membrane distillation performance. Chem. Eng. Sci. 2019, 206, 1035–1057. [Google Scholar]
- Alsalhy, Q.F.; Merza, A.S.; Rashid, K.T.; Adam, A.; Figoli, A.; Simone, S.; Drioli, E. Preparation and Characterization of poly(vinyl chloride)/poly (styrene)/poly (ethylene glycol) hollow-fiber membranes. J. Appl. Polym. Sci. 2013, 130, 989–1004. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Wang, C.; Wang, W. Comparison of phenol removal in synthetic wastewater by NF or RO membranes. Desalination Water Treat. 2010, 22, 211–219. [Google Scholar] [CrossRef]
- Zhang, Y.; Van der Bruggen, B.; Chen, G.; Braeken, L.; Vandecasteele, C. Removal of pesticides by nanofiltration: Effect of the water matrix. Sep. Purif. Technol. 2004, 38, 163–172. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Vatanpour, V.; Falsafi, M. Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: Characterization and performance in rejection of pesticides. Desalination 2012, 290, 99–106. [Google Scholar] [CrossRef]
- Hidalgo, A.; León, G.; Gómez, M.; Murcia, M.; Gómez, E.; Giner, C. Behaviour of RO90 membrane on the removal of 4-nitrophenol and 4-nitroaniline by low pressure reverse osmosis. J. Water Process. Eng. 2015, 7, 169–175. [Google Scholar] [CrossRef]
Membrane Code | Casting Solution Compositions (wt%) | Solvents (NMP) (wt%) | |
---|---|---|---|
PPSU | PES | ||
PPSU20/PSU0 | 20 | 0 | 80 |
PPSU20/PSU6 | 20 | 6 | 74 |
PPSU20/PSU7 | 20 | 7 | 73 |
PPSU20/PSU8 | 20 | 8 | 72 |
PPSU20/PSU9 | 20 | 9 | 71 |
Membrane Code | Thickness (μm) | PWP (L/m2 h bar) |
---|---|---|
PPSU20/PSU0 | 84.64 ± 1.13 | 1.612 ± 0.28 |
PPSU20/PSU6 | 104.97 ± 1.05 | 1.752 ± 0.05 |
PPSU20/PSU7 | 70.50 ± 0.11 | 13.369 ± 0.11 |
PPSU20/PSU8 | 126.00 ± 18.24 | 2.259 ± 0.21 |
PPSU20/PSU9 | 76.35 ± 0.24 | 2.004 ± 0.18 |
Process | Type | Compositions (wt.%/wt.%) | C (mM) | pH | ΔP (bar) | R (%) | Permeation Flux (kg/m2·h) | Ref. |
---|---|---|---|---|---|---|---|---|
NF membrane | PPSU/PES | 20/9 | 0.01 | 14 | 3 | 99 | 6.2 | This work |
NF membrane | PPSU/ PES | 20/9 | 0.1 | 14 | 3 | 98 | 4.6 | This work |
NF membrane | PPSU/ PES | 20/8 | 0.1 | 14 | 3 | 98 | 7.3 | This work |
NF membrane | PPSU/ PES | 20/7 | 0.1 | 14 | 3 | 96 | 10.9 | This work |
NF membrane | PPSU/ PES | 20/9 | 0.1 | 8 | 3 | 96 | 2.6 | This work |
NF membrane | PPSU/ PES | 20/8 | 0.1 | 8 | 3 | 91 | 5.3 | This work |
NF membrane | PPSU/ PES | 20/7 | 0.1 | 8 | 3 | 89 | 8.7 | This work |
NF membrane | CA/CTAB | 17/0.45 | 0.1 | 8 | 4.5 | 89 | 4.3 | [23] |
NF membrane | CA/Triton | 17/0.45 | 0.1 | 8 | 4.5 | 71 | 3.7 | [23] |
NF membrane | CA/SDS | 17/0.45 | 0.1 | 8 | 4.5 | 91 | 5.1 | [37] |
NF membrane | PS/Ascorbic acid | 18/1 | 0.1 | 8 | 4.6 | 89 | 9.2 | [24] |
NF membrane | PS/Citric acid | 18/1 | 0.1 | 8 | 4.6 | 91 | 8.0 | [24] |
NF membrane | PS/Malic acid | 18/1 | 0.1 | 8 | 4.6 | 90 | 8.6 | [24] |
NF membrane | CA/Palmitic acid | 17/2 | 0.1 | 8 | 4.6 | 87 | 5.8 | [26] |
NF membrane | CA/Oleic acid | 17/2 | 0.1 | 8 | 4.6 | 83 | 7.8 | [26] |
NF membrane | CA/Linoleic acid | 17/2 | 0.1 | 8 | 4.6 | 83 | 8.1 | [26] |
Low-pressure reverse osmosis | Thin-film composite polyester (RO90 membrane) | Polyamide | 0.7 | 8 | 15 | 97 | 50.8 | [38] |
No. | %PES (X1) | C, M (X2) | pH (X3) | R% (Y1) | AW, L/m2·h·bar (Y2) |
---|---|---|---|---|---|
1 | 0 | 1.00 × 10−4 | 6 | 73.7 | 1.67 |
2 | 9 | 1.00 × 10−3 | 10 | 97 | 0.56 |
3 | 0 | 1.00 × 10−3 | 10 | 78 | 1.39 |
4 | 9 | 1.00 × 10−3 | 10 | 97 | 0.56 |
5 | 0 | 1.00 × 10−4 | 6 | 73.7 | 1.67 |
6 | 9 | 1.00 × 10−4 | 6 | 92.1 | 0.60 |
7 | 0 | 1.00 × 10−4 | 14 | 80.5 | 2.50 |
8 | 9 | 1.00 × 10−4 | 14 | 98.4 | 1.54 |
9 | 7 | 1.00 × 10−5 | 6 | 91 | 3.15 |
10 | 7 | 1.00 × 10−4 | 6 | 87 | 2.15 |
11 | 7 | 1.00 × 10−5 | 14 | 97 | 4.11 |
12 | 7 | 1.00 × 10−3 | 14 | 96 | 3.14 |
13 | 7 | 1.00 × 10−4 | 10 | 90.2 | 2.94 |
14 | 7 | 1.00 × 10−4 | 10 | 90.2 | 2.94 |
15 | 7 | 1.00 × 10−4 | 10 | 90.2 | 2.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahya, A.A.; Rashid, K.T.; Ghadhban, M.Y.; Mousa, N.E.; Majdi, H.S.; Salih, I.K.; Alsalhy, Q.F. Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Membranes 2021, 11, 171. https://doi.org/10.3390/membranes11030171
Yahya AA, Rashid KT, Ghadhban MY, Mousa NE, Majdi HS, Salih IK, Alsalhy QF. Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Membranes. 2021; 11(3):171. https://doi.org/10.3390/membranes11030171
Chicago/Turabian StyleYahya, Ali Amer, Khalid T. Rashid, Maryam Y. Ghadhban, Noor Edin Mousa, Hasan Shaker Majdi, Issam K. Salih, and Qusay F. Alsalhy. 2021. "Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance" Membranes 11, no. 3: 171. https://doi.org/10.3390/membranes11030171
APA StyleYahya, A. A., Rashid, K. T., Ghadhban, M. Y., Mousa, N. E., Majdi, H. S., Salih, I. K., & Alsalhy, Q. F. (2021). Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Membranes, 11(3), 171. https://doi.org/10.3390/membranes11030171