Extracorporeal Gas Exchange for Acute Respiratory Distress Syndrome: Open Questions, Controversies and Future Directions
Abstract
:1. Introduction
Trial Name [Status] | Main Enrollment Criteria | Enrolled Patients (N) | Interventional Group | Control Group | Primary Endpoint | Results |
---|---|---|---|---|---|---|
Survival | ||||||
CESAR (2009) [has results] [22] | Severe, but potentially reversible respiratory failure defined as: Murray score >2.5 or hypercapnia with pH < 7.20 | 180 | ECMO consideration and potential initiation after transport to an ECMO capable facility | Conventional treatment | Death or severe disability * at 6 months | RR (95% CI) 0.69 (0.05 to 0.97); (p = 0.03) |
EOLIA (2018) [has results] [21] | Severe respiratory failure defined as: P/F < 50 mmHg for > 3 h or P/F < 80 mmHg for > 6 h or pH < 7.25 | 249 | ECMO | Conventional treatment | Death at 60 days | RR (95% CI) 0.76; (0.55 to 1.04); (p = 0.09) |
ECCO2R | ||||||
Extracorporeal Carbon Dioxide Removal for Acute Respiratory Distress Syndrome (NCT00000572) [completed] | ARDS w/PaO2 < 50 mm Hg for three times | 40 (estimated) | Detailed Electronic Protocol Controlled ECCO2R w/reduced positive-pressure ventilation | Detailed Electronic Protocol Controlled positive-pressure ventilation | Death at 30 days | - |
REST (NCT02654327) [active, not recruiting] | Respiratory failure with P/F < 150 | 1120 (estimated) | ECCO2R to enable lower tidal volume mechanical ventilation | Conventional treatment | Death at 90 days | - |
Timing of ECMO initiation | ||||||
ECMO-VID (NCT04341285) [not yet recruiting] | Covid19 respiratory failure w/P/F < 100 mmHg | 200 (estimated) | ECMO w/in 24 h of ICU referral | ECMO as rescue after failure of conventional treatment | Death at 28 days | - |
ELIEO-Trial (NCT04208126) [not yet recruiting] | ARDS with P/F < 200 mmHg | 200 (estimated) | ECMO at ICU admission | Conventional treatment. ECMO as rescue treatment allowed | Death at 28 days | - |
Mechanical ventilation | ||||||
New Lung Ventilation Strategies Guided by Transpulmonary Pressure in VV-ECMO for Severe ARDS [has results] [23] | Patients with V-V ECMO for ARDS | 104 | ECMO + transpulmonary pressure ventilation | ECMO + conventional ventilation | Proportion of weaned patients from V-V ECMO | 71.2% vs. 48.0%; (p = 0.017) |
Low Frequency, Ultra-low Tidal Volume Ventilation in Patients with ARDS and ECMO (NCT03764319) [recruiting] | Moderate to severe ARDS + ECMO | 40 (estimated) | ECMO + ultraprotective ventilation | ECMO + conventional ventilation | Ventilator free days | - |
VILI | ||||||
ECMO-VILI (NCT03918603) [recruiting] | ARDS with P/F < 70 mmHg for > 2 h or 70 < P/F < 100 mmHg w/Ppl > 35 cmH2O and pH < 7.20 | 30 (estimated) | ECMO + prone positioning | ECMO + usual care | Inflammation of biotrauma (interleukine dosage) | - |
Prone positioning | ||||||
Early Use of Prone Position in ECMO for Severe ARDS (NCT04139733) [recruiting] | ARDS with P/F < 80 mmHg or pH < 7.20 and paCO2 > 60 mmHg | 110 (estimated) | ECMO + prone position | ECMO + supine position | VV-ECMO duration time | - |
PRONECMO (NCT04607551) [not yet recruiting] | Severe ARDS | 170 (estimated) | ECMO + prone position | ECMO + supine position | Time to successful ECMO weaning w/in 60 days following randomization | |
Anticoagulation | ||||||
A-FREE ECMO (NCT04273607) [not yet recruiting] | Adult patient with ARDS on V-V ECMO | 40 (estimated) | ECMO without anticoagulation | ECMO + anticoagulation w/UFH | ECMO associated thrombotic complications | - |
TEG Anticoagulation Monitoring During ECMO [has results] [24] | Patients with acute respiratory failure with ECMO | 42 | Anticoagulation management based on TEG | Anticoagulation management based on aPTT | Safety (n° of hemorrhage, thrombosis, transfusions) | No differences between groups |
BIV-ECMO2 (NCT03965208) [recruiting] | Adult patients on ECMO | 34 (estimated) | Anticoagulation w/bivalirudin | Anticoagulation w/UFH | Percentage of time in the target anticoagulation range | - |
GATRA study [has results] [25] | Patients on V-V ECMO for respiratory failure | 48 | ATIII supplementation | No ATIII supplementation | UFH dose to maintain aPTT ratio between 1.5–2 | No difference in UFH dose between groups |
2. Evidence on V-V ECMO Use in ARDS
3. Indications and Counterindications for V-V ECMO in ARDS Patients
4. V-V ECMO Versus Extracorporeal Carbon Dioxide Removal (ECCO2R) in ARDS
5. Mechanical Ventilation in ARDS Patients on V-V ECMO
6. Prone Positioning during V-V ECMO
7. Sedation during V-V ECMO
8. Hemoglobin Threshold for Transfusion during V-V ECMO
9. Anticoagulation
9.1. Anticoagulant Drugs
9.2. Anticoagulation Monitoring
9.3. Antithrombin
9.4. Level of Anticoagulation
9.5. Anticoagulation of the Renal Replacement Therapy Circuit during V-V ECMO
10. Outlook
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Zapol, W.M.; Snider, M.T.; Hill, J.D.; Fallat, R.J.; Bartlett, R.H.; Edmunds, L.H.; Morris, A.H.; Peirce, E.C.; Thomas, A.N.; Proctor, H.J.; et al. Extracorporeal Membrane Oxygenation in Severe Acute Respiratory Failure. A Randomized Prospective Study. JAMA 1979, 242, 2193–2196. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.H.; Gazzaniga, A.B.; Toomasian, J.; Coran, A.G.; Roloff, D.; Rucker, R.; Corwin, A.G. Extracorporeal Membrane Oxygenation (ECMO) in Neonatal Respiratory Failure. 100 Cases. Ann. Surg. 1986, 204, 236–245. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, F.H.; McDermott, K.M.; Kini, V.; Gutsche, J.T.; Wald, J.W.; Xie, D.; Szeto, W.Y.; Bermudez, C.A.; Atluri, P.; Acker, M.A.; et al. Trends in U.S. Extracorporeal Membrane Oxygenation Use and Outcomes: 2002–2012. Semin. Thorac. Cardiovasc. Surg. 2015, 27, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stentz, M.J.; Kelley, M.E.; Jabaley, C.S.; O’Reilly-Shah, V.; Groff, R.F.; Moll, V.; Blum, J.M. Trends in Extracorporeal Membrane Oxygenation Growth in the United States, 2011–2014. ASAIO J. 2019, 65, 712–717. [Google Scholar] [CrossRef] [PubMed]
- de St. Maurice, A.M.; Bridges, B.C.; Rycus, P.T.; Fonnesbeck, C.J.; Fleming, G.M.; Halasa, N.B. Global Trends in ECMO Use and Survival of Patients with Influenza Associated Illness. Pediatr. Crit. Care Med. 2016, 17, 876–883. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Paul, S.; Sedrakyan, A. The Evolving Use of ECMO: The Impact of the CESAR Trial. Int. J. Surg. 2016, 35, 95–99. [Google Scholar] [CrossRef]
- Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators; Davies, A.; Jones, D.; Bailey, M.; Beca, J.; Bellomo, R.; Blackwell, N.; Forrest, P.; Gattas, D.; Granger, E.; et al. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 2009, 302, 1888–1895. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Kotani, T.; Nakagawa, S.; Ichiba, S.; Aokage, T.; Ochiai, R.; Taenaka, N.; Kawamae, K.; Nishimura, M.; Ujike, Y.; et al. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Severe Respiratory Failure in Japan. J. Anesth. 2012, 26, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef]
- Needham, D.M.; Colantuoni, E.; Mendez-Tellez, P.A.; Dinglas, V.D.; Sevransky, J.E.; Dennison Himmelfarb, C.R.; Desai, S.V.; Shanholtz, C.; Brower, R.G.; Pronovost, P.J. Lung Protective Mechanical Ventilation and Two Year Survival in Patients with Acute Lung Injury: Prospective Cohort Study. BMJ 2012, 344, e2124. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.B.P.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.V.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Slutsky, A.S.; Ranieri, V.M. Ventilator-Induced Lung Injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papazian, L.; Aubron, C.; Brochard, L.; Chiche, J.-D.; Combes, A.; Dreyfuss, D.; Forel, J.-M.; Guérin, C.; Jaber, S.; Mekontso-Dessap, A.; et al. Formal Guidelines: Management of Acute Respiratory Distress Syndrome. Ann. Intensive Care 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.J.D.; McAuley, D.F.; Perkins, G.D.; Barrett, N.; Blackwood, B.; Boyle, A.; Chee, N.; Connolly, B.; Dark, P.; Finney, S.; et al. Guidelines on the Management of Acute Respiratory Distress Syndrome. BMJ Open Respir. Res. 2019, 6, e000420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, E.; Langer, T.; Bottino, N.; Brusatori, S.; Carlesso, E.; Colombo, S.M.; Zanella, A.; Pesenti, A.; Grasselli, G. Key Role of Respiratory Quotient to Reduce the Occurrence of Hypoxemia During Extracorporeal Gas Exchange: A Theoretical Analysis. Crit. Care Med. 2020. [Google Scholar] [CrossRef]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal Membrane Oxygenation Support in COVID-19: An International Cohort Study of the Extracorporeal Life Support Organization Registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef]
- Lorusso, R.; Combes, A.; Coco, V.L.; De Piero, M.E.; Belohlavek, J.; EuroECMO COVID-19 WorkingGroup; Euro-ELSO Steering Committee. ECMO for COVID-19 Patients in Europe and Israel. Intensive Care Med. 2021. [Google Scholar] [CrossRef]
- Osho, A.A.; Moonsamy, P.; Hibbert, K.A.; Shelton, K.T.; Trahanas, J.M.; Attia, R.Q.; Bloom, J.P.; Onwugbufor, M.T.; D’Alessandro, D.A.; Villavicencio, M.A.; et al. Veno-Venous Extracorporeal Membrane Oxygenation for Respiratory Failure in COVID-19 Patients: Early Experience From a Major Academic Medical Center in North America. Ann. Surg. 2020, 272, e75–e78. [Google Scholar] [CrossRef]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and Economic Assessment of Conventional Ventilatory Support versus Extracorporeal Membrane Oxygenation for Severe Adult Respiratory Failure (CESAR): A Multicentre Randomised Controlled Trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef]
- Wang, R.; Sun, B.; Li, X.; Tang, X.; He, H.; Li, Y.; Yuan, X.; Li, H.; Chu, H.; Tong, Z. Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Panigada, M.; Iapichino, G.E.; Brioni, M.; Panarello, G.; Protti, A.; Grasselli, G.; Occhipinti, G.; Novembrino, C.; Consonni, D.; Arcadipane, A.; et al. Thromboelastography-Based Anticoagulation Management during Extracorporeal Membrane Oxygenation: A Safety and Feasibility Pilot Study. Ann. Intensive Care 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigada, M.; Cucino, A.; Spinelli, E.; Occhipinti, G.; Panarello, G.; Novembrino, C.; Consonni, D.; Protti, A.; Lissoni, A.; Arcadipane, A.; et al. A Randomized Controlled Trial of Antithrombin Supplementation During Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, M.; Dechartres, A.; Elbourne, D. ECMO for Severe ARDS: Systematic Review and Individual Patient Data Meta-Analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef]
- Goligher, E.C.; Tomlinson, G.; Hajage, D.; Wijeysundera, D.N.; Fan, E.; Jüni, P.; Brodie, D.; Slutsky, A.; Combes, A. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2018, 320, 2251. [Google Scholar] [CrossRef]
- ELSO. Guidelines for Cardiopulmonary Extracorporeal Life Support; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Murray, J.F.; Matthay, M.A.; Luce, J.M.; Flick, M.R. An Expanded Definition of the Adult Respiratory Distress Syndrome. Am. Rev. Respir. Dis. 1988, 138, 720–723. [Google Scholar] [CrossRef]
- Schmidt, M.; Bailey, M.; Sheldrake, J.; Hodgson, C.; Aubron, C.; Rycus, P.T.; Scheinkestel, C.; Cooper, D.J.; Brodie, D.; Pellegrino, V.; et al. Predicting Survival after Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score. Am. J. Respir. Crit. Care Med. 2014, 189, 1374–1382. [Google Scholar] [CrossRef]
- Schmidt, M.; Zogheib, E.; Rozé, H.; Repesse, X.; Lebreton, G.; Luyt, C.-E.; Trouillet, J.-L.; Bréchot, N.; Nieszkowska, A.; Dupont, H.; et al. The PRESERVE Mortality Risk Score and Analysis of Long-Term Outcomes after Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. Intensive Care Med. 2013, 39, 1704–1713. [Google Scholar] [CrossRef]
- Giani, M.; Forlini, C.; Fumagalli, B.; Rona, R.; Pesenti, A.; Foti, G. Indication for Venovenous Extracorporeal Membrane Oxygenation: Is 65 Years Old, Too Old? ASAIO J. 2021, 67, e55. [Google Scholar] [CrossRef] [PubMed]
- Deatrick, K.B.; Mazzeffi, M.A.; Galvagno, S.M.; Tesoriero, R.B.; Kaczoroswki, D.J.; Herr, D.L.; Dolly, K.; Rabinowitz, R.P.; Scalea, T.M.; Menaker, J. Outcomes of Venovenous Extracorporeal Membrane Oxygenation When Stratified by Age: How Old Is Too Old? ASAIO J. 2020, 66, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Mendiratta, P.; Tang, X.; Collins, R.T.; Rycus, P.; Brogan, T.V.; Prodhan, P. Extracorporeal Membrane Oxygenation for Respiratory Failure in the Elderly: A Review of the Extracorporeal Life Support Organization Registry. ASAIO J. 2014, 60, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Pesenti, A.; Mascheroni, D.; Marcolin, R.; Fumagalli, R.; Rossi, F.; Iapichino, G.; Romagnoli, G.; Uziel, L.; Agostoni, A. Low-Frequency Positive-Pressure Ventilation with Extracorporeal CO2 Removal in Severe Acute Respiratory Failure. JAMA 1986, 256, 881–886. [Google Scholar] [CrossRef]
- Gattinoni, L.; Vassalli, F.; Romitti, F.; Vasques, F.; Pasticci, I.; Duscio, E.; Quintel, M. Extracorporeal Gas Exchange: When to Start and How to End? Crit. Care 2019, 23. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.H.; Wallace, C.J.; Menlove, R.L.; Clemmer, T.P.; Orme, J.F.; Weaver, L.K.; Dean, N.C.; Thomas, F.; East, T.D.; Pace, N.L.; et al. Randomized Clinical Trial of Pressure-Controlled Inverse Ratio Ventilation and Extracorporeal CO2 Removal for Adult Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 1994, 149, 295–305. [Google Scholar] [CrossRef]
- Combes, A.; Fanelli, V.; Pham, T.; Ranieri, V.M.; European Society of Intensive Care Medicine Trials Group and the “Strategy of Ultra-Protective lung ventilation with Extracorporeal CO2 Removal for New-Onset moderate to severe ARDS” (SUPERNOVA) investigators. Feasibility and Safety of Extracorporeal CO2 Removal to Enhance Protective Ventilation in Acute Respiratory Distress Syndrome: The SUPERNOVA Study. Intensive Care Med. 2019, 45, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, V.; Ranieri, M.V.; Mancebo, J.; Moerer, O.; Quintel, M.; Morley, S.; Moran, I.; Parrilla, F.; Costamagna, A.; Gaudiosi, M.; et al. Feasibility and Safety of Low-Flow Extracorporeal Carbon Dioxide Removal to Facilitate Ultra-Protective Ventilation in Patients with Moderate Acute Respiratory Distress Sindrome. Crit. Care 2016, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Karagiannidis, C.; Kampe, K.A.; Sipmann, F.S.; Larsson, A.; Hedenstierna, G.; Windisch, W.; Mueller, T. Veno-Venous Extracorporeal CO2 Removal for the Treatment of Severe Respiratory Acidosis: Pathophysiological and Technical Considerations. Crit. Care 2014, 18, R124. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Patroniti, N.; Isgrò, S.; Albertini, M.; Costanzi, M.; Pirrone, F.; Scaravilli, V.; Vergnano, B.; Pesenti, A. Blood Acidification Enhances Carbon Dioxide Removal of Membrane Lung: An Experimental Study. Intensive Care Med. 2009, 35, 1484–1487. [Google Scholar] [CrossRef]
- Zanella, A.; Mangili, P.; Redaelli, S.; Scaravilli, V.; Giani, M.; Ferlicca, D.; Scaccabarozzi, D.; Pirrone, F.; Albertini, M.; Patroniti, N.; et al. Regional Blood Acidification Enhances Extracorporeal Carbon Dioxide Removal: A 48-Hour Animal Study. Anesthesiology 2014, 120, 416–424. [Google Scholar] [CrossRef]
- Zanella, A.; Mangili, P.; Giani, M.; Redaelli, S.; Scaravilli, V.; Castagna, L.; Sosio, S.; Pirrone, F.; Albertini, M.; Patroniti, N.; et al. Extracorporeal Carbon Dioxide Removal through Ventilation of Acidified Dialysate: An Experimental Study. J. Heart Lung Transpl. 2014, 33, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Zanella, A.; Castagna, L.; Salerno, D.; Scaravilli, V.; Abd El Aziz El Sayed Deab, S.; Magni, F.; Giani, M.; Mazzola, S.; Albertini, M.; Patroniti, N.; et al. Respiratory Electrodialysis. A Novel, Highly Efficient Extracorporeal CO2 Removal Technique. Am. J. Respir. Crit. Care Med. 2015, 192, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Castagna, L.; Abd El Aziz El Sayed Deab, S.; Scaravilli, V.; Ferlicca, D.; Magni, F.; Giani, M.; Salerno, D.; Casati, M.; Pesenti, A. Extracorporeal CO2 Removal by Respiratory Electrodialysis: An In Vitro Study. ASAIO J. 2016, 62, 143–149. [Google Scholar] [CrossRef]
- Schmidt, M.; Pham, T.; Arcadipane, A.; Agerstrand, C.; Ohshimo, S.; Pellegrino, V.; Vuylsteke, A.; Guervilly, C.; McGuinness, S.; Pierard, S.; et al. Mechanical Ventilation Management during Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. An International Multicenter Prospective Cohort. Am. J. Respir. Crit. Care Med. 2019, 200, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Combes, A.; Rozé, H.; Chevret, S.; Mercat, A.; Roch, A.; Mourvillier, B.; Ara-Somohano, C.; Bastien, O.; Zogheib, E.; et al. Extracorporeal Membrane Oxygenation for Pandemic Influenza A(H1N1)-Induced Acute Respiratory Distress Syndrome: A Cohort Study and Propensity-Matched Analysis. Am. J. Respir. Crit. Care Med. 2013, 187, 276–285. [Google Scholar] [CrossRef]
- Del Sorbo, L.; Goffi, A.; Tomlinson, G.; Pettenuzzo, T.; Facchin, F.; Vendramin, A.; Goligher, E.C.; Cypel, M.; Slutsky, A.S.; Keshavjee, S.; et al. Effect of Driving Pressure Change During Extracorporeal Membrane Oxygenation in Adults With Acute Respiratory Distress Syndrome: A Randomized Crossover Physiologic Study. Crit. Care Med. 2020. [Google Scholar] [CrossRef]
- Richard, C.; Argaud, L.; Blet, A.; Boulain, T.; Contentin, L.; Dechartres, A.; Dejode, J.-M.; Donetti, L.; Fartoukh, M.; Fletcher, D.; et al. Extracorporeal Life Support for Patients with Acute Respiratory Distress Syndrome: Report of a Consensus Conference. Ann. Intensive Care 2014, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Talmor, D.; Sarge, T.; Malhotra, A.; O’Donnell, C.R.; Ritz, R.; Lisbon, A.; Novack, V.; Loring, S.H. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. N. Engl. J. Med. 2008, 359, 2095–2104. [Google Scholar] [CrossRef] [Green Version]
- Brochard, L. What Is a Pressure–Volume Curve? Crit. Care 2006, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Eronia, N.; Mauri, T.; Maffezzini, E.; Gatti, S.; Bronco, A.; Alban, L.; Binda, F.; Sasso, T.; Marenghi, C.; Grasselli, G.; et al. Bedside Selection of Positive End-Expiratory Pressure by Electrical Impedance Tomography in Hypoxemic Patients: A Feasibility Study. Ann. Intensive Care 2017, 7. [Google Scholar] [CrossRef]
- Gattinoni, L.; Tonetti, T.; Cressoni, M.; Cadringher, P.; Herrmann, P.; Moerer, O.; Protti, A.; Gotti, M.; Chiurazzi, C.; Carlesso, E.; et al. Ventilator-Related Causes of Lung Injury: The Mechanical Power. Intensive Care Med. 2016, 42, 1567–1575. [Google Scholar] [CrossRef]
- Neto, A.S.; Deliberato, R.O.; Johnson, A.E.W.; Bos, L.D.; Amorim, P.; Pereira, S.M.; Cazati, D.C.; Cordioli, R.L.; Correa, T.D.; Pollard, T.J.; et al. Mechanical power of ventilation is associated with mortality in critically ill patients: Mechanical Power of Ventilation Is Associated with Mortality in Critically Ill Patients: An Analysis of Patients in Two Observational Cohorts. Intensive Care Med. 2018, 44, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Goligher, E.C.; Dres, M.; Fan, E.; Rubenfeld, G.D.; Scales, D.C.; Herridge, M.S.; Vorona, S.; Sklar, M.C.; Rittayamai, N.; Lanys, A.; et al. Mechanical Ventilation-Induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018, 197, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Torsani, V.; Gomes, S.; De Santis, R.R.; Beraldo, M.A.; Costa, E.L.V.; Tucci, M.R.; Zin, W.A.; Kavanagh, B.P.; Amato, M.B.P. Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2013, 188, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Dubo, S.; Oviedo, V.; Garcia, A.; Alegría, L.; García, P.; Valenzuela, E.D.; Damiani, L.F.; Araos, J.; Medina, T.; Bachmann, M.C.; et al. Low Spontaneous Breathing Effort during Extracorporeal Membrane Oxygenation in a Porcine Model of Severe Acute Respiratory Distress Syndrome. Anesthesiology 2020, 133, 1106–1117. [Google Scholar] [CrossRef]
- Mauri, T.; Bellani, G.; Grasselli, G.; Confalonieri, A.; Rona, R.; Patroniti, N.; Pesenti, A. Patient–Ventilator Interaction in ARDS Patients with Extremely Low Compliance Undergoing ECMO: A Novel Approach Based on Diaphragm Electrical Activity. Intensive Care Med. 2013, 39, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Marhong, J.D.; Telesnicki, T.; Munshi, L.; Del Sorbo, L.; Detsky, M.; Fan, E. Mechanical Ventilation during Extracorporeal Membrane Oxygenation. An International Survey. Ann. Am. Thorac. Soc. 2014, 11, 956–961. [Google Scholar] [CrossRef]
- Gattinoni, L.; Taccone, P.; Carlesso, E.; Marini, J.J. Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits. Am. J. Respir. Crit. Care Med. 2013, 188, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Vagginelli, F.; Carlesso, E.; Taccone, P.; Conte, V.; Chiumello, D.; Valenza, F.; Caironi, P.; Pesenti, A.; Prone-Supine Study Group. Decrease in PaCo2 with Prone Position Is Predictive of Improved Outcome in Acute Respiratory Distress Syndrome. Crit. Care Med. 2003, 31, 2727–2733. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.-C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Taccone, P.; Pesenti, A.; Latini, R.; Polli, F.; Vagginelli, F.; Mietto, C.; Caspani, L.; Raimondi, F.; Bordone, G.; Iapichino, G.; et al. Prone Positioning in Patients with Moderate and Severe Acute Respiratory Distress Syndrome: A Randomized Controlled Trial. JAMA 2009, 302, 1977–1984. [Google Scholar] [CrossRef] [Green Version]
- Guervilly, C.; Hraiech, S.; Gariboldi, V.; Xeridat, F.; Dizier, S.; Toesca, R.; Forel, J.-M.; Adda, M.; Grisoli, D.; Collart, F.; et al. Prone Positioning during Veno-Venous Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome in Adults. Minerva Anestesiol. 2014, 80, 307–313. [Google Scholar] [PubMed]
- Lucchini, A.; De Felippis, C.; Pelucchi, G.; Grasselli, G.; Patroniti, N.; Castagna, L.; Foti, G.; Pesenti, A.; Fumagalli, R. Application of Prone Position in Hypoxaemic Patients Supported by Veno-Venous ECMO. Intensive Crit. Care Nurs. 2018, 48, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Goettler, C.E.; Pryor, J.P.; Hoey, B.A.; Phillips, J.K.; Balas, M.C.; Shapiro, M.B. Prone Positioning Does Not Affect Cannula Function during Extracorporeal Membrane Oxygenation or Continuous Renal Replacement Therapy. Crit. Care 2002, 6, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, A.; Bambi, S.; Mattiussi, E.; Elli, S.; Villa, L.; Bondi, H.; Rona, R.; Fumagalli, R.; Foti, G. Prone Position in Acute Respiratory Distress Syndrome Patients: A Retrospective Analysis of Complications. Dimens. Crit. Care Nurs. 2020, 39, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Giani, M.; Martucci, G.; Madotto, F.; Belliato, M.; Fanelli, V.; Garofalo, E.; Forlini, C.; Lucchini, A.; Panarello, G.; Bottino, N.; et al. Prone Positioning during Venovenous Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome: A Multicentre Cohort Study and Propensity-Matched Analysis. Ann. Am. Thorac. Soc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Franchineau, G.; Bréchot, N.; Hekimian, G.; Lebreton, G.; Bourcier, S.; Demondion, P.; Le Guennec, L.; Nieszkowska, A.; Luyt, C.-E.; Combes, A.; et al. Prone Positioning Monitored by Electrical Impedance Tomography in Patients with Severe Acute Respiratory Distress Syndrome on Veno-Venous ECMO. Ann. Intensive Care 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Guervilly, C.; Prud’homme, E.; Pauly, V.; Bourenne, J.; Hraiech, S.; Daviet, F.; Adda, M.; Coiffard, B.; Forel, J.M.; Roch, A.; et al. Prone Positioning and Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome: Time for a Randomized Trial? Intensive Care Med. 2019, 45, 1040–1042. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.; Cousin, N.; Bourel, C.; Jourdain, M.; Poissy, J.; Duburcq, T. Prone Positioning under VV-ECMO in SARS-CoV-2-Induced Acute Respiratory Distress Syndrome. Crit. Care 2020, 24. [Google Scholar] [CrossRef] [PubMed]
- Rilinger, J.; Zotzmann, V.; Bemtgen, X.; Schumacher, C.; Biever, P.M.; Duerschmied, D.; Kaier, K.; Stachon, P.; von Zur Mühlen, C.; Zehender, M.; et al. Prone Positioning in Severe ARDS Requiring Extracorporeal Membrane Oxygenation. Crit. Care 2020, 24, 397. [Google Scholar] [CrossRef] [PubMed]
- Kress, J.P.; Pohlman, A.S.; O’Connor, M.F.; Hall, J.B. Daily Interruption of Sedative Infusions in Critically Ill Patients Undergoing Mechanical Ventilation. N. Engl. J. Med. 2000, 342, 1471–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, J.; Fraser, G.L.; Puntillo, K.; Ely, E.W.; Gélinas, C.; Dasta, J.F.; Davidson, J.E.; Devlin, J.W.; Kress, J.P.; Joffe, A.M.; et al. Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the Intensive Care Unit. Crit. Care Med. 2013, 41, 263–306. [Google Scholar] [CrossRef] [PubMed]
- Buscher, H.; Vaidiyanathan, S.; Al-Soufi, S.; Nguyen, D.N.; Breeding, J.; Rycus, P.; Nair, P. Sedation Practice in Veno-Venous Extracorporeal Membrane Oxygenation: An International Survey. ASAIO J. 2013, 59, 636–641. [Google Scholar] [CrossRef]
- Shekar, K.; Gregory, S.D.; Fraser, J.F. Mechanical Circulatory Support in the New Era: An Overview. Crit. Care 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- deBacker, J.; Tamberg, E.; Munshi, L.; Burry, L.; Fan, E.; Mehta, S. Sedation Practice in Extracorporeal Membrane Oxygenation-Treated Patients with Acute Respiratory Distress Syndrome: A Retrospective Study. ASAIO J. 2018, 64, 544–551. [Google Scholar] [CrossRef]
- Barrientos-Vega, R.; Mar Sánchez-Soria, M.; Morales-García, C.; Robas-Gómez, A.; Cuena-Boy, R.; Ayensa-Rincon, A. Prolonged Sedation of Critically Ill Patients with Midazolam or Propofol: Impact on Weaning and Costs. Crit. Care Med. 1997, 25, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Hemphill, S.; McMenamin, L.; Bellamy, M.C.; Hopkins, P.M. Propofol Infusion Syndrome: A Structured Literature Review and Analysis of Published Case Reports. Br. J. Anaesth. 2019, 122, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Buckley, P.M. Propofol in Patients Needing Long-Term Sedation in Intensive Care: An Assessment of the Development of Tolerance. A Pilot Study. Intensive Care Med. 1997, 23, 969–974. [Google Scholar] [CrossRef]
- Tukacs, M. Pharmacokinetics and Extracorporeal Membrane Oxygenation in Adults: A Literature Review. AACN Adv. Crit. Care 2018, 29, 246–258. [Google Scholar] [CrossRef] [PubMed]
- DAS-Taskforce 2015; Baron, R.; Binder, A.; Biniek, R.; Braune, S.; Buerkle, H.; Dall, P.; Demirakca, S.; Eckardt, R.; Eggers, V.; et al. Evidence and Consensus Based Guideline for the Management of Delirium, Analgesia, and Sedation in Intensive Care Medicine. Revision 2015 (DAS-Guideline 2015)—Short Version. Ger. Med. Sci. 2015, 13, Doc19. [Google Scholar] [CrossRef] [PubMed]
- L’her, E.; Dy, L.; Pili, R.; Prat, G.; Tonnelier, J.-M.; Lefevre, M.; Renault, A.; Boles, J.-M. Feasibility and Potential Cost/Benefit of Routine Isoflurane Sedation Using an Anesthetic-Conserving Device: A Prospective Observational Study. Respir. Care 2008, 53, 1295–1303. [Google Scholar] [PubMed]
- Sackey, P.V.; Martling, C.-R.; Granath, F.; Radell, P.J. Prolonged Isoflurane Sedation of Intensive Care Unit Patients with the Anesthetic Conserving Device. Crit. Care Med. 2004, 32, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Giani, M.; Scaravilli, V.; Fumagalli, B.; Mariani, C.; Redaelli, S.; Lucchini, A.; Zanella, A.; Patroniti, N.; Pesenti, A.; et al. Volatile Sedation for Acute Respiratory Distress Syndrome Patients on Venovenous Extracorporeal Membrane Oxygenation and Ultraprotective Ventilation. Crit. Care Explor. 2021, 3, e0310. [Google Scholar] [CrossRef]
- Braune, S.; Bojes, P.; Mecklenburg, A.; Angriman, F.; Soeffker, G.; Warnke, K.; Westermann, D.; Blankenberg, S.; Kubik, M.; Reichenspurner, H.; et al. Feasibility, Safety, and Resource Utilisation of Active Mobilisation of Patients on Extracorporeal Life Support: A Prospective Observational Study. Ann. Intensive Care 2020, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.; Javidfar, J.; Farrand, E.; Mongero, L.B.; Agerstrand, C.L.; Ryan, P.; Zemmel, D.; Galuskin, K.; Morrone, T.M.; Boerem, P.; et al. Early Mobilization of Patients Receiving Extracorporeal Membrane Oxygenation: A Retrospective Cohort Study. Crit. Care 2014, 18, R38. [Google Scholar] [CrossRef] [Green Version]
- Martucci, G.; Grasselli, G.; Tanaka, K.; Tuzzolino, F.; Panarello, G.; Schmidt, M.; Bellani, G.; Arcadipane, A. Hemoglobin Trigger and Approach to Red Blood Cell Transfusions during Veno-Venous Extracorporeal Membrane Oxygenation: The International TRAIN-ECMO Survey. Perfusion 2019, 34, 39–48. [Google Scholar] [CrossRef]
- Hendrickson, J.E.; Hillyer, C.D. Noninfectious Serious Hazards of Transfusion. Anesth. Analg. 2009, 108, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Holst, L.B.; Haase, N.; Wetterslev, J.; Wernerman, J.; Guttormsen, A.B.; Karlsson, S.; Johansson, P.I.; Aneman, A.; Vang, M.L.; Winding, R.; et al. Lower versus Higher Hemoglobin Threshold for Transfusion in Septic Shock. N. Engl. J. Med. 2014, 371, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Voelker, M.T.; Busch, T.; Bercker, S.; Fichtner, F.; Kaisers, U.X.; Laudi, S. Restrictive Transfusion Practice during Extracorporeal Membrane Oxygenation Therapy for Severe Acute Respiratory Distress Syndrome. Artif. Organs. 2015, 39, 374–378. [Google Scholar] [CrossRef]
- Doyle, A.J.; Richardson, C.; Sanderson, B.; Wong, K.; Wyncoll, D.; Camporota, L.; Barrett, N.A.; Hunt, B.J.; Retter, A. Restrictive Transfusion Practice in Adults Receiving Venovenous Extracorporeal Membrane Oxygenation: A Single-Center Experience. Crit. Care Explor. 2020, 2, e0077. [Google Scholar] [CrossRef]
- Stokes, J.W.; Gannon, W.D.; Sherrill, W.H.; Armistead, L.B.; Bacchetta, M.; Rice, T.W.; Semler, M.W.; Casey, J.D. Bleeding, Thromboembolism, and Clinical Outcomes in Venovenous Extracorporeal Membrane Oxygenation. Crit. Care Explor. 2020, 2, e0267. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Kostousov, V.; Teruya, J. Bleeding and Thrombotic Complications in the Use of Extracorporeal Membrane Oxygenation. Semin. Thromb. Hemost. 2018, 44, 20–29. [Google Scholar] [CrossRef]
- Extracorporeal Life Support Organization ECLS Registry Report, International Complication Trend Report January, 2020; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2020.
- Venkatesh, K.; Nair, P.S.; Hoechter, D.J.; Buscher, H. Current Limitations of the Assessment of Haemostasis in Adult Extracorporeal Membrane Oxygenation Patients and the Role of Point-of-Care Testing. Anaesth. Intensive Care 2016, 44, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangoush, O.; Purkayastha, S.; Haj-Yahia, S.; Kinross, J.; Hayward, M.; Bartolozzi, F.; Darzi, A.; Athanasiou, T. Heparin-Bonded Circuits versus Nonheparin-Bonded Circuits: An Evaluation of Their Effect on Clinical Outcomes. Eur. J. Cardiothorac. Surg. 2007, 31, 1058–1069. [Google Scholar] [CrossRef]
- Ranucci, M. Bivalirudin and Post-Cardiotomy ECMO: A Word of Caution. Crit. Care 2012, 16, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ELSO. Anticoagulation Guideline; ELSO: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Protti, A.; Iapichino, G.E.; Di Nardo, M.; Panigada, M.; Gattinoni, L. Anticoagulation Management and Antithrombin Supplementation Practice during Veno-Venous Extracorporeal Membrane Oxygenation: A Worldwide Survey. Anesthesiology 2020, 132, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Esper, S.A.; Levy, J.H.; Waters, J.H.; Welsby, I.J. Extracorporeal Membrane Oxygenation in the Adult: A Review of Anticoagulation Monitoring and Transfusion. Anesth. Analg. 2014, 118, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Baird, C.W.; Zurakowski, D.; Robinson, B.; Gandhi, S.; Burdis-Koch, L.; Tamblyn, J.; Munoz, R.; Fortich, K.; Pigula, F.A. Anticoagulation and Pediatric Extracorporeal Membrane Oxygenation: Impact of Activated Clotting Time and Heparin Dose on Survival. Ann. Thorac. Surg. 2007, 83, 912–919. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Van Cauwenberghe, S.; Hoste, E.; Benoit, D.; Colardyn, F. The Use of the Activated Clotting Time for Monitoring Heparin Therapy in Critically Ill Patients. Intensive Care Med. 2003, 29, 325–328. [Google Scholar] [CrossRef]
- Langdell, R.D.; Wagner, R.H.; Brinkhous, K.M. Effect of Antihemophilic Factor on One-Stage Clotting Tests; a Presumptive Test for Hemophilia and a Simple One-Stage Antihemophilic Factor Assy Procedure. J. Lab. Clin. Med. 1953, 41, 637–647. [Google Scholar] [PubMed]
- Bajaj, S.P.; Joist, J.H. New Insights into How Blood Clots: Implications for the Use of APTT and PT as Coagulation Screening Tests and in Monitoring of Anticoagulant Therapy. Semin. Thromb. Hemost. 1999, 25, 407–418. [Google Scholar] [CrossRef]
- Sklar, M.C.; Sy, E.; Lequier, L.; Fan, E.; Kanji, H.D. Anticoagulation Practices during Venovenous Extracorporeal Membrane Oxygenation for Respiratory Failure. A Systematic Review. Ann. Am. Thorac. Soc. 2016, 13, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Delmas, C.; Jacquemin, A.; Vardon-Bounes, F.; Georges, B.; Guerrero, F.; Hernandez, N.; Marcheix, B.; Seguin, T.; Minville, V.; Conil, J.-M.; et al. Anticoagulation Monitoring Under ECMO Support: A Comparative Study Between the Activated Coagulation Time and the Anti-Xa Activity Assay. J. Intensive Care Med. 2020, 35, 679–686. [Google Scholar] [CrossRef]
- Willems, A.; Roeleveld, P.P.; Labarinas, S.; Cyrus, J.W.; Muszynski, J.A.; Nellis, M.E.; Karam, O. Anti-Xa versus Time-Guided Anticoagulation Strategies in Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Perfusion 2020. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, M.M.; Baltagi, S.; Carlson, M.; Levy, J.H.; Spinella, P.C. Clinical Controversies in Anticoagulation Monitoring and Antithrombin Supplementation for ECMO. Crit. Care 2020, 24, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigada, M.; Iapichino, G.; L’Acqua, C.; Protti, A.; Cressoni, M.; Consonni, D.; Mietto, C.; Gattinoni, L. Prevalence of “Flat-Line” Thromboelastography During Extracorporeal Membrane Oxygenation for Respiratory Failure in Adults. ASAIO J. 2016, 62, 302–309. [Google Scholar] [CrossRef]
- Giani, M.; Russotto, V.; Pozzi, M.; Forlini, C.; Fornasari, C.; Villa, S.; Avalli, L.; Rona, R.; Foti, G. Thromboelastometry, Thromboelastography, and Conventional Tests to Assess Anticoagulation During Extracorporeal Support: A Prospective Observational Study. ASAIO J. 2020. [Google Scholar] [CrossRef]
- Krueger, K.; Schmutz, A.; Zieger, B.; Kalbhenn, J. Venovenous Extracorporeal Membrane Oxygenation With Prophylactic Subcutaneous Anticoagulation Only: An Observational Study in More Than 60 Patients. Artif. Organs. 2017, 41, 186–192. [Google Scholar] [CrossRef]
- Kurihara, C.; Walter, J.M.; Karim, A.; Thakkar, S.; Saine, M.; Odell, D.D.; Kim, S.; Tomic, R.; Wunderink, R.G.; Budinger, G.R.S.; et al. Feasibility of Venovenous Extracorporeal Membrane Oxygenation Without Systemic Anticoagulation. Ann. Thorac. Surg. 2020, 110, 1209–1215. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Heiden, A.M.; Beutel, G.; Gottlieb, J.; Wiesner, O.; Hafer, C.; Hadem, J.; Reising, A.; Haverich, A.; Kühn, C.; et al. Renal Function and Survival in 200 Patients Undergoing ECMO Therapy. Nephrol. Dial. Transpl. 2013, 28, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askenazi, D.J.; Selewski, D.T.; Paden, M.L.; Cooper, D.S.; Bridges, B.C.; Zappitelli, M.; Fleming, G.M. Renal Replacement Therapy in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Clin. J. Am. Soc. Nephrol. 2012, 7, 1328–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellum, J.A.; Lameire, N. Section 5: Dialysis Interventions for Treatment of AKI. Kidney Int. Suppl. 2012, 2, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Morabito, S.; Pistolesi, V.; Tritapepe, L.; Fiaccadori, E. Regional Citrate Anticoagulation for RRTs in Critically Ill Patients with AKI. Clin. J. Am. Soc. Nephrol. 2014, 9, 2173–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seczyńska, B.; Królikowski, W.; Nowak, I.; Jankowski, M.; Szułdrzyński, K.; Szczeklik, W. Continuous Renal Replacement Therapy during Extracorporeal Membrane Oxygenation in Patients Treated in Medical Intensive Care Unit: Technical Considerations. Ther. Apher. Dial. 2014, 18, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Giani, M.; Scaravilli, V.; Stefanini, F.; Valsecchi, G.; Rona, R.; Grasselli, G.; Bellani, G.; Pesenti, A.M.; Foti, G. Continuous Renal Replacement Therapy in Venovenous Extracorporeal Membrane Oxygenation: A Retrospective Study on Regional Citrate Anticoagulation. ASAIO J. 2020, 66, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Toomasian, J.M.; Schreiner, R.J.; Meyer, D.E.; Schmidt, M.E.; Hagan, S.E.; Griffith, G.W.; Bartlett, R.H.; Cook, K.E. A Polymethylpentene Fiber Gas Exchanger for Long-Term Extracorporeal Life Support. ASAIO J. 2005, 51, 390–397. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giani, M.; Redaelli, S.; Siragusa, A.; Fumagalli, B.; Rona, R.; Foti, G. Extracorporeal Gas Exchange for Acute Respiratory Distress Syndrome: Open Questions, Controversies and Future Directions. Membranes 2021, 11, 172. https://doi.org/10.3390/membranes11030172
Giani M, Redaelli S, Siragusa A, Fumagalli B, Rona R, Foti G. Extracorporeal Gas Exchange for Acute Respiratory Distress Syndrome: Open Questions, Controversies and Future Directions. Membranes. 2021; 11(3):172. https://doi.org/10.3390/membranes11030172
Chicago/Turabian StyleGiani, Marco, Simone Redaelli, Antonio Siragusa, Benedetta Fumagalli, Roberto Rona, and Giuseppe Foti. 2021. "Extracorporeal Gas Exchange for Acute Respiratory Distress Syndrome: Open Questions, Controversies and Future Directions" Membranes 11, no. 3: 172. https://doi.org/10.3390/membranes11030172
APA StyleGiani, M., Redaelli, S., Siragusa, A., Fumagalli, B., Rona, R., & Foti, G. (2021). Extracorporeal Gas Exchange for Acute Respiratory Distress Syndrome: Open Questions, Controversies and Future Directions. Membranes, 11(3), 172. https://doi.org/10.3390/membranes11030172