Effects of Ultralow-Tidal-Volume Ventilation under Veno-Venous Extracorporeal Membrane Oxygenation in a Porcine Model with Ventilator-Induced Lung Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preperation
2.2. Induction of Lung Injury
2.3. Experimental Protocol
2.4. Data Collection
2.4.1. Cytokines in Bronchoalveolar Lavage Fluid (BAL)
2.4.2. Lung Ultrasound
2.4.3. Sacrifice and Histopathological Assessment
2.4.4. Lung Wet-to-Dry Weight Ratios
2.5. Statistical Analysis
3. Results
3.1. Hemodynamic Variables
3.2. Oxygenation and Ventilation Profiles
3.3. Inflammatory Response, Lung Ultrasound, and Histopathological Findings
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Slutsky, A.S.; Ranieri, V.M. Ventilator-induced lung injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beitler, J.R.; Malhotra, A.; Thompson, B.T. Ventilator-induced lung injury. Clin. Chest Med. 2016, 37, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N. Engl. J. Med. 2007, 357, 1113–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Aubron, C.; Brochard, L.; Chiche, J.-D.; Combes, A.; Dreyfuss, D.; Forel, J.-M.; Guérin, C.; Jaber, S.; Mekontso-Dessap, A.; et al. Formal guidelines: Management of acute respiratory distress syndrome. Ann. Intensive Care 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An official American thoracic society/European society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef]
- Terragni, P.P.; Rosboch, G.; Tealdi, A.; Corno, E.; Menaldo, E.; Davini, O.; Gandini, G.; Herrmann, P.; Mascia, L.; Quintel, M.; et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2007, 175, 160–166. [Google Scholar] [CrossRef]
- Bellani, G.; Guerra, L.; Musch, G.; Zanella, A.; Patroniti, N.; Mauri, T.; Messa, C.; Pesenti, A. Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 2011, 183, 1193–1199. [Google Scholar] [CrossRef]
- Terragni, P.P.; Del Sorbo, L.; Mascia, L.; Urbino, R.; Martin, E.L.; Birocco, A.; Faggiano, C.; Quintel, M.; Gattinoni, L.; Ranieri, V.M. Tidal volume lower than 6 ml/kg enhances lung protection: Role of extracorporeal carbon dioxide removal. Anesthesiology 2009, 111, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, V.; Costamagna, A.; Ranieri, V.M. Extracorporeal support for severe acute respiratory failure. Semin. Respir. Crit. Care Med. 2014, 35, 519–527. [Google Scholar] [CrossRef]
- Schmidt, M.; Jaber, S.; Zogheib, E.; Godet, T.; Capellier, G.; Combes, A. Feasibility and safety of low-flow extracorporeal CO(2) removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit. Care 2018, 22, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combes, A.; Fanelli, V.; Pham, T.; Ranieri, V.M. Feasibility and safety of extracorporeal CO (2) removal to enhance protective ventilation in acute respiratory distress syndrome: The SUPERNOVA study. Intensive Care Med. 2019, 45, 592–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agerstrand, C.L.; Bacchetta, M.D.; Brodie, D. ECMO for adult respiratory failure: Current use and evolving applications. ASAIO J. 2014, 60, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Rotta, A.T.; Gunnarsson, B.; Hernan, L.J.; Fuhrman, B.P.; Steinhorn, D.M. Partial liquid ventilation influences pulmonary histopathology in an animal model of acute lung injury. J. Crit. Care 1999, 14, 84–92. [Google Scholar] [CrossRef]
- Kitamura, Y.; Hashimoto, S.; Mizuta, N.; Kobayashi, A.; Kooguchi, K.; Fujiwara, I.; Nakajima, H. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am. J. Respir. Crit. Care Med. 2001, 163, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrilla, F.J.; Bergesio, L.; Aguirre-Bermeo, H.; Suarez, J.C.; López, P.; Morán, I.; Mancebo, J. Ultra-low tidal volumes and extracorporeal carbon dioxide removal (Hemolung® Ras) in ards patients. A clinical feasibility study. Intensive Care Med. Exp. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, V.; Ranieri, M.V.; Mancebo, J.; Moerer, O.; Quintel, M.; Morley, S.; Moran, I.; Parrilla, F.; Costamagna, A.; Gaudiosi, M.; et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Crit. Care 2016, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Brenner, K.; Baldwin, M.R.; Agerstrand, C.L.; Burkart, K.M.; Bulman, W.A.; Bacchetta, M.D.; Brodie, D. Improvements in dynamic pulmonary compliance with a very low tidal volume ventilation strategy and extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. In A47. Acute Lung Injury and Acute Respiratory Distress Syndrome; American Thoracic Society: New York, NY, USA, 2011; p. A1648. [Google Scholar]
- Zietz, A.; Seiler, F.; Trudzinski, F.C.; Lepper, P.M.; Kamp, A.; Bals, R. Application of ultra-protective ventilation during extracorporeal membrane oxygenation—Feasibility under real-world conditions. Eur. Respir. J. 2017, 50, PA2123. [Google Scholar] [CrossRef]
- Hew, M.; Tay, T.R. The efficacy of bedside chest ultrasound: From accuracy to outcomes. Eur. Respir. Rev. 2016, 25, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Koenig, S.; Mayo, P.; Volpicelli, G.; Millington, S.J. Lung ultrasound scanning for respiratory failure in acutely Ill patients: A review. Chest 2020. [Google Scholar] [CrossRef]
- Elsayed, Y.N.; Hinton, M.; Graham, R.; Dakshinamurti, S. Lung ultrasound predicts histological lung injury in a neonatal model of acute respiratory distress syndrome. Pediatric Pulmonol. 2020, 55, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Gargani, L.; Lionetti, V.; Di Cristofano, C.; Bevilacqua, G.; Recchia, F.A.; Picano, E. Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit. Care Med. 2007, 35, 2769–2774. [Google Scholar] [CrossRef]
- Martínez-Olondris, P.; Sibila, O.; Agustí, C.; Rigol, M.; Soy, D.; Esquinas, C.; Piñer, R.; Luque, N.; Guerrero, L.; Quera, M.; et al. An experimental model of pneumonia induced by methicillin-resistant Staphylococcus aureus in ventilated piglets. Eur. Respir. J. 2010, 36, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Dienz, O.; Rud, J.G.; Eaton, S.M.; Lanthier, P.A.; Burg, E.; Drew, A.; Bunn, J.; Suratt, B.T.; Haynes, L.; Rincon, M. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal. Immunol. 2012, 5, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mc, I.R.B.; Timpa, J.G.; Kurundkar, A.R.; Holt, D.W.; Kelly, D.R.; Hartman, Y.E.; Neel, M.L.; Karnatak, R.K.; Schelonka, R.L.; Anantharamaiah, G.M.; et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab. Invest. 2010, 90, 128–139. [Google Scholar] [CrossRef]
High Tidal Volume (n = 4) | Ultralow Tidal Volume (n = 4) | p | ||
---|---|---|---|---|
Baseline | MAP (mmHg) | 80.2 ± 13.3 | 69.2 ± 2.8 | 0.197 |
HR (beats/min) | 82.0 ± 7.8 | 104.8 ± 14.7 | 0.034 | |
WBC (103/m3) | 13.8 ± 6.7 | 15.1 ± 2.7 | 0.671 | |
Temperature (°C) | 36.3 ± 0.4 | 36.0 ± 0.3 | 0.349 | |
1 h | MAP (mmHg) | 68.0 ± 7.0 | 75.5 ± 8.7 | 0.227 |
HR (beats/min) | 153.6 ± 121.6 | 183.1 ± 164.6 | 0.585 | |
WBC (103/m3) | 10.8 ± 5.2 | 10.2 ± 2.3 | 0.878 | |
Temperature (°C) | 35.0 ± 0.4 | 34.0 ± 0.3 | 0.493 | |
6 h | MAP (mmHg) | 47.0 ± 6.2 | 54.0 ± 6.8 | 0.177 |
HR (beats/min) | 76.0 ± 16.3 | 77.2 ± 7.4 | 0.893 | |
WBC (103/m3) | 4.7 ± 3.2 | 7.6 ± 2.1 | 0.189 | |
Temperature (°C) | 33.65 ± 0.1 | 32.5 ± 0.6 | 0.118 | |
12 h | MAP (mmHg) | 41.0 ± 7.8 | 36.7 ± 10.7 | 0.601 |
HR (beats/min) | 84.8 ± 23.6 | 65.5 ± 8.6 | 0.176 | |
WBC (103/m3) | 4.82 ± 2.1 | 5.4 ± 3.2 | 0.789 | |
Temperature (°C) | 32.7 ± 0.2 | 30.0 ± 0.9 | 0.051 |
High Tidal Volume (n = 4) | Ultralow Tidal Volume (n = 4) | p | ||
---|---|---|---|---|
Baseline | PaCO2 (mmHg) | 35.9 ± 9.3 | 40.8 ± 16.8 | 0.633 |
PaO2 (mmHg) | 87.1 ± 20.5 | 86.0 ± 18.3 | 0.939 | |
pH | 7.49 ± 0.08 | 7.48 ± 0.10 | 0.886 | |
MV (L/min) | 6.0 ± 1.5 | 6.0 ± 1.7 | 0.948 | |
PIP (cmH2O) | 23.0 ± 6.6 | 24.0 ± 4.1 | 0.812 | |
1 h | PaCO2 (mmHg) | 28.1 ± 7.2 | 33.4 ± 11.2 | 0.463 |
PaO2 (mmHg) | 103.3 ± 30.9 | 87.0 ± 9.4 | 0.348 | |
pH | 7.53 ± 0.08 | 7.48 ± 0.09 | 0.458 | |
MV (L/min) | 8.6 ± 1.1 | 3.7 ± 2.6 | 0.014 | |
PIP (cmH2O) | 32.5 ± 5.9 | 16.5 ± 7.1 | 0.014 | |
6 h | PaCO2 (mmHg) | 24.4 ± 3.9 | 27.4 ± 1.8 | 0.207 |
PaO2 (mmHg) | 99.2 ± 28.0 | 78.7 ± 10.1 | 0.218 | |
pH | 7.55 ± 0.04 | 7.54 ± 0.02 | 0.508 | |
MV (L/min) | 7.8 ± 0.7 | 2.6 ± 0.4 | 0.001 | |
PIP (cmH2O) | 35.0 ± 4.6 | 20.0 ± 4.6 | 0.016 | |
12 h | PaCO2 (mmHg) | 32.5 ± 8.9 | 29.9 ± 7.0 | 0.666 |
PaO2 (mmHg) | 63.9 ± 2.9 | 94.3 ± 24.6 | 0.089 | |
pH | 7.48 ± 0.09 | 7.49 ± 0.08 | 0.849 | |
MV (L/min) | 6.2 ± 2.0 | 3.4 ± 1.1 | 0.046 | |
PIP (cmH2O) | 38.8 ± 3.3 | 25.2 ± 8.0 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.Y.; Cho, Y.-J.; Kim, D.J.; Kim, J.S.; Jheon, S.; Chung, J.H.; Lee, J.H. Effects of Ultralow-Tidal-Volume Ventilation under Veno-Venous Extracorporeal Membrane Oxygenation in a Porcine Model with Ventilator-Induced Lung Injury. Membranes 2020, 10, 379. https://doi.org/10.3390/membranes10120379
Lim SY, Cho Y-J, Kim DJ, Kim JS, Jheon S, Chung JH, Lee JH. Effects of Ultralow-Tidal-Volume Ventilation under Veno-Venous Extracorporeal Membrane Oxygenation in a Porcine Model with Ventilator-Induced Lung Injury. Membranes. 2020; 10(12):379. https://doi.org/10.3390/membranes10120379
Chicago/Turabian StyleLim, Sung Yoon, Young-Jae Cho, Dong Jung Kim, Jun Sung Kim, Sanghoon Jheon, Jin Haeng Chung, and Jae Ho Lee. 2020. "Effects of Ultralow-Tidal-Volume Ventilation under Veno-Venous Extracorporeal Membrane Oxygenation in a Porcine Model with Ventilator-Induced Lung Injury" Membranes 10, no. 12: 379. https://doi.org/10.3390/membranes10120379
APA StyleLim, S. Y., Cho, Y. -J., Kim, D. J., Kim, J. S., Jheon, S., Chung, J. H., & Lee, J. H. (2020). Effects of Ultralow-Tidal-Volume Ventilation under Veno-Venous Extracorporeal Membrane Oxygenation in a Porcine Model with Ventilator-Induced Lung Injury. Membranes, 10(12), 379. https://doi.org/10.3390/membranes10120379