Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Emulsion Preparation
2.3. Analytical Extraction
2.4. Transport Mechanism of IBP
3. Results and Discussion
3.1. Effect of Stirring Speed during Emulsification
3.2. Effect of Emulsification Time
3.3. Effect of Organic to Internal Phase Volume Ratio (O/I)
3.4. Effect of Stripping Agent Concentration
3.5. Effect of Carrier Concentration
3.6. Effect of Surfactant Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibuprofen Market Size and Forecast. Available online: https://www.verifiedmarketresearch.com/product/Ibuprofen-Market/ (accessed on 19 June 2021).
- Mathias, F.T.; Fockink, D.H.; Disner, G.R.; Prodocimo, V.; Ribas, J.L.C.; Ramos, L.P.; Cestari, M.M.; de Assis, H.C.S. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environ. Toxicol. Pharmacol. 2018, 59, 105–113. [Google Scholar] [CrossRef]
- Ramírez-Morales, D.; Masís-Mora, M.; Beita-Sandí, W.; Montiel-Mora, J.R.; Fernández-Fernández, E.; Méndez-Rivera, M.; Arias-Mora, V.; Leiva-Salas, A.; Brenes-Alfaro, L.; Rodríguez-Rodríguez, C.E. Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. Chemosphere 2021, 272, 129574. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Sim, W.; Jang, D.; Yoon, Y.; Ryu, J.; Oh, J.; Woo, J.-S.; Kim, Y.M.; Lee, Y. Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. J. Hazard. Mater. 2020, 396, 122585. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020, 6, e04087. [Google Scholar] [CrossRef] [PubMed]
- Vijayashree, P.J. In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. J. Periodontol. 2019, 90, 1441–1448. [Google Scholar] [CrossRef]
- Verma, T.; Bhaskarla, C.; Sadhir, I.; Sreedharan, S.; Nandi, D. Non-steroidal anti-inflammatory drugs, acetaminophen and ibuprofen, induce phenotypic antibiotic resistance in Escherichia coli: Roles of marA and acrB. FEMS Microbiol. Lett. 2018, 365, 251. [Google Scholar] [CrossRef]
- Davids, M.; Gudra, D.; Radovica-Spalvina, I.; Fridmanis, D.; Bartkevics, V.; Muter, O. The effects of ibuprofen on activated sludge: Shift in bacterial community structure and resistance to ciprofloxacin. J. Hazard. Mater. 2017, 340, 291–299. [Google Scholar] [CrossRef]
- Stancova, V.; Plhalova, L.; Blahova, J.; Zivna, D.; Bartoskova, M.; Siroka, Z.; Marsalek, P.; Svobodova, Z. Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and carbamazepine alone, and in combination, on oxidative stress parameters in early life stages of tench (Tinca tinca). Veterinární Med. 2017, 62, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, L.; Alyemeni, M.; Ahmad, P.; Alfarhan, A.; Barcelo, D.; El-Sheikh, M.A.; Pico, Y. Ecotoxicological Effects of Ibuprofen on Plant Growth of Vigna unguiculata L. Plants 2020, 9, 1473. [Google Scholar] [CrossRef]
- Sibeko, P.; Naicker, D.; Mdluli, P.; Madikizela, L. Naproxen, ibuprofen, and diclofenac residues in river water, sediments and Eichhornia crassipes of Mbokodweni river in South Africa: An initial screening. Environ. Forensics 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Jothinathan, L.; Hu, J. Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen. Water Res. 2018, 134, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Srivastava, V.; Ambat, I.; Safaei, Z.; Sillanpää, M. Degradation of Ibuprofen by UV-LED/catalytic advanced oxidation process. J. Water Process Eng. 2019, 31, 100808. [Google Scholar] [CrossRef]
- Ivanets, A.; Prozorovich, V.; Roshchina, M.; Grigoraviciute-Puroniene, I.; Zarkov, A.; Kareiva, A.; Wang, Z.; Srivastava, V.; Sillanpää, M. Heterogeneous Fenton Oxidation Using Magnesium Ferrite Nanoparticles for Ibuprofen Removal from Wastewater: Optimization and Kinetics Studies. J. Nanomater. 2020, 2020, 8159628. [Google Scholar] [CrossRef]
- Rao, Y.; Xue, D.; Pan, H.; Feng, J.; Li, Y. Degradation of ibuprofen by a synergistic UV/Fe(III)/Oxone process. Chem. Eng. J. 2016, 283, 65–75. [Google Scholar] [CrossRef]
- Lee, S.C. Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions. Chem. Eng. J. 2000, 79, 61–67. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Shafie, Z.M.; Zaulkiflee, N.D.; Pang, W.Y. Preliminary Study of Emulsion Liquid Membrane Formulation on Acetaminophen Removal from the Aqueous Phase. Membranes 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Razo-Lazcano, T.; González, M.D.P.; Stambouli, M.; Pareau, D.; Hernández-Perales, L.; Avila-Rodriguez, M. Chlorpheniramine recovery from aqueous solutions by emulsion liquid membranes using soy lecithin as carrier. Colloids Surf. A Physicochem. Eng. Asp. 2017, 536, 68–73. [Google Scholar] [CrossRef]
- Dâas, A.; Hamdaoui, O. Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane. Environ. Sci. Pollut. Res. 2014, 21, 2154–2164. [Google Scholar] [CrossRef]
- Kohli, H.P.; Gupta, S.; Chakraborty, M. Extraction of Ethylparaben by emulsion liquid membrane: Statistical analysis of operating parameters. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 371–381. [Google Scholar] [CrossRef]
- Seifollahi, Z.; Rahbar-Kelishami, A. Diclofenac extraction from aqueous solution by an emulsion liquid membrane: Parameter study and optimization using the response surface methodology. J. Mol. Liq. 2017, 231, 1–10. [Google Scholar] [CrossRef]
- Seifollahi, Z.; Rahbar-Kelishami, A. Amoxicillin Extraction from Aqueous Solution by Emulsion Liquid Membranes Using Response Surface Methodology. Chem. Eng. Technol. 2019, 42, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.A.; Atiya, M.A.; Hussein, M.A. Removal of antibiotic tetracycline using nano-fluid emulsion liquid membrane: Breakage, extraction and stripping studies. Colloids Surf. A Physicochem. Eng. Asp. 2020, 595, 124680. [Google Scholar] [CrossRef]
- Razo-Lazcano, T.A.; Stambouli, M.; González-Muñoz, M.d.P.; Pareau, D.; Ávila-Rodríguez, M. Emulsion liquid membranes for recovery of ibuprofen from aqueous solutions. J. Chem. Technol. Biotechnol. 2014, 89, 890–898. [Google Scholar] [CrossRef]
- Rosly, M.B.; Othman, N.; Rahman, H.A. Liquid membrane component selection for removal of phenol from simulated aqueous waste solution. Malays. J. Anal. Sci. 2018, 22, 702–714. [Google Scholar] [CrossRef]
- Lestari, W.; Arvinawati, M.; Martien, R.; Kusumaningsih, T. Green and facile synthesis of MOF and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in ibuprofen slow-release. Mater. Chem. Phys. 2017, 204, 141–146. [Google Scholar] [CrossRef]
- Fouad, E.A. Zinc and Copper Separation through an Emulsion Liquid Membrane Containing Di-(2-Ethylhexyl) Phosphoric Acid as a Carrier. Chem. Eng. Technol. 2008, 31, 370–376. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Kusumastuti, A.; Derek, C.J.C.; Ooi, B.S. Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization. Chem. Eng. J. 2011, 171, 870–882. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Kusumastuti, A.; Derek, C.J.C.; Ooi, B.S. Emulsion liquid membrane for cadmium removal: Studies on emulsion diameter and stability. Desalination 2012, 287, 30–34. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Selman, H.M.; Abukhanafer, G. Liquid surfactant membrane for lead separation from aqueous solution: Studies on emulsion stability and extraction efficiency. J. Environ. Chem. Eng. 2018, 6, 6923–6930. [Google Scholar] [CrossRef]
- Kulkarni, P.; Mukhopadhyay, S.; Bellary, M.P.; Ghosh, S.K. Studies on Membrane Stability and Recovery of Uranium (VI) From Aqueous Solutions Using a Liquid Membrane Process. Hydrometallurgy 2002, 64, 49–58. [Google Scholar] [CrossRef]
- Chakraborty, M.; Bart, H.-J. Emulsion liquid membranes: Role of internal droplet size distribution on toluene/n-heptane separation. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 15–21. [Google Scholar] [CrossRef]
- Chiha, M.; Samar, M.H.; Hamdaoui, O. Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination 2006, 194, 69–80. [Google Scholar] [CrossRef]
- Uddin, M.S.; Kathiresan, M. Extraction of metal ions by emulsion liquid membrane using bi-functional surfactant: Equilibrium and kinetic studies. Sep. Purif. Technol. 2000, 19, 3–9. [Google Scholar] [CrossRef]
- Kakoi, T.; Goto, M.; Nakashio, F. Separation of platinum and palladium by liquid surfactant membranes utilizing a novel bi-functional surfactant. J. Membr. Sci. 1996, 120, 77–88. [Google Scholar] [CrossRef]
Parameters to Study | Range | Units | |
---|---|---|---|
Low | High | ||
Stirring speed | 300 | 400 | rpm |
Emulsification time | 5 | 20 | min |
O/I ratio | 2:1 | 4:1 | - |
Stripping agent concentration | 0.10 | 0.20 | M |
Carrier concentration | 2 | 8 | wt% |
Surfactant concentration | 2 | 8 | wt% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.L.; Mohd Harun, M.H.Z.; Akmal Jasni, M.K.; Zaulkiflee, N.D. Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane. Membranes 2021, 11, 740. https://doi.org/10.3390/membranes11100740
Ahmad AL, Mohd Harun MHZ, Akmal Jasni MK, Zaulkiflee ND. Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane. Membranes. 2021; 11(10):740. https://doi.org/10.3390/membranes11100740
Chicago/Turabian StyleAhmad, Abdul Latif, Mohd Hazarel Zairy Mohd Harun, Mohd Khairul Akmal Jasni, and Nur Dina Zaulkiflee. 2021. "Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane" Membranes 11, no. 10: 740. https://doi.org/10.3390/membranes11100740
APA StyleAhmad, A. L., Mohd Harun, M. H. Z., Akmal Jasni, M. K., & Zaulkiflee, N. D. (2021). Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane. Membranes, 11(10), 740. https://doi.org/10.3390/membranes11100740