Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solution Preparation
2.2. Diafiltration Experiments
2.3. Ultrafiltration Experiments
3. Results and Discussion
3.1. Filtrate Flux Behaviors during Diafiltration
3.2. Filtrate Flux Behaviors during Ultrafiltration
3.3. Effects of Sucrose Types on Filtrate Flux
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1–30. [Google Scholar] [CrossRef]
- Homepage of The Antibody Society. Available online: https://www.antibodysociety.org/ (accessed on 13 August 2021).
- Bansode, V.; Gupta, P.; Kateja, N.; Rathore, A.S. Contribution of protein A step towards cost of goods for continuous production of monoclonal antibody therapeutics. J. Chem. Technol. Biotechnol. 2021, 1–14. [Google Scholar] [CrossRef]
- Tomar, D.S.; Kumar, S.; Singh, S.K.; Goswami, S.; Li, L. Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development. MAbs 2016, 8, 216–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, A.L.; Dhimolea, E.; Reichert, J.M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 2010, 9, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Zydney, A.L. Continuous downstream processing for high value biological products: A review. Biotechnol. Bioeng. 2016, 113, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A. Downstream processing for biopharmaceuticals recovery. Environ. Chem. Sustain. World 2019, 26, 163–190. [Google Scholar] [CrossRef]
- Van Reis, R.; Zydney, A. Bioprocess membrane technology. J. Memb. Sci. 2007, 297, 16–50. [Google Scholar] [CrossRef]
- Shukla, A.; Etzel, M.; Gadam, S. Process Scale Bioseparations for the Biopharmaceutical Industry; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Baek, Y.; Zydney, A.L. Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins. Curr. Opin. Biotechnol. 2018, 53, 59–64. [Google Scholar] [CrossRef]
- Shire, S.J.; Shahrokh, Z.; Liu, J. Challenges in the development of high protein concentration formulations. J. Pharm. Sci. 2004, 93, 1390–1402. [Google Scholar] [CrossRef]
- Shire, S.J. Formulation and manufacturability of biologics. Curr. Opin. Biotechnol. 2009, 20, 708–714. [Google Scholar] [CrossRef]
- Uchiyama, S. Liquid formulation for antibody drugs. Biochim. Biophys. Acta-Proteins Proteom. 2014, 1844, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Singh, S.; Zeng, D.L.; King, K.; Nema, S. Antibody structure, instability, and formulation. J. Pharm. Sci. 2007, 96, 1–26. [Google Scholar] [CrossRef]
- Kim, N.A.; Thapa, R.; Jeong, S.H. Preferential exclusion mechanism by carbohydrates on protein stabilization using thermodynamic evaluation. Int. J. Biol. Macromol. 2018, 109, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical stability of monoclonal antibodies: A review. J. Pharm. Sci. 2020, 109, 169–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falconer, R.J. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol. Adv. 2019, 37, 107412. [Google Scholar] [CrossRef] [PubMed]
- Weinbuch, D.; Cheung, J.K.; Ketelaars, J.; Filipe, V.; Hawe, A.; Den Engelsman, J.; Jiskoot, W. Nanoparticulate impurities in pharmaceutical-grade sugars and their interference with light scattering-based analysis of protein formulations. Pharm. Res. 2015, 32, 2419–2427. [Google Scholar] [CrossRef] [Green Version]
- Weinbuch, D.; Ruigrok, M.; Jiskoot, W.; Hawe, A. Nanoparticulate impurities isolated from pharmaceutical-grade sucrose are a potential threat to protein stability. Pharm. Res. 2017, 34, 2910–2921. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Microb. Cell Fact. 2002, 8, 59. [Google Scholar] [CrossRef]
- Baek, Y.; Yang, D.; Zydney, A.L. Development of a hydrodynamic cleaning cycle for ultrafiltration/diafiltration processes used for monoclonal antibody formulation. Ind. Eng. Chem. Res. 2018, 57, 16110–16115. [Google Scholar] [CrossRef]
- Spielman, L.; Goren, S.L. Model for predicting pressure drop and filtration efficiency in fibrous media. Environ. Sci. Technol. 1968, 2, 279–287. [Google Scholar] [CrossRef]
- Matthiasson, E.; Sivik, B. Concentration polarization and fouling. Desalination 1980, 35, 59–103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Na, J.; Baek, Y. Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process. Membranes 2021, 11, 775. https://doi.org/10.3390/membranes11100775
Lee J, Na J, Baek Y. Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process. Membranes. 2021; 11(10):775. https://doi.org/10.3390/membranes11100775
Chicago/Turabian StyleLee, Jieun, Jiwon Na, and Youngbin Baek. 2021. "Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process" Membranes 11, no. 10: 775. https://doi.org/10.3390/membranes11100775
APA StyleLee, J., Na, J., & Baek, Y. (2021). Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process. Membranes, 11(10), 775. https://doi.org/10.3390/membranes11100775